JPS61288133A - Measuring instrument for radiation heating value - Google Patents

Measuring instrument for radiation heating value

Info

Publication number
JPS61288133A
JPS61288133A JP12998885A JP12998885A JPS61288133A JP S61288133 A JPS61288133 A JP S61288133A JP 12998885 A JP12998885 A JP 12998885A JP 12998885 A JP12998885 A JP 12998885A JP S61288133 A JPS61288133 A JP S61288133A
Authority
JP
Japan
Prior art keywords
heat
temperature
heating
measured
heat flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12998885A
Other languages
Japanese (ja)
Other versions
JPH0629799B2 (en
Inventor
Yoshiaki Arakawa
荒川 美明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP60129988A priority Critical patent/JPH0629799B2/en
Publication of JPS61288133A publication Critical patent/JPS61288133A/en
Publication of JPH0629799B2 publication Critical patent/JPH0629799B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To measure radiation heating value without being affected by outside temperature condition by providing a heating and cooling element on one surface of a heat resistor and also providing a temperature measuring element on the surface or in a nearby heat resistor. CONSTITUTION:A measuring instrument 9 mounted on a surface 1 to be measured is provided with a heat flowmeter 2 in or almost at the center part of the surface of the heat resistor 5 which has specific thickness and specific heat conductivity and, therefore, has a specific resistance value. Further, the temperature measuring element 6 and heating and cooling element 7 are arranged on the surface of the heat resistor 5 on an external air side. The temperature measuring element 6 may be installed in the heat resistor 5 nearby the surface. The heating and cooling element 7 uses a thermoelectric element which performs heating and cooling by, for example, Peltier effect and the temperature measuring element 6 uses a thermocouple, etc. Then, the measuring instrument 9 is stuck on the surface 1 to be measured and the temperature of the surface of the heat resistor 5 that the heating and cooling element 7 contacts is held uniform. Consequently, the indicated value of the heat flowmeter 2 is outputted to an indicator 10 by a specific expression and the density of a heat flow based upon thermal variation in the surface to be measured is measured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は被測定対象体からの放散熱量または吸収熱量を
測定する装置に係り、例えば建造物の壁からの放散吸収
熱量および血流状況の変化による人体内部の発熱量の変
動等を測定するに適した放散熱量測定装置に関するもの
である。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a device for measuring the amount of heat radiated or absorbed from an object to be measured. The present invention relates to a dissipated heat amount measuring device suitable for measuring changes in the amount of heat generated inside the human body due to changes.

(従来技術) 被測定対象体内部から外部に伝達される熱流の密度また
は外部から内部に吸熱される熱流の密度は外気条件、す
なわち外気の温度、全熱伝導率、太陽やヒータなど放熱
源のイ1無によって異なることは云うまでもない。
(Prior art) The density of the heat flow transmitted from the inside of the object to be measured to the outside, or the density of the heat flow absorbed from the outside to the inside, depends on the outside air conditions, that is, the temperature of the outside air, the total thermal conductivity, and the heat radiation source such as the sun or heater. Needless to say, it differs depending on the situation.

従来、斯様な温度条件変動環境において放散熱量を測定
する手段として、単に被測定面に熱流計を貼着し、ある
いは被測定対象体の内部に熱流計を埋設して伝達される
熱流の密度を測定することが通常であった。
Conventionally, as a means of measuring the amount of heat dissipated in such an environment where temperature conditions fluctuate, a heat flow meter was simply attached to the surface to be measured, or the heat flow meter was embedded inside the object to be measured, and the density of the heat flow transferred was measured. It was common to measure

たとえば薄い熱抵抗板の表裏両面の温度差をサーモバイ
ル、作動結線型測温抵抗体またはサーミスタ等で検出し
て被測定面からの放散熱流密度または被測定対象体内部
を質流する熱流密度を測定する熱量測定装置が従来通常
のものであり、前者は被測定対象体面に貼着し、後者は
被測定対象体内に埋設して使用される。これらの装置に
ついてはたとえば荒用美明他ニオートメージョン、臨時
増刊号、第24巻第7号(1979年刊)第27頁にお
いて記載が見られるところである。
For example, by detecting the temperature difference between the front and back sides of a thin thermal resistance plate using a thermometer, active wiring type resistance thermometer, or thermistor, etc., we can calculate the heat flow density dissipated from the surface to be measured or the heat flow density flowing inside the object to be measured. Conventional calorimeters are conventional ones, and the former is attached to the surface of the object to be measured, while the latter is used by being embedded within the object. These devices are described in, for example, Yoshiaki Arayo et al., Neo-Automation, Special Issue, Volume 24, No. 7 (published in 1979), page 27.

上述によって明らかな通り、従来の装置においては外気
側の熱的条件を異にする場合には被測定面における放熱
または吸熱される熱流の密度も異なることとなり被測定
対象体内部における熱的変動に対応した真の放熱量また
は吸熱量の変動を知ることには困難があった。
As is clear from the above, in conventional devices, when the thermal conditions on the outside air side are different, the density of the heat flow that is radiated or absorbed at the surface to be measured also differs, which causes thermal fluctuations inside the object to be measured. It has been difficult to know the corresponding true heat dissipation or heat absorption variation.

以上の欠点を改善するため多少とも外気側の熱的変動を
防止する対象を講する場合には、たとえば第12図に示
すように被測定面1の表面に貼着された熱流計2を覆う
金属製等のカバー3を設は外気と遮断することによりカ
バー3内の気流状況を整える手段が用いられたが、この
方法においてはカバ−3内部雰囲気の全熱伝達率は被測
定面の向きが上向き、下向き、垂直向き等によっていち
じるしく異り、また、カバー3と被測定面1に取り付け
る際、生ずる間隙の程度によってカバー3内の気流が間
隙を介して入れ替る状況が異なるため対流熱伝達率が大
となり、したがって所望の余熱伝達率における放散熱流
密度の測定は極めて困難である。しかもカバー3内の対
流状況を整えるためには相当に大なるカバー内部気積(
たとえば少くとも30cm’程度)を必要とし、そのた
め被測定面もかなり大となり、またカバーの機械的強度
を増すため金属製にすればカバー全体の温度上昇がいち
じるしく、所定のカバ一温度とするためには強力な冷却
を必要とする等の不便は避けられないものがあった。
In order to improve the above-mentioned drawbacks, if measures are taken to prevent thermal fluctuations on the outside air side, for example, as shown in FIG. A method was used to adjust the air flow inside the cover 3 by installing a cover 3 made of metal or the like to isolate it from the outside air, but in this method, the total heat transfer coefficient of the atmosphere inside the cover 3 depends on the direction of the surface to be measured. convective heat transfer because the airflow inside the cover 3 changes significantly depending on the upward, downward, vertical, etc. orientation, and the situation in which the airflow inside the cover 3 is exchanged through the gap differs depending on the degree of the gap created when the cover 3 is attached to the surface to be measured 1. The rate is large and therefore measuring the dissipated heat flow density at a desired residual heat transfer rate is extremely difficult. Moreover, in order to adjust the convection situation inside the cover 3, a considerably large air volume inside the cover (
For example, at least 30 cm') is required, which means that the surface to be measured becomes quite large.Also, if the cover is made of metal to increase its mechanical strength, the temperature of the entire cover will rise significantly. However, there were unavoidable inconveniences such as the need for powerful cooling.

(発明が解決しようとする問題点) 本発明の装置は」二記従来装置の欠点を改善し外気の温
度条件に影響されることなく放散熱量を測定しうる放散
熱量測定装置を提供することにある。
(Problems to be Solved by the Invention) The object of the present invention is to provide a dissipated heat amount measuring device that can improve the drawbacks of the conventional devices as described in 2. be.

(問題点解決のための手段) 本発明の装置は上記問題点を解決する手段として、熱流
計と所定の熱抵抗値を有する平板状熱抵抗体とから成り
該熱抵抗体の一面に加熱冷却素子と該面もしくは、その
近傍の熱抵抗体の内部に測温素子とを具備したことを特
徴とする放散熱量測定装置であり、ざらに該画素子に温
度調節器を配備することにより、より精度よく能率的に
、放散熱量測定が可能となる。加熱冷却素子とは、加熱
および/又は冷却の機能をもつ装置を意味し、たとえば
、熱電素子、ヒータ、温冷水、温冷風などを適宜選択で
きる。又、熱流計が、毛細管現象を生ずる被覆材によっ
て囲繞され、該被覆材の一部を外気に接するように構成
することによって、被測定物等から水分等が発生する場
合にはこれを系外に取り出し、より正確な測定が可能と
なる。
(Means for Solving the Problems) As a means for solving the above-mentioned problems, the device of the present invention is composed of a heat flow meter and a flat thermal resistor having a predetermined thermal resistance value. This is a dissipated heat amount measuring device characterized by comprising a temperature measuring element inside the element and a thermal resistor on or near the surface, and by providing a temperature controller in the pixel element, The amount of heat dissipated can be measured accurately and efficiently. The heating/cooling element means a device having a heating and/or cooling function, and can be appropriately selected from, for example, a thermoelectric element, a heater, hot/cold water, hot/cold air, etc. Furthermore, by configuring the heat flow meter to be surrounded by a covering material that causes capillary action, and by configuring a part of the covering material to be in contact with the outside air, if moisture or the like is generated from the object to be measured, it is removed from the system. This allows for more accurate measurements.

熱抵抗体は、所定の熱抵抗値を有することが必要であり
、発泡材料、たとえば、発泡ポリウレタン等が使用でき
る。
The thermal resistor needs to have a predetermined thermal resistance value, and a foamed material such as foamed polyurethane can be used.

また、所定の熱抵抗値を有する平板状の熱流計と該熱流
計の一面に加熱冷却素子と該面もしくはその近傍の熱抵
抗体の内部に測温素子とをA備することを特徴とする放
散熱量測定装置又は所定の熱抵抗値を有する平板状の熱
抵抗体の一面に測温素子と加熱冷却素子とを有し他面も
しくはその近傍の熱抵抗体の内部に別異の測温素子を有
することを特徴とする放散熱量測定装置によっても、所
期の目的は達せられる。
It is also characterized by comprising a flat heat flow meter having a predetermined thermal resistance value, a heating and cooling element on one side of the heat flow meter, and a temperature measuring element inside the thermal resistor on or near the surface. A dissipated heat measurement device or a flat thermal resistor having a predetermined thermal resistance value, which has a temperature measuring element and a heating/cooling element on one side, and a different temperature measuring element inside the thermal resistor on the other side or in the vicinity thereof. The desired objective can also be achieved by a dissipated heat quantity measuring device characterized by having the following.

本発明の装置が上記する装置として発明されるに至った
基本的熱流理論について次に説明する。
The basic heat flow theory that led to the invention of the device of the present invention as described above will now be explained.

第1a図および第1b図は熱論理論を説明する模式図を
示すものである。第1a図において、熱流密度q (W
 / ryf )とすればq=α。(Tw−TA) +
 6w(r (Tw4−TR4)    (Dここにα
 :気体の対流熱伝達率(W / m”・K〕Tw:被
測定面の温度(K) TA:気体の温度(K) εW=被測定面の放射率 σ :ステファン・ポルツマン定数 TR:周囲物体の温度(K) 通常、TA厘TRであり、またTwがTA。
Figures 1a and 1b show schematic diagrams illustrating the thermal theory. In Fig. 1a, the heat flow density q (W
/ryf), then q=α. (Tw-TA) +
6w(r (Tw4-TR4) (D here α
: Convective heat transfer coefficient of gas (W/m”・K) Tw: Temperature of the surface to be measured (K) TA: Temperature of the gas (K) εW = Emissivity of the surface to be measured σ : Stefan-Polzmann constant TR: Surroundings Temperature of an object (K) Usually, TA is TR, and Tw is TA.

TRに比較して高いときはTA=TRとして取扱うこと
がきでるので式(1)は次式で書き表される: q=(αc+εWσ(TW+TA) (TW2+TA”
 ) )x (Tw−TA)            
   (2)α、=εWσ(Tw+TA)(7w2+T
A2)(3)とおけば q=(α。+αρCTW+ TA)(4)また被測定面
の温度が気体温度にほぼ等しいときは次式が与えられる
When it is higher than TR, it can be treated as TA=TR, so equation (1) can be written as the following equation: q=(αc+εWσ(TW+TA) (TW2+TA)
) ) x (Tw-TA)
(2) α, = εWσ(Tw+TA)(7w2+T
A2) If (3) is set, then q=(α.+αρCTW+TA) (4) When the temperature of the surface to be measured is approximately equal to the gas temperature, the following equation is given.

q=(α。+αρ(Tw=TA)(5)TA=(αcT
A+αrTR)/(α。+αr)     (6)式(
4)、(5)から放散熱流密度qは対流熱伝達率α 、
放射熱伝達率α 、すなわち余熱伝Or 達率α(=α +α )および気体温度TAまたC  
    r はTA&が変動すれば変化することが知られる。
q=(α.+αρ(Tw=TA)(5)TA=(αcT
A+αrTR)/(α.+αr) (6) Formula (
From 4) and (5), the radiation heat flow density q is the convective heat transfer coefficient α,
Radiation heat transfer coefficient α, that is, residual heat transfer rate α (=α + α) and gas temperature TA or C
It is known that r changes if TA& changes.

これに対して第1b図に示すように一定の熱抵抗値R(
m″・K /W)を有する平板状の熱抵抗体(その厚さ
d (m) 、熱伝達不入(W / m・K))を被測
定面に貼着し、かつ、熱抵抗体の気体側の面の温度を一
定温度Ta(K)に保持するとき、該熱抵抗体を貫流す
熱流密度q′ (W/m’ )は次式で与えられる: q′=入(T  ”−Ta)/d= (T  ’−Ta
)/R(7)W すなわち式(7)においてRおよびTa値は一定である
から熱流密度q′の変化は被測定面内部の熱的変動のみ
を示すことになる。このことは保温保冷壁の断熱性能を
現場で検査する場合に所定の外気条件たとえば自然対流
(無風)状況の下において壁の外気側の放射率が0.9
、外気温度20℃、他からの放射源がゼロの条件におい
て壁を貫流する熱流密度を測定する場合に適用できる。
On the other hand, as shown in Fig. 1b, a constant thermal resistance value R (
A flat thermal resistor (its thickness d (m), no heat transfer (W / m・K)) having a diameter of When the temperature of the gas side surface of the thermal resistor is maintained at a constant temperature Ta (K), the heat flow density q'(W/m') flowing through the thermal resistor is given by the following formula: q'=in (T '' -Ta)/d= (T'-Ta
)/R(7)W That is, in equation (7), since R and Ta values are constant, changes in heat flow density q' indicate only thermal fluctuations inside the surface to be measured. This means that when inspecting the insulation performance of a heat-retaining and cold-retaining wall on-site, the emissivity on the outside air side of the wall under specified outside air conditions, such as natural convection (no wind), is 0.9.
This method can be applied to measuring the heat flow density flowing through a wall under the conditions of an outside temperature of 20° C. and zero radiation sources from other sources.

上述条件においては ct =4.5 CW/m’eK) 、 a =4.5
 (W/r?K)Cr と見積られるから 閉じた測定装置を用意して被測定面に貼着し、その測定
装置に熱流計を配設しておけば2式(7)によって所定
の外気条件における貫流熱流密度q′が実測有能となる
わけである。
Under the above conditions, ct = 4.5 CW/m'eK), a = 4.5
Since it is estimated that (W/r?K)Cr, a closed measuring device is prepared and attached to the surface to be measured, and a heat flow meter is attached to the measuring device. This means that the through-flow heat flow density q' under these conditions can be measured.

本発明装置は上述理論にもとづき発明された放散熱量測
定装置である。
The device of the present invention is a dissipated heat quantity measuring device invented based on the above-mentioned theory.

第2図は本発明装置を構成する要部を示すものである。FIG. 2 shows the main parts constituting the apparatus of the present invention.

被測定面1上に載置された本測定装置は所定厚さd、所
定熱伝達不入、したがって所定の熱抵抗値R(rrr’
−K/W)を有する熱抵抗体5の内部あるいは表面(い
づれの面でもよい)において熱抵抗体5のほぼ中央部に
熱流計2が配設されざらに熱抵抗体5の外気側の面に測
温素子6および加熱冷却素子7が配備される。測温素子
は、該部近傍の熱抵抗体内部に設置することもできる。
This measuring device placed on the surface to be measured 1 has a predetermined thickness d, a predetermined heat transfer resistance, and therefore a predetermined thermal resistance value R (rrr'
The heat flow meter 2 is disposed approximately in the center of the thermal resistor 5 inside or on the surface (whichever surface may be used) of the thermal resistor 5 having a temperature of -K/W). A temperature measuring element 6 and a heating/cooling element 7 are provided. The temperature measuring element can also be installed inside the thermal resistor near the part.

加熱冷却素子7はたとえばペルチェ効果により加熱また
は冷却を行う熱電素子、ヒータ等が用いられる。また測
温素子6としては熱電対、サーミスタ、測温抵抗体など
いづれを用いてもよく、本装置を作動させるため温度調
節器8に接続して使用される。
As the heating/cooling element 7, for example, a thermoelectric element, a heater, etc., which performs heating or cooling by the Peltier effect, is used. Further, as the temperature measuring element 6, a thermocouple, a thermistor, a temperature measuring resistor, or the like may be used, and it is used by being connected to the temperature regulator 8 in order to operate the device.

ただし測温素子6の指示値によって温度を知り手動操作
によって加熱冷却素子7への電流、電圧を調節する場合
は温度調節器8に代り電流、電圧の調M器を用いればよ
い。
However, if the temperature is known from the indicated value of the temperature measuring element 6 and the current and voltage to the heating/cooling element 7 are adjusted manually, a current and voltage regulator may be used instead of the temperature regulator 8.

熱流計2の側面に存在する材料51はダミー材であり、
熱流計2と同一材料を用いてもよく、また熱抵抗体5と
同一材料を用いてもよい。
The material 51 present on the side surface of the heat flow meter 2 is a dummy material,
The same material as the heat flow meter 2 may be used, and the same material as the thermal resistor 5 may be used.

熱抵抗体の材料にはシリコーンゴム、布など可能性、測
定範囲温度における耐熱性、安全性等を考慮して選択さ
れるが熱容量が小かつ熱伝導率の低い発泡性材料、たと
えば発泡ポリウレタン、発泡ポリスチレン、発泡ポリエ
チレン、発泡シリコーンゴム等が好ましい。
Materials for the thermal resistor include silicone rubber, cloth, etc., and are selected in consideration of heat resistance and safety in the measurement range temperature, but foam materials with small heat capacity and low thermal conductivity, such as foamed polyurethane, Foamed polystyrene, foamed polyethylene, foamed silicone rubber, etc. are preferred.

被測定面1に本発明装置9を貼着し抵抗体5の加熱冷却
素子7の接する面の温度を一様かつ一定温度に保てば本
装置9に存在する熱流計2の指示値qは前記式(7)に
よって指示計10に出力され被測定面内部の熱的変化に
もとづく熱流密度が計測できる。
If the device 9 of the present invention is attached to the surface to be measured 1 and the temperature of the surface of the resistor 5 in contact with the heating/cooling element 7 is maintained at a uniform and constant temperature, the indicated value q of the heat flow meter 2 present in the device 9 is According to the equation (7), the heat flow density can be outputted to the indicator 10 and measured based on the thermal change inside the surface to be measured.

(実施例1) 第3図は第2図によって説明した本発明装置の基本構成
の一態様である。外気温度が低く熱抵抗体5の加熱冷却
素子側の面の温度を常に外気温度より高い値に保持する
必要のある場合に使用される測定装置であって、加熱冷
却素子として薄板状ヒータ7エを用いている。
(Embodiment 1) FIG. 3 shows one aspect of the basic configuration of the apparatus of the present invention explained using FIG. 2. This measuring device is used when the outside air temperature is low and it is necessary to maintain the temperature of the heating/cooling element side of the thermal resistor 5 at a value higher than the outside air temperature. is used.

寸法10100X100X6のネオブレンeスポンジを
熱抵抗体5として用意し、熱流計2には昭和電工■製E
Sセンサを使用した。ヒータには市販のフィルム状ヒー
タを用い、上記ネオブレン・スポンジに両面粘着テープ
で取・付けた。測定素子6として帯状に熱電対を用いた
A neoprene e sponge with dimensions 10100 x 100 x 6 was prepared as the thermal resistor 5, and the heat flow meter 2 was made by Showa Denko
An S sensor was used. A commercially available film heater was used as the heater, and was attached to the neorene sponge using double-sided adhesive tape. A strip-shaped thermocouple was used as the measuring element 6.

上記装置を直径500ma+φ、放射率的0.9を有す
る黒色均熱放射面へ貼着して試験を行なった。本装置の
雰囲気は室内であって自然対流の状況に近似したもので
あった。室温が15〜23°Cの範囲にて変動する条件
において測温素子6の温度を一定の40℃となるように
PID動作の温度調節器で自動制御した。一方、被測定
面の温度は46°Cの一定値を保つように別のPID温
度調節器で制御した。第4図はこの場合における室温の
変化(第4図A)、熱流計の出力から求めた放散熱量(
第4図B)および黒色均熱放熱面からの放散熱流密度(
第4図C)を示すものである。
A test was carried out by attaching the above device to a black uniform heat radiation surface having a diameter of 500 ma+φ and an emissivity of 0.9. The atmosphere of this device was indoors and approximated the situation of natural convection. Under the condition that the room temperature fluctuated in the range of 15 to 23°C, the temperature of the temperature measuring element 6 was automatically controlled to a constant 40°C using a PID temperature controller. On the other hand, the temperature of the surface to be measured was controlled using another PID temperature controller so as to maintain a constant value of 46°C. Figure 4 shows the change in room temperature in this case (Figure 4A), and the amount of heat dissipated from the output of the heat flow meter (Figure 4A).
Fig. 4 B) and the density of heat flow radiated from the black uniform heat dissipation surface (
Figure 4C) is shown.

本装置における熱抵抗体での温度差は6°Cであり、し
かも熱抵抗体の熱抵抗値を調べるとネオプレン・スポン
ジの30℃における熱伝導率として約0 、06 (W
/m−K)が得られるので熱抵抗値は約0 、1 (m
’・K /W)である、したがって本装置を直流する熱
流密度は約6o(w/m’)であり計算値とよく一致す
る。すなわち室温が変動しても一定の放散熱量として評
価でき、外気条件の影響を受けずに放散熱流密度を測定
できることが実証された。
The temperature difference in the thermal resistor in this device is 6°C, and when examining the thermal resistance value of the thermal resistor, the thermal conductivity of neoprene sponge at 30°C is approximately 0.06 (W
/m-K), so the thermal resistance value is approximately 0,1 (m
'·K /W) Therefore, the heat flow density flowing directly through the device is approximately 6o (w/m'), which agrees well with the calculated value. In other words, it was demonstrated that the amount of dissipated heat can be evaluated as a constant amount even if the room temperature fluctuates, and that the dissipated heat flow density can be measured without being affected by outside air conditions.

〔実施例2〕 加熱冷却素子として熱電素子を用いた本発明装置の一態
様を第5図に示す。本装置では冷却時における放熱が必
要と見て放熱フィン11を配設した。なお放熱フィンに
代り送風器を用いることも可能である。熱電素子72と
して現今市販品たとえば小松エレクトロニスモー熱電素
子を使用した。熱電素子を用いることにより同素子に与
える直流電流の方向を変えれば測温素子6の存在する面
は加熱も冷却も可能であるので、たとえば測温素子6の
温度を一定の20’Oに保持したいのに外気温度がたと
えば15〜25°Cと変動する雰囲気では便利である。
[Example 2] FIG. 5 shows an embodiment of the apparatus of the present invention using a thermoelectric element as the heating/cooling element. In this device, heat radiation fins 11 are provided considering that heat radiation is necessary during cooling. Note that it is also possible to use a blower instead of the radiation fins. As the thermoelectric element 72, a commercially available product such as a Komatsu Electronismo thermoelectric element was used. By using a thermoelectric element, the surface on which the temperature measuring element 6 is present can be heated or cooled by changing the direction of the direct current applied to the element, so for example, the temperature of the temperature measuring element 6 can be maintained at a constant 20'O. This is convenient in an atmosphere where the outside temperature fluctuates, for example, from 15 to 25°C.

(実施例3) 第6図は温、冷水または温、冷風など所定温度を有する
流体を矢印の方向に流して熱抵抗体5の測温素子6の存
在する面の温度を一定に保つ本装置の一態様を示す、熱
電素子の場合と同様、外気温度の変動に対して加熱また
は冷却いづれも可能であるので極めて便利である。なお
本例において測温素子6は別途に流体の温度が知られて
いれば必ずしも必要ではなく、斯様な態様も可能である
(Embodiment 3) Figure 6 shows this device which maintains the temperature of the surface of the thermal resistor 5 where the temperature measuring element 6 is present by flowing a fluid having a predetermined temperature such as hot or cold water or hot or cold air in the direction of the arrow. As with the thermoelectric element, which is one aspect of the above, it is extremely convenient because it can perform either heating or cooling in response to fluctuations in outside temperature. Note that in this example, the temperature measuring element 6 is not necessarily required as long as the temperature of the fluid is separately known, and such an embodiment is also possible.

(実施例4) 熱抵抗体と熱流計とを一体化して所望の熱抵抗値を有す
る熱流計を用いた本願第2発明の一態様を第7図に示す
。本例においては熱流計の検知素子としてサーモバイル
12を使用したが、これによって熱流計の熱抵抗板の熱
抵抗値が大となるので熱流計における温度降下も大とな
り従ってサーモパイル12の出力も大となり検知能力を
増大する利点がある。
(Example 4) FIG. 7 shows an embodiment of the second invention of the present application using a heat flow meter having a desired thermal resistance value by integrating a thermal resistor and a heat flow meter. In this example, the thermopile 12 is used as the detection element of the heat flow meter, but since this increases the thermal resistance value of the heat resistance plate of the heat flow meter, the temperature drop in the heat flow meter also increases, and therefore the output of the thermopile 12 also increases. This has the advantage of increasing detection capability.

(実施例5) 熱流計に代え測温素子6および別異の測温素子61を熱
抵抗体5の被測定面側の表面または表面近傍に配設して
検知出力を得る本願第3発明の一態様を第8図に示す、
測温素子61iよび6の温度をそれぞれT ′、T(’
Cり、熱抵抗体5のW       a 熱抵抗値をR(m’・K /W)とすれば前掲式(7)
から次式が成立つ: Tw′;R11q′+Ta しかるにRおよびT は一定値であるから熱抵抗体5を
貫流する熱流密度q′とTw′とは比例関係となる。す
なわちTw′を測定できればq′を知ることが出来る。
(Example 5) According to the third invention of the present application, a temperature measuring element 6 and a different temperature measuring element 61 are arranged on the surface of the thermal resistor 5 on the surface to be measured or near the surface in place of the heat flow meter to obtain a detection output. One embodiment is shown in FIG.
The temperatures of temperature measuring elements 61i and 6 are T' and T('
If the W a thermal resistance value of the thermal resistor 5 is R (m'・K /W), the above formula (7) is obtained.
Therefore, the following equation holds true: Tw';R11q'+Ta However, since R and T are constant values, the heat flow density q' flowing through the thermal resistor 5 and Tw' are in a proportional relationship. That is, if Tw' can be measured, q' can be known.

(実施例6) 実施例5において2個の測温素子6および61を差動結
線素子6′および61′に代置した本願第3発明装置の
一態様を第9図に示す、本例のように差動結線された素
子を、検知信号を得る素子とした場合は実施例4におけ
るサーモパイルが1対の場合に相当するものであり、本
例を示す第9図の回路は第7図に示す回路と等価である
(Example 6) An embodiment of the third invention device of the present application in which the two temperature measuring elements 6 and 61 in Example 5 are replaced with differential connection elements 6' and 61' is shown in FIG. 9. If a differentially connected element is used as an element for obtaining a detection signal, it corresponds to the case where there is one pair of thermopiles in Example 4, and the circuit of FIG. 9 showing this example is shown in FIG. It is equivalent to the circuit shown.

(実施例7) 測温素子61を検知素子とする本願第3発明装置の一態
様として第10図に示す装置を試作した。本図において
温度yJ筋器8で設定された温度値をプレカット回路1
3にて減算し、演算回路14において値(1/R)を乗
することにより表示計10に表示される値は熱流密度q
′に等しくなる。
(Example 7) A device shown in FIG. 10 was prototyped as an embodiment of the device of the third invention of the present application using the temperature measuring element 61 as the sensing element. In this figure, the temperature value set in temperature yJ muscle device 8 is
3 and multiplied by the value (1/R) in the arithmetic circuit 14, the value displayed on the display meter 10 is the heat flow density q
′.

(実施例8) 本発明装置の基本構成(第2図)において毛細管現象を
生ずる材料、たとえばガーゼ、繊維などの材料を付加し
た本発明装置の一態様として、第11図に示す装置を製
作した0本装置は被測定面1から水の蒸発を伴う熱流に
対して使用するものである0毛細管材料15を使用した
熱流計については本発明者らによる特開昭59−145
938号において既に開示されているが本例はこれを更
に別異の態様に発展させたものである。
(Example 8) The device shown in FIG. 11 was manufactured as an embodiment of the device of the present invention in which a material that causes capillarity, such as gauze or fiber, was added to the basic configuration of the device of the present invention (FIG. 2). 0 This device is used for heat flow accompanied by water evaporation from the surface 1 to be measured. 0 A heat flow meter using capillary material 15 is described in Japanese Patent Application Laid-Open No. 59-145 by the present inventors.
Although this has already been disclosed in No. 938, this example is developed into a further different aspect.

毛細管材料15の測定装置9の外側に出た部分の全面積
は熱流計2の片面の面積にほぼ等しくする。また毛mv
材料15は熱流計2の被測定面側の面から反対側面へ−
たん持ち出し、その後ダミー材51と熱抵抗体との境界
を通して外部へ引き出すことが必要となる0本図の装置
構成によって被測定対象が人体のような発汗する対象体
からの放散熱流密度を所定条件の下で計測することが可
能である。
The total area of the portion of the capillary material 15 extending outside the measuring device 9 is approximately equal to the area of one side of the heat flow meter 2. Also hair mv
The material 15 is transferred from the surface to be measured of the heat flow meter 2 to the opposite side.
The apparatus configuration shown in the figure, which requires the device to be taken out and then drawn out through the boundary between the dummy material 51 and the thermal resistor, allows the density of heat flow dissipated from a sweating object such as a human body to be set under predetermined conditions. It is possible to measure under

(発明の効果) 上記において詳述した通り、本発明装置により被測定面
からの放散熱量または被測定面への吸熱量を外気の温度
条件と全熱伝達率が所定の値を有する場合に対応して測
定することが可能となり、これによって外気の変化の影
響をうけることなく断熱壁の断熱性能を直接評価できる
こととなり。
(Effects of the Invention) As detailed above, the device of the present invention can measure the amount of heat radiated from the surface to be measured or the amount of heat absorbed by the surface to be measured when the outside air temperature condition and the total heat transfer coefficient have predetermined values. This makes it possible to directly evaluate the insulation performance of an insulated wall without being affected by changes in the outside air.

また、人体に対しては血流状況の変化による放熱量が外
気の変化の影響をうけることなく計測可能となり生命に
対する異常などを容易に判断しうる等、実用上の効果は
極めて顕著である。
In addition, the practical effects on the human body are extremely significant, such as the amount of heat dissipated due to changes in blood flow conditions can be measured without being affected by changes in the outside air, and abnormalities affecting life can be easily determined.

【図面の簡単な説明】[Brief explanation of the drawing]

第1a、1b図は本発明装置の熱流理論を説明する模式
図、第2図は本発明装置要部図、第3図は本発明装置の
実施態様、第4図は放散熱量および室温の経時的測定値
、第5図ないし第11図は本発明装置の実施態様、第1
2図は従来技術の説明図である。 1−被測定面、2−熱流計、3−カバー、4−周囲物体
、5−熱抵抗体、6−測温素子、7−加熱冷却素子、8
一温度yJWI器、9一本発明装置、1〇−表示計、1
1−放熱フィン、12−サーモバイル、13−7”レカ
ット回路、14−演算回路、15−毛細管材料。 6′、61′−差動結線素子、51−ダミー材61−測
温素子、71−ヒータ
Figures 1a and 1b are schematic diagrams explaining the heat flow theory of the device of the present invention, Figure 2 is a diagram of the main parts of the device of the present invention, Figure 3 is an embodiment of the device of the present invention, and Figure 4 is the amount of heat dissipated and room temperature over time. Figures 5 to 11 show the first embodiment of the device of the present invention.
FIG. 2 is an explanatory diagram of the prior art. 1-surface to be measured, 2-heat flow meter, 3-cover, 4-surrounding object, 5-thermal resistor, 6-temperature element, 7-heating/cooling element, 8
- temperature yJWI device, 9 - device of the present invention, 10 - display meter, 1
1-Radiation fin, 12-Thermomobile, 13-7" recut circuit, 14-Arithmetic circuit, 15-Capillary material. 6', 61'-Differential connection element, 51-Dummy material 61-Temperature measuring element, 71- heater

Claims (7)

【特許請求の範囲】[Claims] (1)熱流計と所定の熱抵抗値を有する平板状熱抵抗体
とから成り該熱抵抗体の一面に加熱冷却素子と該面もし
くはその近傍の熱抵抗体の内部に測温素子とを具備した
ことを特徴とする放散熱量測定装置。
(1) Consists of a heat flow meter and a flat thermal resistor having a predetermined thermal resistance value, with a heating and cooling element on one surface of the thermal resistor and a temperature measuring element inside the thermal resistor on or near the surface. A dissipated heat amount measuring device characterized by the following.
(2)測温素子と加熱冷却素子とに接続された温度調節
器を具備したことを特徴とする特許請求の範囲第1項記
載の放散熱量測定装置。
(2) The dissipated heat amount measuring device according to claim 1, further comprising a temperature controller connected to the temperature measuring element and the heating/cooling element.
(3)熱抵抗体が発泡材料であることを特徴とする特許
請求の範囲第1項記載の放散熱量測定装置。
(3) The dissipated heat amount measuring device according to claim 1, wherein the thermal resistor is made of a foamed material.
(4)加熱冷却素子として熱電素子、ヒータ、温冷水、
温冷風を用いることを特徴とする特許請求の範囲第1項
記載の放散熱量測定装置。
(4) Thermoelectric elements, heaters, hot and cold water as heating and cooling elements,
The dissipated heat quantity measuring device according to claim 1, characterized in that hot and cold air is used.
(5)熱流計が、毛細管現象を生ずる被覆材によって、
囲繞され、該被覆材の一部は外気に接するように配設さ
れて成ることを特徴とする特許請求の範囲第1項記載の
放散熱量測定装置。
(5) The heat flow meter uses a covering material that causes capillary action,
2. The dissipated heat quantity measuring device according to claim 1, wherein the dissipated heat quantity measuring device is surrounded by a surrounding area, and a part of the covering material is arranged so as to be in contact with the outside air.
(6)所定の熱抵抗値を有する平板状の熱流計と該熱流
計の一面に加熱冷却素子と該面もしくは、その近傍の熱
抵抗体の内部に測温素子とを具備したことを特徴とする
放散熱量測定装置。
(6) A flat heat flow meter having a predetermined thermal resistance value, a heating and cooling element on one side of the heat flow meter, and a temperature measuring element inside the thermal resistor on or near the surface. Dissipated heat measurement device.
(7)所定の熱抵抗値を有する平板状の熱抵抗体の一面
に測温素子と加熱冷却素子とを有し他面もしくはその近
傍の熱抵抗体の内部に別異の測温素子を有することを特
徴とする放散熱量測定装置。
(7) A flat thermal resistor having a predetermined thermal resistance value has a temperature measuring element and a heating/cooling element on one side, and a different temperature measuring element inside the thermal resistor on or near the other side. A dissipated heat amount measuring device characterized by the following.
JP60129988A 1985-06-17 1985-06-17 Heat dissipation measurement device Expired - Lifetime JPH0629799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60129988A JPH0629799B2 (en) 1985-06-17 1985-06-17 Heat dissipation measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60129988A JPH0629799B2 (en) 1985-06-17 1985-06-17 Heat dissipation measurement device

Publications (2)

Publication Number Publication Date
JPS61288133A true JPS61288133A (en) 1986-12-18
JPH0629799B2 JPH0629799B2 (en) 1994-04-20

Family

ID=15023376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60129988A Expired - Lifetime JPH0629799B2 (en) 1985-06-17 1985-06-17 Heat dissipation measurement device

Country Status (1)

Country Link
JP (1) JPH0629799B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7775706B1 (en) * 2009-07-08 2010-08-17 Murray F Feller Compensated heat energy meter
JP2020024147A (en) * 2018-08-08 2020-02-13 パナソニックIpマネジメント株式会社 Heating value measuring method and heating value measuring apparatus
CN117250227A (en) * 2023-11-17 2023-12-19 西南交通大学 3D printed concrete surface heat exchange characteristic constant temperature test system, method and application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939473U (en) * 1972-07-05 1974-04-06
JPS5558427A (en) * 1978-10-25 1980-05-01 Showa Denko Kk Heat flowmeter
JPS55101026A (en) * 1979-01-26 1980-08-01 Showa Denko Kk Zero-method heat flow meter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939473U (en) * 1972-07-05 1974-04-06
JPS5558427A (en) * 1978-10-25 1980-05-01 Showa Denko Kk Heat flowmeter
JPS55101026A (en) * 1979-01-26 1980-08-01 Showa Denko Kk Zero-method heat flow meter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7775706B1 (en) * 2009-07-08 2010-08-17 Murray F Feller Compensated heat energy meter
JP2020024147A (en) * 2018-08-08 2020-02-13 パナソニックIpマネジメント株式会社 Heating value measuring method and heating value measuring apparatus
CN117250227A (en) * 2023-11-17 2023-12-19 西南交通大学 3D printed concrete surface heat exchange characteristic constant temperature test system, method and application
CN117250227B (en) * 2023-11-17 2024-01-23 西南交通大学 3D printed concrete surface heat exchange characteristic constant temperature test system, method and application

Also Published As

Publication number Publication date
JPH0629799B2 (en) 1994-04-20

Similar Documents

Publication Publication Date Title
JP4751386B2 (en) Temperature measuring device
US11686626B2 (en) Apparatus, systems, and methods for non-invasive thermal interrogation
US3491596A (en) Temperature sensing device
US5178464A (en) Balance infrared thermometer and method for measuring temperature
US7981046B2 (en) Temperature measurement device
US20140286373A1 (en) Thermal Resistance Measuring Device
US4433923A (en) Operative temperature sensing system
JP2003057117A (en) Probe used for infrared thermometer
JPH0518592A (en) Method and apparatus for calculating warm heat feeling, method and apparatus for calculating predicted mean warm feeling
US4164869A (en) Thermostat system for radiant room heating
JPS61288133A (en) Measuring instrument for radiation heating value
US4345844A (en) Calorimeter
JPS6012569B2 (en) Thermal environment measuring instrument
US1977340A (en) Heat convection meter
JPS63128228A (en) Heat detecting element
JPS6136645A (en) Method and device for thermal circumstance control
JPS60107117A (en) Thermostatic device
JPS5910590Y2 (en) Constant heat flow generator
Hertig Thermal standards and measurement techniques
JPS6126829A (en) Measuring device for temperature in piping
Madsen Thermal environmental parameters and their measurement
JP3163558B2 (en) Flow velocity detector
JPS5923369B2 (en) Zero-level heat flow meter
Korsgaard et al. New instruments for measuring thermal comfort
EP0143112B1 (en) Operative temperature sensing system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term