JPS63230869A - Production of thin film el device - Google Patents

Production of thin film el device

Info

Publication number
JPS63230869A
JPS63230869A JP62067165A JP6716587A JPS63230869A JP S63230869 A JPS63230869 A JP S63230869A JP 62067165 A JP62067165 A JP 62067165A JP 6716587 A JP6716587 A JP 6716587A JP S63230869 A JPS63230869 A JP S63230869A
Authority
JP
Japan
Prior art keywords
film
thin film
manufacturing
sulfide
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62067165A
Other languages
Japanese (ja)
Inventor
Kazuhiro Watanabe
渡邉 和廣
Kenji Okamoto
謙次 岡元
Takuya Yoshimi
琢也 吉見
Kiyotake Sato
佐藤 精威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Japan Science and Technology Agency
Original Assignee
Fujitsu Ltd
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd, Research Development Corp of Japan filed Critical Fujitsu Ltd
Priority to JP62067165A priority Critical patent/JPS63230869A/en
Publication of JPS63230869A publication Critical patent/JPS63230869A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

PURPOSE:To produce a thin film EL device having improved luminescence efficiency and luminance characteristics by using an evaporating source made of the sulfide of a group II element, an evaporating source made of the sulfide of a rare earth element and a halogen-contg. gas as a reactive gas to form an EL film. CONSTITUTION:A transparent electrode 2 made of an ITO film and a first insulating film 3 of silicon oxynitride are formed on a glass substrate 1 by sputtering. The substrate 1 is then rotated in a sputtering device, a film is formed at about 0.02Torr degree of vacuum with a zinc sulfide target, a diterbium trisulfide target and a gaseous HF-Ar mixture as a reactive gas and the formed film is converted into an EL film 4 by heat treatment at about 450 deg.C for about 1hr. At this time, Tb and F are deposited on the film 3 in about 1:1 ratio. A second insulating film 5 of silicon oxynitride and a counter electrode (rear electrode) 6 of Al are further formed on the EL film 4 by sputtering.

Description

【発明の詳細な説明】 〔概要〕 薄膜EL素子の製造方法の改良であり、薄膜EL素子の
発光効率・輝度特性を向上する改良である。    ′ 母材をなす■族元素中に発光中心として添加される希土
類元素とハロゲン元素との組成比を制御することにより
、■族元素の硫化物を母材とし希土類元素のハロゲン化
物を発光中心とする薄膜EL素子の発光効率O輝度を制
御しうる、という新たに発見された性質を利用して、希
土類元素とハロゲン元素との組成比を化学量論的組成比
より前記希土類元素の組成比を大きくし、発光効率拳輝
度特性を向上した薄1lIEL素子を製造する方法の改
良であり、■族元素、例えば、亜鉛、カルシウム、また
は、ストロンチウムの硫化物よりなる蒸発源と、希土類
元素の硫化物よりなる蒸発源とを使用し、少なくともハ
ロゲン元素またはハロゲン化物を反応ガスとしてなす堆
積法、例えば、スパッタリング法、または、イオンプレ
ーティング法を使用してELI)!2を形成することを
特徴とする薄膜EL素子の製造方法である。
DETAILED DESCRIPTION OF THE INVENTION [Summary] This is an improvement in the manufacturing method of a thin film EL element, and is an improvement that improves the luminous efficiency and brightness characteristics of the thin film EL element. ′ By controlling the composition ratio of the rare earth element and halogen element added as a luminescent center to the group III element that forms the base material, it is possible to make the sulfide of the group III element the base material and the halide of the rare earth element as the luminescent center. Taking advantage of the newly discovered property that the luminous efficiency and brightness of thin film EL elements can be controlled, the composition ratio of the rare earth element and the halogen element can be changed from the stoichiometric composition ratio to the composition ratio of the rare earth element. This is an improvement of the method for manufacturing a thin 1L IEL element with increased size and improved luminous efficiency and luminance characteristics, and includes an evaporation source made of a sulfide of a group III element, such as zinc, calcium, or strontium, and a sulfide of a rare earth element. (ELI) using an evaporation source consisting of at least a halogen element or a halide as a reactive gas, such as a sputtering method or an ion plating method! 2 is a method for manufacturing a thin film EL element, characterized by forming a thin film EL element.

〔産業上の利用分野〕[Industrial application field]

本発明は、薄膜EL素子の発光効率・輝度を向」ニする
ことを可能にする薄膜ELI子の製造方法の改良に関す
る。更に、薄1]1]EL素子の発光効率・輝度を実現
可能な大きさの範囲で所望の値に選択しうるようになす
薄1]5IEL素子の製造方法の改良に関する。
The present invention relates to an improvement in a method for manufacturing a thin film EL device that makes it possible to improve the luminous efficiency and brightness of the thin film EL device. Furthermore, the present invention relates to an improvement in a method for manufacturing a thin 1]5 IEL element, which allows the luminous efficiency and brightness of the thin 1]1 EL element to be selected to desired values within a realizable size range.

〔従来の技術〕[Conventional technology]

薄膜ELI子は発光中心として機能する希土類元素、例
えば、セリウム、ユロピウム、テルビエウム、サマリュ
ウム、ツリュウム、プラセオジュウム等とハロゲン元素
、例えば、フッ素、塩素、ホウ素等とを含有する硫化亜
鉛等のけい光体の多結晶薄膜に電界を印加し、エレクト
ロルミネッセンス現象にもとづいて発光させる発光素、
子であり、従来第2図に示すような直流駆動型と第3図
に示すような交流駆動型とが知られている。
The thin film ELI element is made of a phosphor such as zinc sulfide containing a rare earth element, such as cerium, europium, terbium, samarium, thulium, praseodium, etc., which functions as a luminescent center, and a halogen element, such as fluorine, chlorine, boron, etc. A light-emitting element that emits light based on the electroluminescence phenomenon by applying an electric field to a polycrystalline thin film.
Conventionally, a DC drive type as shown in FIG. 2 and an AC drive type as shown in FIG. 3 are known.

第2図参照 直流駆動型の薄膜EL素子にあっては、ガラス基板等l
上に、ITO等よりなり厚さが約2,000^の透明電
極2が形成され、その上に発光中心として機能する希土
類元素例えばテルビエウムとハロゲン元素例えばフッ素
とを含有する硫化亜鉛等よりなるELll141が形成
され、さらに、その上にアルミニュウム等よりなる対向
電極6が形成されている。
Refer to Figure 2. For DC drive type thin film EL elements, glass substrates etc.
On top of this, a transparent electrode 2 made of ITO or the like and having a thickness of about 2,000^ is formed, and on top of that is formed an ELll141 made of zinc sulfide or the like containing a rare earth element such as terbium and a halogen element such as fluorine, which functions as a luminescent center. is formed, and furthermore, a counter electrode 6 made of aluminum or the like is formed thereon.

第3図参照 交流駆動型の薄膜EL素子にあっては、上記の第2図に
示す層構成に加えて、EL1g141を挟んで酸窒化シ
リコン、酸化アルミニュウム、酸化イットリュウム等よ
りなり厚さが約2,000人の第1の絶縁1]3と第2
の絶縁膜5とが形成されている。
Refer to Figure 3. In addition to the layer structure shown in Figure 2 above, the AC drive type thin film EL element consists of silicon oxynitride, aluminum oxide, yttrium oxide, etc. with EL1g141 in between, and has a thickness of approximately 2,000 people 1st insulation 1] 3 and 2nd
An insulating film 5 is formed.

ところで、発光中心として機能する希土類元素のうち、
テルビエウムは緑色を、サマリュウム・ユウロピウムは
赤色を、セリウム・ツリュウムは青色を、プラセオジュ
ウムは白色を、それぞれ発光するが、その発光効率・輝
度は、テルビエウムを除き、いづれも満足すべきもので
はない。
By the way, among the rare earth elements that function as luminescent centers,
Terbium emits green light, samarium europium emits red light, cerium thulium emit blue light, and praseodium emits white light, but the luminous efficiency and brightness of all of them are unsatisfactory, except for terbium.

最もすぐれているテルビエウムにおいても1発光効率は
 0.IPo、2ルーメン/Wであり、また。
Even in the most excellent terbium, the luminous efficiency is 0. IPo, 2 lumens/W, and.

輝度は60Hzで駆動するとき、5フートランバートで
あり、いづれも十分満足すべきものとは言い難く、シか
も、再現性が悪い。
The brightness is 5 foot lamberts when driven at 60 Hz, which is hardly satisfactory, and the reproducibility is poor.

また、三原色の各色が同一の強度で実現しないため、加
色混合方式の色彩画像の実現が困難である。
Furthermore, since each of the three primary colors does not have the same intensity, it is difficult to create a color image using additive color mixing.

この問題を解決する手段として、本発明の発明者は、E
L膜に含まれる希土類元素とハロゲン元素との組成比と
発光効率−輝度との間に相関関係があり、希土類元素の
原子数とハロゲン元素の原子数とが同一の場合、最もす
ぐれた発光効率・輝度を実現することができ、EL脱膜
中含有される希土類元素とハロゲン元素との組成比を少
なくとも化学量論的組成比に比べて希土類元素の組成比
を大きくしておくことが有効であることを発見して、発
光効率・輝度のすぐれた薄膜EL素子の発明を完成した
As a means to solve this problem, the inventors of the present invention
There is a correlation between the composition ratio of rare earth elements and halogen elements contained in the L film and luminous efficiency - brightness, and when the number of atoms of the rare earth element and the number of atoms of the halogen element are the same, the luminous efficiency is the best.・In order to achieve high brightness, it is effective to increase the composition ratio of rare earth elements and halogen elements contained during EL film removal, at least compared to the stoichiometric composition ratio. After discovering something, he completed the invention of a thin film EL element with excellent luminous efficiency and brightness.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記せる発明に係る薄膜EL素子を製造する通常の方法
は、発光中心であるセリウム、ユロピウム、サマリウム
、プラセオジウム、テルビウム、または、ツリウムのハ
ロゲン化物と母材である硫化亜鉛、硫化カルシウム、ま
たは、硫化ストロンチウムの2つの蒸発源を用いるか、
または、これらの混合物からなる蒸発源を用いて、真空
蒸着法、スパッタリング法、または、イオンプレーティ
ング法を用いてELI151を形成するものである。こ
の方法では、ハロゲン元素の原子数と希土類元素の原子
数の比を2以下にすることができず、したがって、すで
に述べたように発光効率、一度共に十分満足できる特性
は得られない。
The usual method for manufacturing the thin film EL device according to the above-mentioned invention is to combine a halide of cerium, europium, samarium, praseodymium, terbium, or thulium, which is the luminescent center, and zinc sulfide, calcium sulfide, or sulfide, which is the base material. Using two strontium evaporation sources or
Alternatively, the ELI 151 is formed using a vacuum evaporation method, a sputtering method, or an ion plating method using an evaporation source made of a mixture of these. In this method, the ratio of the number of atoms of the halogen element to the number of atoms of the rare earth element cannot be reduced to 2 or less, and therefore, as described above, it is not possible to obtain sufficiently satisfactory characteristics in terms of luminous efficiency and at least once.

本発明の目的は、これらの欠点を解消するものであり、
?、1]1!a E L素子の発光効率1]8度を向上
することを可能にする薄膜EL素子の製造方法の改良を
提供することにある。
The purpose of the present invention is to eliminate these drawbacks,
? ,1]1! The object of the present invention is to provide an improvement in a method for manufacturing a thin film EL element that makes it possible to improve the luminous efficiency of the EL element by 1]8 degrees.

さらに、ELMの厚さを十分な厚さにすれば、薄膜EL
素子の発光効率・輝度を実現可能な大きさの範囲で、各
色毎に所望の値に選択することができ、加色混合方式の
色彩画像の実現を容易にする薄膜EL素子の製造方法の
改良を提供することにある。
Furthermore, if the thickness of the ELM is made sufficiently thick, the thin film EL
Improvement of the manufacturing method of thin-film EL elements that allows the luminous efficiency and brightness of the element to be selected to a desired value for each color within the range of realizable size, and facilitates the realization of color images using an additive color mixing method. Our goal is to provide the following.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するために本発明が採った手段は、■
族元素の硫化物、特に、亜鉛、カルシウム、または、ス
トロンチウムよりなる蒸発源と、希土類元素の硫化物よ
りなる蒸発源とを使用し、少なくともハロゲン元素また
はハロゲン化物を含むガス、例えば、フッ素、フッ化水
素。
The means taken by the present invention to achieve the above object are:
Using an evaporation source consisting of a sulfide of a group element, in particular zinc, calcium, or strontium, and an evaporation source consisting of a sulfide of a rare earth element, a gas containing at least a halogen element or a halide, such as fluorine or fluorine, is used. hydrogen chloride.

2フッ化イオウ、フッ化塩素、3フッ化塩素、アップ化
ヨウ素、塩化水素、塩素、臭化水素、またはヨウ化水素
を反応ガスとしてなす堆積法例えば、スパッタリング法
、または、イオンプレーティング法を使用してEL膜を
形成することにある。
Deposition methods using sulfur difluoride, chlorine fluoride, chlorine trifluoride, iodine up, hydrogen chloride, chlorine, hydrogen bromide, or hydrogen iodide as a reactive gas, such as sputtering or ion plating. The objective is to use this method to form an EL film.

本発明は、ELII!J4が上下の絶縁膜3,5によっ
て挟まれていない直流駆動型のB膜EII子にも、また
、ELM4が上下の絶縁膜3.5によって挟まれている
交流駆動型の#III!2EL素子にも実現可能である
The present invention is based on ELII! In the B film EII of the DC drive type in which J4 is not sandwiched between the upper and lower insulating films 3 and 5, and in the #III of the AC drive type in which the ELM4 is sandwiched between the upper and lower insulating films 3.5! It is also possible to realize a 2EL element.

〔作用〕[Effect]

本発明の基本的思想は、■族元素の硫化物、特に、亜鉛
、カルシウム、または、ストロンチウムの硫化物を母材
とし、希土類元素とハロゲン元素とが発光中心として添
加されてなるELII9に含まれる希土類元素とハロゲ
ン元素との組成比をtitにすることにある。
The basic idea of the present invention is that ELII9 contains a sulfide of a group Ⅰ element, particularly a sulfide of zinc, calcium, or strontium as a base material, and a rare earth element and a halogen element are added as luminescent centers. The purpose is to set the composition ratio of rare earth elements and halogen elements to tit.

ところで、■族元素の硫化物、特に、亜鉛、カルシウム
、または、ストロンチウムを母材とし、希土類元素とハ
ロゲン元素とを発光中心とするEL膜を形成するには、
■族元素の硫化物、特に、亜鉛、カルシウム、または、
ストロンチウムと希土類元素のハロゲン化物をソースと
して使用してなす真空蒸着法、スパッタリング法、また
は、イオンプレーティング法を使用することが最も現実
的である。ところが、希土類元素とハロゲン元素との化
合物は、例えば三フフ化テルビュウムのように、その組
成比がl=1ではない、そのため、このようなソースを
使用して形成されるEL膜は、ハロゲン元素を多量に含
有しがちである。そこで、本発明においては、希土類元
素はその硫化物よりなる蒸発源として供給し、ハロゲン
元素は少なくともハロゲン元素またはハロゲン化物を含
むガスとして供給することとし、スパッタリング法、ま
たは、イオンプレーティング法のエネルギー密度等を制
御することにより、希土類元素の添加量とハロゲン元素
の添加量とを独立に自由に制御・選択しうるようにした
ものである。希土類元素の硫化物よりなる蒸発源から供
給される希土類元素は、蒸発源上、プラズマ空間、また
は、基板上で1反応ガスとしてのハロゲン元素またはハ
ロゲン化物を含むガスと反応して、希土類元素とハロゲ
ン元素の組成比がl:lの形態で基板上に堆積すること
になり、結果的に、希土類元素の添加量が増大し、希土
類元素とハロゲン元素との組成比を1;lにすることが
できる。
By the way, in order to form an EL film using a sulfide of a group III element, particularly zinc, calcium, or strontium as a base material, and having a rare earth element and a halogen element as luminescent centers,
■ Sulfides of group elements, especially zinc, calcium, or
It is most practical to use vacuum evaporation, sputtering, or ion plating using strontium and rare earth halides as sources. However, the composition ratio of a compound of a rare earth element and a halogen element, such as terbium trifluoride, is not l = 1. Therefore, an EL film formed using such a source cannot contain a halogen element. They tend to contain large amounts of. Therefore, in the present invention, the rare earth element is supplied as an evaporation source made of its sulfide, and the halogen element is supplied as a gas containing at least a halogen element or a halide. By controlling the density etc., the amount of rare earth elements added and the amount of halogen elements added can be independently and freely controlled and selected. A rare earth element supplied from an evaporation source made of a sulfide of a rare earth element reacts with a halogen element or a gas containing a halide as a reaction gas on the evaporation source, in the plasma space, or on the substrate to form a rare earth element. The halogen element is deposited on the substrate in a composition ratio of l:l, and as a result, the amount of rare earth element added increases, making the composition ratio of rare earth element and halogen element 1:l. Can be done.

実験の結果によれば、従来技術の場合に比し、輝度が約
1.5倍に向上した。
According to the experimental results, the brightness was improved by about 1.5 times compared to the conventional technology.

〔実施例〕〔Example〕

以下1図面を参照しつ一1本発明の実施例に係る薄膜E
L素子の製造方法についてさらに説明する。
With reference to the following drawings, 11 thin film E according to an embodiment of the present invention.
The method for manufacturing the L element will be further explained.

第1図参照 ELII5I形成用スパッタ法のターゲットとして。See Figure 1 As a sputtering target for forming ELII5I.

硫化亜鉛ターゲットと三、硫化二テルビュウムターゲッ
トを使用し1反応ガスとしてフッ化水素とアルゴンとの
混合ガスを使用する。
A zinc sulfide target and a diterbium sulfide target are used, and a mixed gas of hydrogen fluoride and argon is used as a reaction gas.

スパッタ法を使用して、ガラス基板l上に厚さ約2,0
OOAのITOII9よりなる透光性電極2と酸窒化シ
リコンよりなり厚さ約2,000への第1の絶縁膜3と
を形成する。
Using a sputtering method, a thickness of about 2,0
A transparent electrode 2 made of OOA ITO II 9 and a first insulating film 3 made of silicon oxynitride to a thickness of approximately 2,000 mm are formed.

つづいて、2個のターゲットを有し基板を回転しうるス
パッタ装δを使用し、上記のソースと上記の反応ガスと
を使用してなすスパッタ法を0.0:)Torrの真空
度をもって使用してスパッタをなし、厚さ約e、ooo
Aの膜を形成した後、約450℃において約1時間熱処
理をなしEL@4を形成する。この工程においては、三
硫化ニテルビュウムターゲットから供給されるテルビエ
ウムは、ターゲット上、プラズマ空間、または、基板−
ヒで。
Next, using a sputtering device δ that has two targets and can rotate the substrate, a sputtering method using the above source and the above reaction gas is used at a vacuum degree of 0.0:) Torr. to form a sputter and have a thickness of about e, ooo.
After forming the film A, heat treatment is performed at about 450° C. for about 1 hour to form EL@4. In this process, terbium supplied from a niterbium trisulfide target is placed on the target, in the plasma space, or in the substrate.
In Hi.

反応ガスとしてのフッ化水素と反応して、テルビエウム
とフッ素の組成比が1:lの形態で基板上に堆積する。
It reacts with hydrogen fluoride as a reactive gas, and is deposited on the substrate in a composition ratio of terbium and fluorine of 1:1.

実験の結果によれば、13.58MHz(7)場合0.
51cm−2においてテルビエウムとフッ素の組成比が
l:lとなり、輝度は80Hzで駆動するとき、7.5
フートランバートとなり、従来技術の場合に比し、輝度
が約1.5倍に向上した。また、この時、硫化亜鉛ター
ゲットに与える電力密度は2Wcm−2時発光中心濃度
が最適の2at%となることが確認されている。
According to the experimental results, in the case of 13.58MHz (7), 0.
At 51 cm-2, the composition ratio of terbium and fluorine is l:l, and the brightness is 7.5 when driven at 80 Hz.
The brightness was improved by about 1.5 times compared to the conventional technology. Further, at this time, it has been confirmed that the power density applied to the zinc sulfide target is 2 at %, which is the optimum luminescent center concentration at 2 Wcm-2.

次に、スパッタ法を使用して、酸窒化シリコンよりなり
厚さ約2,000人の第2の絶縁膜5を形成し、さらに
、蒸着法またはスパッタ法を使用してアルミニュウムよ
りなる対向電極(背面電極)6を形成する。
Next, a second insulating film 5 made of silicon oxynitride and having a thickness of about 2,000 wafers is formed using a sputtering method, and a counter electrode (made of aluminum) is formed using a vapor deposition method or a sputtering method. A back electrode) 6 is formed.

以上の工程をもって製造した薄1]gEL素子のEL膜
4は、実験の結果によれば、13.541MHzの場合
組成比がtitとなり、輝度は80Hzで駆動するとき
、7.5フートランバートとなり、従来技術の場合に比
し、輝度が約1.5倍に向上した。
According to the experimental results, the EL film 4 of the thin 1]g EL device manufactured through the above process has a composition ratio of tit at 13.541 MHz, a luminance of 7.5 foot lambert when driven at 80 Hz, The brightness was improved by about 1.5 times compared to the conventional technology.

〔発明の効果〕〔Effect of the invention〕

以上説明せるとおり1本発明に係る薄膜EL素子の製造
方法においては、■族元素の硫化物。
As explained above, in the method for manufacturing a thin film EL device according to the present invention, a sulfide of a group (Ⅰ) element is used.

特に、亜鉛、カルシウム、または、ストロンチウムより
なる蒸発源と、希土類元素の硫化物よりなる蒸発源とを
使用し、少なくともハロゲン元素またはハロゲン化物を
含むガス、例えば、フッ素、フッ化水素、2フッ化イオ
ウ、フッ化塩素。
In particular, an evaporation source consisting of zinc, calcium, or strontium and an evaporation source consisting of a sulfide of a rare earth element are used, and a gas containing at least a halogen element or a halide, such as fluorine, hydrogen fluoride, difluoride, etc. is used. Sulfur, chlorine fluoride.

3フッ化塩素、7フッ化ヨウ素、塩化水素。Chlorine trifluoride, iodine heptafluoride, hydrogen chloride.

塩素、臭化水素、または、ヨウ化水素を反応ガスとして
なす堆積法、例えば、スパッタリング法、または、イオ
ンプレーティング法を使用してEL膜を形成することと
されているので、希土類元素の原子数とハロゲン元素の
原子数とはお一〇ね同一とされ、すぐれた発光効率譬輝
度のli[MEL素子を製造することができる。ざらに
、ELl19の厚さを十分な厚さにすれば、薄1]1E
L素子の発光効率・輝度を実現可能な大きさのaiIM
で、各色毎に所望の値に選択することができ、加色混合
方式の色彩画像の実現を容易にする薄l8IBL素子を
製造することができる。
Since the EL film is formed using a deposition method using chlorine, hydrogen bromide, or hydrogen iodide as a reaction gas, such as sputtering or ion plating, rare earth element atoms are The number and the number of atoms of the halogen element are always the same, and it is possible to manufacture a LiMEL element with excellent luminous efficiency and even brightness. Roughly speaking, if the thickness of ELl19 is made sufficiently thick, it becomes thin 1] 1E
aiIM of a size that can achieve the luminous efficiency and brightness of an L element
Accordingly, it is possible to manufacture a thin 18 IBL element which allows a desired value to be selected for each color and facilitates the realization of an additive color mixing method color image.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は1本発明の実施例に係る交流駆動型薄膜EL素
子の構造図である。 第2図は、従来技術に係る直流駆動型薄膜EL素子の構
造図である。 第3図は、従来技術に係る交流駆動型薄!IEL素子の
構造図である。 1・・・透光性基板(ガラス基板)、 2・・・透光性電極(ITO電極)。 3・・・第1の絶縁膜(酸化窒化シリコン)、4・・・
本発明に係るEL膜(fE化亜鉛と希土類元素とハロゲ
ン元素との組成物)、 41・・・従来技術に係るELII51(硫化亜鉛と希
土類元素とハロゲン元素との組成物)、 5・・・第2の絶縁膜(酸化窒化シリコン)、6・−・
対向電極(背面電極)。 第2図 第3図 第1図
FIG. 1 is a structural diagram of an AC-driven thin film EL device according to an embodiment of the present invention. FIG. 2 is a structural diagram of a DC-driven thin film EL device according to the prior art. Figure 3 shows an AC-driven thin model according to the prior art. FIG. 2 is a structural diagram of an IEL element. 1... Transparent substrate (glass substrate), 2... Transparent electrode (ITO electrode). 3... first insulating film (silicon oxynitride), 4...
EL film according to the present invention (composition of fE zinc oxide, rare earth element, and halogen element), 41... ELII51 according to prior art (composition of zinc sulfide, rare earth element, and halogen element), 5... Second insulating film (silicon oxynitride), 6...
Counter electrode (back electrode). Figure 2 Figure 3 Figure 1

Claims (1)

【特許請求の範囲】 [1] 透光性基板(1)上に透光性電極(2)を形成
し、 該透光性電極(2)上に、EL膜(4)を形成し、 該EL膜(4)上に対向電極(6)を形成する薄膜EL
素子の製造方法において、 前記EL膜(4)は、II族元素の硫化物よりなる蒸発源
と、希土類元素の硫化物よりなる蒸発源とを使用し、少
なくともハロゲン元素またはハロゲン化物を含むガスを
反応ガスとしてなす堆積法を使用して形成する ことを特徴とする薄膜EL素子の製造方法。 [2] 前記EL膜(4)を挟んで第1の絶縁膜(3)
と第2の絶縁膜(5)とを形成する工程を有する特許請
求の範囲第1項記載の薄膜EL素子の製造方法。 [3] 前記堆積法はスパッタリング法であることを特
徴とする特許請求の範囲第1項または第2項記載の薄膜
EL素子の製造方法。 [4] 前記堆積法はイオンプレーティング法であるこ
とを特徴とする特許請求の範囲第1項または第2項記載
の薄膜EL素子の製造方法。 [5] 前記II族元素は、亜鉛、カルシウム、または、
ストロンチウムであることを特徴とする特許請求の範囲
第1項、第2項、第3項、または、第4項記載の薄膜E
L素子の製造方法。 [6] 前記ハロゲン元素またはハロゲン化物は、フッ
素、フッ化水素、2フッ化イオウ、フッ化塩素、3フッ
化塩素、7フッ化ヨウ素、塩化水素、塩素、臭化水素、
または、ヨウ化水素であることを特徴とする特許請求の
範囲第1項、第2項、第3項、第4項、または、第5項
記載の薄膜EL素子の製造方法。 [7] 前記希土類元素の硫化物は、セリウム、ユロピ
ウム、サマリウム、プラセオジウム、テルビウム、また
は、ツリウムであることを特徴とする特許請求の範囲第
1項、第2項、第3項、第4項、第5項、または、第6
項記載の薄膜EL素子の製造方法。
[Claims] [1] A transparent electrode (2) is formed on a transparent substrate (1), an EL film (4) is formed on the transparent electrode (2), and an EL film (4) is formed on the transparent electrode (2). Thin film EL forming a counter electrode (6) on the EL film (4)
In the method for manufacturing an element, the EL film (4) uses an evaporation source made of a sulfide of a group II element and an evaporation source made of a sulfide of a rare earth element, and evaporates a gas containing at least a halogen element or a halide. A method for manufacturing a thin film EL device, characterized in that it is formed using a deposition method using a reactive gas. [2] First insulating film (3) sandwiching the EL film (4)
2. The method for manufacturing a thin film EL device according to claim 1, further comprising the step of forming a second insulating film (5) and a second insulating film (5). [3] The method for manufacturing a thin film EL device according to claim 1 or 2, wherein the deposition method is a sputtering method. [4] The method for manufacturing a thin film EL device according to claim 1 or 2, wherein the deposition method is an ion plating method. [5] The Group II element is zinc, calcium, or
The thin film E according to claim 1, 2, 3, or 4, characterized in that it is strontium.
Method for manufacturing L element. [6] The halogen element or halide includes fluorine, hydrogen fluoride, sulfur difluoride, chlorine fluoride, chlorine trifluoride, iodine heptafluoride, hydrogen chloride, chlorine, hydrogen bromide,
Alternatively, the method for manufacturing a thin film EL element according to claim 1, 2, 3, 4, or 5, wherein hydrogen iodide is used. [7] Claims 1, 2, 3, and 4, wherein the rare earth element sulfide is cerium, europium, samarium, praseodymium, terbium, or thulium. , Section 5, or Section 6
A method for manufacturing a thin film EL device as described in Section 1.
JP62067165A 1987-03-19 1987-03-19 Production of thin film el device Pending JPS63230869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62067165A JPS63230869A (en) 1987-03-19 1987-03-19 Production of thin film el device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62067165A JPS63230869A (en) 1987-03-19 1987-03-19 Production of thin film el device

Publications (1)

Publication Number Publication Date
JPS63230869A true JPS63230869A (en) 1988-09-27

Family

ID=13337010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62067165A Pending JPS63230869A (en) 1987-03-19 1987-03-19 Production of thin film el device

Country Status (1)

Country Link
JP (1) JPS63230869A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294288A (en) * 1988-09-29 1990-04-05 Matsushita Electric Ind Co Ltd High-frequency spattering method and manufacture of thin el element
US5496582A (en) * 1993-08-30 1996-03-05 Nippondenso Co., Ltd. Process for producing electroluminescent device
US5569486A (en) * 1992-12-25 1996-10-29 Nippondenso Co., Ltd Electroluminescence element and process for fabricating same
US5751108A (en) * 1995-08-25 1998-05-12 Nippondenso Co., Ltd. Electroluminescent device and method for producing same
US5936346A (en) * 1993-09-09 1999-08-10 Nippondenso Co., Ltd. Process for the production of electroluminescence element, electroluminescence element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294288A (en) * 1988-09-29 1990-04-05 Matsushita Electric Ind Co Ltd High-frequency spattering method and manufacture of thin el element
US5569486A (en) * 1992-12-25 1996-10-29 Nippondenso Co., Ltd Electroluminescence element and process for fabricating same
US5763111A (en) * 1992-12-25 1998-06-09 Nippondenso Co., Ltd. Electroluminescence element and process for fabricating same
US5496582A (en) * 1993-08-30 1996-03-05 Nippondenso Co., Ltd. Process for producing electroluminescent device
US5936346A (en) * 1993-09-09 1999-08-10 Nippondenso Co., Ltd. Process for the production of electroluminescence element, electroluminescence element
US5751108A (en) * 1995-08-25 1998-05-12 Nippondenso Co., Ltd. Electroluminescent device and method for producing same

Similar Documents

Publication Publication Date Title
CN100468602C (en) Plasma display panel and process for producing the same and thin film
JP2840185B2 (en) Phosphor thin film and thin film EL panel using the same
JPS63230869A (en) Production of thin film el device
JPS6141112B2 (en)
JPS636774A (en) Manufacture of thin film el device
JPS636776A (en) Manufacture of thin film el device
JPS63230871A (en) Production of thin film el device
JPS6276281A (en) Manufacturing thin el element
JPS62140395A (en) Manufacture of thin film el device
JPH0395893A (en) Manufacture of phosphor thin film and thin film electroluminescent element
JPH0265094A (en) Thin film el element and manufacture thereof
JPS636773A (en) Manufacture of thin film el device
JPH0367490A (en) Manufacture of sulfide phosphor thin film and thin film el element
JPS636775A (en) Manufacture of thin film el device
JPH077711B2 (en) Method of manufacturing thin film EL device
JPS62140394A (en) Manufacture of thin film el device
JP2001262140A (en) Aluminate-based blue emission phosphor material and blue emission thin film electroluminescence element constituted using the same
JP2001297877A (en) Manufacturing method and apparatus of thin film electroluminescence element
JPS6276282A (en) Manufacturing thin el element
JPS62211896A (en) Manufacture of electroluminescence device
JPS63915B2 (en)
JPS63199860A (en) Manufacture of thin-film el luminous layer
JPH077712B2 (en) Method of manufacturing thin film EL device
JPS59143297A (en) Ac drive thin film electric field light emitting element
JPS63248093A (en) Manufacture of thin film el device