JPS63230808A - Method for charging raw material in blast furnace - Google Patents

Method for charging raw material in blast furnace

Info

Publication number
JPS63230808A
JPS63230808A JP6544987A JP6544987A JPS63230808A JP S63230808 A JPS63230808 A JP S63230808A JP 6544987 A JP6544987 A JP 6544987A JP 6544987 A JP6544987 A JP 6544987A JP S63230808 A JPS63230808 A JP S63230808A
Authority
JP
Japan
Prior art keywords
iron ore
coke
layer
blast furnace
ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6544987A
Other languages
Japanese (ja)
Inventor
Koichi Kurita
栗田 興一
Koji Takatani
幸司 高谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6544987A priority Critical patent/JPS63230808A/en
Publication of JPS63230808A publication Critical patent/JPS63230808A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge

Abstract

PURPOSE:To improve the efficiency of blast furnace operation by controlling the ratio of permeable resistances of iron ore and coke to the specific range at the time of supplying alternately the ore and the coke as layer-state. CONSTITUTION:The ore and coke are alternately supplied in the blast furnace as the layer-state. Then, the ratio of the permeable resistance of the iron ore charged in the furnace wall side of the blast furnace and the permeable resistance of the coke layer charged in the upper face and the lower face of the iron ore layer, is controlled so as to become the range of 10-45. For example, charging of the iron ore classified into grain sizes, etc., is executed. By this method, inactive zone in the blast furnace can be controlled and the utilizing efficiency in the blast furnace can be improved.

Description

【発明の詳細な説明】 0)産業上の利用分野 本発明は、鉱石およびコークスを高炉に装入する方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION 0) Industrial Application Field The present invention relates to a method for charging ore and coke into a blast furnace.

(ロ)従来技術 高炉に鉱石とコークスとを交互に装入する高炉原料装入
方法においては、炉壁が損耗し、炉壁側の凹凸が激しく
なった場合、層頂から層状をなして装入した鉱石層とコ
ークス層とが、この凹凸によって混合し、いわゆる混合
層を形成する。このように、粒径の小さい鉱石と、粒径
の大きいコークスとが混合すると、この混合層では空隙
率が低下する。その結果、混合層を通過するガス量が減
少し、混合層の低温域(400〜600℃)生成を招く
(b) Conventional technology In the blast furnace raw material charging method in which ore and coke are charged alternately into the blast furnace, when the furnace wall is worn out and the furnace wall side becomes extremely uneven, the materials are charged in layers from the top of the layer. The injected ore layer and coke layer mix due to the unevenness, forming a so-called mixed layer. In this way, when ore with a small particle size and coke with a large particle size are mixed, the porosity in this mixed layer decreases. As a result, the amount of gas passing through the mixed layer decreases, leading to the formation of the mixed layer in a low temperature range (400 to 600°C).

特開昭60−17004号公報では、このような混合層
での空隙率低下を防ぐため、鉱石の粒径とコークスの粒
径との比を規制する方法を開示している。
JP-A-60-17004 discloses a method of regulating the ratio of ore particle size to coke particle size in order to prevent such a decrease in porosity in the mixed layer.

しかるに、このような空隙率の低下も、鉱石単味層また
は、コークス単味層目体の空隙率によっても影響を受け
るはずであり、平均粒径比だけでは規制できない。
However, such a decrease in porosity must also be affected by the porosity of the ore monolayer or the coke monolayer, and cannot be regulated by the average particle size ratio alone.

さらに、この混合層の発生の原因となる炉壁損耗は、炉
壁構造それ自体の進歩(例えば、厚肉ステーブ)および
、炉壁補修技術の進歩により、減少してきている。した
がって、層状構造を維持し、鉱石の還元に最適なガス流
れ、即ち鉱石層通気抵抗とコークス層通気抵抗の比が最
適となるように装入することが最も望ましい。
Furthermore, the wear and tear on the furnace wall that causes the formation of this mixed layer has been reduced due to advances in the furnace wall structure itself (for example, thick-walled staves) and advances in furnace wall repair technology. Therefore, it is most desirable to maintain the layered structure and charge the gas so that the gas flow is optimal for reducing the ore, that is, the ratio of the ore layer ventilation resistance to the coke layer ventilation resistance is optimized.

一方、特開昭61−119607号公報、特開昭61−
119608号公報では、小塊の鉄鉱石を用いて、鉄鉱
石とコークスとを層状に炉内に投入することにあたり、
炉内半径方向各部で鉄鉱石とコークスとの層の調和平均
径の比率をo、te −0,002X <コークス径m
m)以上となるように投入する方法を開示している。こ
の調和平均径比の限界は、鉄鉱石粒径の低下とともに装
入物の半径方向分布が大幅に乱れることを防ぐために設
定されたもので、装入物が安定して層状に堆積するため
の条件として、粒度範囲を限定している。しかし、層頂
面での安定堆積には、ガスによる圧損も影響していると
考えられるので、鉄鉱石層とコークス層との間め制約条
件として調和平均粒子径の比だけではなく空隙率の効果
も取り込んだ通気抵抗の比で評価する必要がある。
On the other hand, JP-A-61-119607, JP-A-61-
In Publication No. 119608, when iron ore and coke are charged into a furnace in layers using small iron ore,
The ratio of the harmonic mean diameter of the layers of iron ore and coke at each part in the radial direction of the furnace is o, te -0,002X < coke diameter m
m) Discloses a method of charging so as to achieve the above. This limit on the harmonic mean diameter ratio was set to prevent the radial distribution of the charge from being significantly disturbed as the iron ore particle size decreases, and to ensure that the charge is deposited stably in layers. As a condition, the particle size range is limited. However, since it is thought that pressure drop due to gas also affects stable deposition at the top surface of the layer, the porosity as well as the ratio of harmonic mean particle size should be used as a constraint on the relationship between the iron ore layer and the coke layer. It is necessary to evaluate the ratio of ventilation resistance, which also takes into account the effect.

近年、高炉溶銑コストの低減のため、従来焼結機に返さ
れていた細粒の焼結鉱・鉄鉱石を直接炉内に装入するこ
とが望まれている。このため、次のような装入方法がと
られている。
In recent years, in order to reduce the cost of blast furnace hot metal, it has become desirable to directly charge fine grained sintered ore and iron ore, which were conventionally returned to the sintering machine, into the furnace. For this reason, the following charging method is used.

■ 高炉へ装入する鉄鉱石の炉前篩の下限を下げる。■ Lower the lower limit of the furnace sieve for iron ore charged into the blast furnace.

■ 鉄鉱石を細粒と粗粒に分けて層状に装入する。■ Iron ore is separated into fine and coarse particles and charged in layers.

■ 鉄鉱石を細粒と粗粒に分け、細粒を炉壁保護の立場
から、炉壁寄りに装入する。
■ Separate iron ore into fine grains and coarse grains, and charge the fine grains closer to the furnace wall to protect the furnace wall.

しかし、いずれにしても、細粒鉄鉱石を装入した場合、
ベルタイプの装入装置では、炉壁側に細粒を多く含んだ
鉱石層が形成され、炉壁側へのガス通気が悪化し、炉壁
側に不活性帯が形成される可能性が生じた。
However, in any case, when fine iron ore is charged,
In a bell-type charging device, an ore layer containing many fine particles is formed on the furnace wall side, which deteriorates gas ventilation to the furnace wall side, and there is a possibility that an inert zone is formed on the furnace wall side. Ta.

(ハ)発明が解決しようとする問題点 本発明が解決しようとする問題点は、鉱石の還元がガス
還元であることから、鉱石層とコークス層とのガス通気
抵抗比を最適にするように原料を装入し、高炉操業の効
率を向上させることにある。
(c) Problems to be solved by the present invention The problem to be solved by the present invention is that since the reduction of ore is gas reduction, it is necessary to optimize the gas ventilation resistance ratio between the ore layer and the coke layer. The purpose is to charge raw materials and improve the efficiency of blast furnace operation.

に)問題点を解決するための手段 本発明の高炉原料装入方法は、高炉に鉱石とコークスと
を交互に層状に装入するさいに、高炉の炉壁側に装入す
る鉄鉱石の通気抵抗と、当該鉄鉱石の層の上下面にそれ
ぞれ装入したコークスの層の通気抵抗との比を10〜4
5の範囲内になるように鉄鉱石およびコークスを装入す
ることによって、上記問題点を解決している。
B) Means for Solving the Problems The blast furnace raw material charging method of the present invention is characterized in that when ore and coke are charged into the blast furnace in alternating layers, the iron ore charged on the wall side of the blast furnace is ventilated. The ratio of the resistance to the ventilation resistance of the coke layer charged on the upper and lower surfaces of the iron ore layer is 10 to 4.
The above problem is solved by charging iron ore and coke so that the amount falls within the range of 5.

通気抵抗とは、一定のガス流速下で測定した充填層の単
位長さ当りの圧力損失をいう。この場合、ガス流速は0
.5〜1 m/sとする。
Ventilation resistance refers to the pressure loss per unit length of a packed bed measured under a constant gas flow rate. In this case, the gas flow rate is 0
.. 5 to 1 m/s.

高炉内での鉄鉱石の還元効率を高めることが、高炉の効
率向上につながる。この鉄鉱石の還元はガス還元である
ので、鉄鉱石自体の還元速度の外に、ガス通気がこの還
元に大きく寄与している。
Increasing the reduction efficiency of iron ore in the blast furnace will lead to improved efficiency of the blast furnace. Since this reduction of iron ore is gas reduction, in addition to the reduction rate of the iron ore itself, gas aeration greatly contributes to this reduction.

還元速度を上げるためには、鉄鉱石の粒径は小さいほど
よい。還元ガスが流れなくては還元が進行しない。この
ガス通気性を評価する一般的手法は、下記(1)式で示
される。(1)式は充填層の圧力損失式であり、かつ、
充填層の圧力損失実験である。
In order to increase the reduction rate, the smaller the iron ore particle size, the better. Reduction will not proceed unless reducing gas flows. A general method for evaluating this gas permeability is shown by the following equation (1). Equation (1) is the pressure loss equation of the packed bed, and
This is a pressure drop experiment in a packed bed.

第1図にその実験装置の概略を示す。充填塔1の底部に
ブロワ2が接続され、差圧管3によって通気抵抗ΔP/
ΔLが測定される。
Figure 1 shows an outline of the experimental apparatus. A blower 2 is connected to the bottom of the packed tower 1, and a ventilation resistance ΔP/
ΔL is measured.

ΔP       C(1−ε)■+71?C:定数通
気抵抗係数 φ:粒子形状係数   dp:u和平均粒子種ε:空隙
率     g :重力換算係数ζ:ガス密度    
 μ:ガス流速(空塔換算)(1)式のように、通気抵
抗は、充填層の調和平均粒径と、空隙率の両方に支配さ
れることがわかる。したがって、使用上の簡便さを考え
ると、調和平均粒径と空隙率の両者を考慮した通気抵抗
で鉄鉱石層とコークス層との間の関係を評価するのが最
良である。ここで は通気抵抗係数になる。
ΔP C(1-ε)■+71? C: constant ventilation resistance coefficient φ: particle shape coefficient dp: u sum average particle species ε: porosity g: gravity conversion coefficient ζ: gas density
μ: gas flow rate (in terms of void column) As shown in equation (1), it can be seen that the ventilation resistance is controlled by both the harmonic average particle diameter and the porosity of the packed bed. Therefore, in terms of ease of use, it is best to evaluate the relationship between the iron ore layer and the coke layer based on the ventilation resistance, which takes into account both the harmonic mean particle size and the porosity. Here it is the ventilation resistance coefficient.

このような細粒鉄鉱石を単独または粗粒と混合して使用
した場合の還元性について第2図に示すような実炉の還
元、融着領域を想定した還元融着実験を実施した。第2
図において4は鉄鉱石層5はコークス層である。
A reduction and fusion experiment was conducted assuming the reduction and fusion region of an actual furnace as shown in FIG. 2 to examine the reducibility when such fine-grained iron ore is used alone or in combination with coarse particles. Second
In the figure, 4 indicates an iron ore layer 5 that is a coke layer.

その結果、第3図(A)に示すように、鉄鉱石層4とコ
ークス層5とのガス通気抵抗の比〔第3図(B)〕が1
5以下では、粒径の大きな還元が遅れるため、還元率が
低下する。逆に、45以上では、鉄鉱石層の通気抵抗が
コークス層の通気抵抗にくらべて極端に高いため、コー
クス層をガスが優先的に流れ、鉄鉱石層での還元ガス流
不足による還元停滞が生じることが判明した。ガス通気
性が適度に確保され、鉄鉱石粒径も小さい。通気抵抗比
(鉄鉱石層の通気抵抗/コークス層の通気抵抗)が20
〜35となる場合に、最も還元率が高くなることがわか
った。
As a result, as shown in FIG. 3(A), the ratio of gas ventilation resistance between the iron ore layer 4 and the coke layer 5 [FIG. 3(B)] is 1.
If it is less than 5, the reduction of large particles is delayed and the reduction rate decreases. On the other hand, above 45, the ventilation resistance of the iron ore layer is extremely high compared to that of the coke layer, so gas preferentially flows through the coke layer, and reduction stagnation occurs due to insufficient flow of reducing gas in the iron ore layer. It was found that this occurs. Appropriate gas permeability is ensured, and the iron ore particle size is small. Airflow resistance ratio (airflow resistance of iron ore layer/airflow resistance of coke layer) is 20
It was found that the return rate was highest when the value was .about.35.

最近のように、粗粒鉄鉱石のサイジング(粗粒鉄鉱石の
上限粒度をそろえるため、粗大粒子をクラツシングする
こと)を省略した場合には、粗粒側鉄鉱石の粒径が大き
くなることにより、細粒鉄鉱石を混合しても調和平均粒
径が小さくならない。
As has been the case recently, if the sizing of coarse iron ore (crushing of coarse particles in order to equalize the upper limit grain size of coarse iron ore) is omitted, the grain size of the coarse iron ore will increase. , the harmonic mean particle size does not become smaller even when fine iron ore is mixed.

しかし、粒度範囲の拡大により、空隙率が小さくなり、
通気性が悪化することがある。特に、炉壁側には、粗粒
と細粒の両方が堆積しやすく、空隙率が低下することに
よる通気抵抗の増加を招き、これが炉壁不活性化の原因
となっていた。そこで、炉壁不活性帯形成防止の指標と
して、鉄鉱石層とコークス層との通気抵抗の比が45以
上となるように装入する。
However, due to the expansion of the particle size range, the porosity becomes smaller and
Breathability may deteriorate. In particular, both coarse particles and fine particles tend to accumulate on the furnace wall side, leading to an increase in ventilation resistance due to a decrease in porosity, which causes the furnace wall to become inert. Therefore, as an indicator for preventing the formation of an inert zone on the furnace wall, charging is performed so that the ratio of ventilation resistance between the iron ore layer and the coke layer is 45 or more.

(ホ)実施例 本発明の原料装入方法は、次の手順によって実施される
(E) Example The raw material charging method of the present invention is carried out by the following procedure.

■ 実施炉に装入する鉄鉱石およびコークスの粒度構成
を測定する。
■ Measure the particle size composition of iron ore and coke charged to the implementation furnace.

■ 装入装置(例えば、ベル式の場合は、ベル角度、ベ
ル開ストローク、ベル開速度、ムーバブル・アーマ位置
、ストックライン位置等)にもとづいて、鉄鉱石および
コークスの半径方向粒度構成分布を推定する(第4図)
■ Estimating the radial particle size distribution of iron ore and coke based on the charging device (for example, in the case of a bell type, bell angle, bell opening stroke, bell opening speed, movable armor position, stock line position, etc.) (Figure 4)
.

■ 半径方向粒度構成分布をもとに、半径方向各位置で
の鉄鉱石と、コークスの調和平均粒度と空隙率を推定す
る。
■ Based on the radial particle size composition distribution, estimate the harmonic mean particle size and porosity of iron ore and coke at each radial position.

■ 半径方向各位置での鉄鉱石とコークスの調和平均粒
径および空隙率を前述の(1)式に代入し、鉄鉱石とコ
ークス各々の通気抵抗を求める。
(2) Substitute the harmonic average particle size and porosity of iron ore and coke at each position in the radial direction into the above equation (1) to determine the ventilation resistance of each of iron ore and coke.

■ 鉄鉱石の通気抵抗/コークスの通気抵抗の比が45
以上または15以下の場合には、篩目変更、粒度別装入
等により、改善策を講じる。
■ The ratio of iron ore ventilation resistance/coke ventilation resistance is 45.
If it is above or below 15, take remedial measures such as changing the sieve size or charging according to particle size.

前記0項は、各々の高炉の填充調査結果および模型実験
結果をもとに作成した回帰式を用いて推定する。
The above-mentioned 0 term is estimated using a regression equation created based on the filling survey results and model experiment results of each blast furnace.

前記0項は、粒度構成から第5図のように空隙率が求め
られる。
For the above-mentioned 0 term, the porosity is determined from the particle size structure as shown in FIG.

次に、実炉に本発明を実際に適用した結果について述べ
る。
Next, the results of actually applying the present invention to an actual furnace will be described.

実炉において鉄鉱石の炉前篩の篩目を順次低下させてき
たところ(第6図)、炉壁側で細粒増加によるガス通気
不良によって引き起こされた不活性帯(400〜600
℃)が発生し、羽目前への荷下り挙動も悪化してきた。
When the sieve size of the front sieve for iron ore was gradually lowered in an actual furnace (Fig. 6), an inert zone (400 to 600
℃) occurred, and the unloading behavior toward the end of the day also worsened.

この時の鉄鉱石とコークス層との通気抵抗比は−48で
あった。
At this time, the ventilation resistance ratio between the iron ore and the coke layer was -48.

そこで、通気抵抗比を改善し、かつ、より粒度の小さい
鉄鉱石を高炉へ装入するために、鉄鉱石を粗粒層と細粒
層とに分割して装入する粒度別装入を実施した。その結
果、細粒層の調和平均粒径は低下したが、粒度構成範囲
が縮小し、均一粒度化したため、空隙率が上昇し、通気
性が改善された。通気抵抗比も°38と適正範囲に入っ
たため、不活性帯が縮小した。
Therefore, in order to improve the ventilation resistance ratio and charge iron ore with smaller particle size into the blast furnace, we implemented charging by particle size, which divides iron ore into a coarse grain layer and a fine grain layer and charges it. did. As a result, although the harmonic mean particle size of the fine grain layer decreased, the particle size composition range decreased and the particle size became uniform, which increased the porosity and improved air permeability. Since the ventilation resistance ratio was within the appropriate range at 38 degrees, the inert zone was reduced.

したがって、鉄鉱石の通気抵抗とコークスの通気抵抗と
の比を管理することにより、高炉の不活性帯の管理が可
能であり、炉の利用効率向上に極めて重要であることを
確認した。
Therefore, it was confirmed that by controlling the ratio between the ventilation resistance of iron ore and the ventilation resistance of coke, it is possible to manage the inert zone of the blast furnace, which is extremely important for improving the utilization efficiency of the furnace.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は充填層通気抵抗測定実験の概略説明図。 第2図は高炉内鉄鉱石の還元融着帯模式図。第3図は通
気抵抗比と鉄鉱石の還元率を示す説明図。 第4図は装入物の半径方向粒度構成を示すグラフ。 第5図は粒度構成が空隙率に及ぼす影響を示すグラフ。 第6図は細粒鉄鉱石使用時における炉壁側の通気抵抗比
と不活性発生領域との関係を示すグラフ。 1:充填塔    2ニブロワ 3:差圧管      4:鉄鉱石層 5:コークス層 特許出願人 住友金属工業株式会社 (外5名) 第4図 2     ; 第5図 印籠4ハ殖掻(−) 第3図 (A)              CB)1員柩祇比
C7気唱う 躬す色1紋
FIG. 1 is a schematic explanatory diagram of a packed bed ventilation resistance measurement experiment. Figure 2 is a schematic diagram of the reduced cohesive zone of iron ore in a blast furnace. FIG. 3 is an explanatory diagram showing the ventilation resistance ratio and the reduction rate of iron ore. FIG. 4 is a graph showing the radial particle size structure of the charge. FIG. 5 is a graph showing the influence of particle size structure on porosity. FIG. 6 is a graph showing the relationship between the ventilation resistance ratio on the furnace wall side and the inertness generation area when fine-grained iron ore is used. 1: Packed tower 2 Ni blower 3: Differential pressure pipe 4: Iron ore layer 5: Coke layer Patent applicant Sumitomo Metal Industries, Ltd. (5 others) Diagram (A) CB) 1 member Katsugihi C7 Qi chanting color 1 pattern

Claims (1)

【特許請求の範囲】[Claims] 高炉に鉱石とコークスとを交互に層状に装入するさいに
、高炉の炉壁側に装入する鉄鉱石の通気抵抗と、当該鉄
鉱石の層の上下面にそれぞれ装入したコークスの層の通
気抵抗との比を10〜45の範囲内になるように鉄鉱石
およびコークスを装入することを特徴とした高炉原料装
入方法。
When ore and coke are charged into a blast furnace in alternating layers, the ventilation resistance of the iron ore charged on the wall side of the blast furnace and the coke layer charged on the upper and lower surfaces of the iron ore layer, respectively. A method for charging raw materials into a blast furnace, comprising charging iron ore and coke so that the ratio to ventilation resistance falls within the range of 10 to 45.
JP6544987A 1987-03-19 1987-03-19 Method for charging raw material in blast furnace Pending JPS63230808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6544987A JPS63230808A (en) 1987-03-19 1987-03-19 Method for charging raw material in blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6544987A JPS63230808A (en) 1987-03-19 1987-03-19 Method for charging raw material in blast furnace

Publications (1)

Publication Number Publication Date
JPS63230808A true JPS63230808A (en) 1988-09-27

Family

ID=13287460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6544987A Pending JPS63230808A (en) 1987-03-19 1987-03-19 Method for charging raw material in blast furnace

Country Status (1)

Country Link
JP (1) JPS63230808A (en)

Similar Documents

Publication Publication Date Title
WO2013179541A1 (en) Method for charging raw material into bell-less blast furnace
JP6167829B2 (en) Blast furnace operation method
JP4971812B2 (en) Blast furnace operation method
JPS63230808A (en) Method for charging raw material in blast furnace
JP3189507B2 (en) Surface treatment equipment
JP6198649B2 (en) Raw material charging method for blast furnace
JP4971662B2 (en) Blast furnace operation method
JP3787240B2 (en) How to charge the blast furnace center
JP4604788B2 (en) Blast furnace operation method
JPH0913110A (en) Method for evaluating ventilation of charged material layer in vertical type furnace
JP2933468B2 (en) Method of charging molded coke into blast furnace
JP4111055B2 (en) Blast furnace operation method
JPH09310109A (en) Method for controlling distribution of charged material in blast furnace
JP3787238B2 (en) Charging method into the center of the blast furnace
WO2023199551A1 (en) Blast furnace operation method
JPH08239705A (en) Method for suppressing formation of deposition in blast furnace
JP3787231B2 (en) How to charge the blast furnace center
JP5853904B2 (en) Raw material charging method for bell-type blast furnace
JP3995380B2 (en) Raw material charging method to blast furnace
KR101510546B1 (en) Method for charging materials into blast furnace
JPH0665620A (en) Method for charging raw material in bell-less blast furnace
JP2006152317A (en) Blast furnace-operation method
JP3776971B2 (en) Coke collapse estimation method and prevention method
JPH01287212A (en) Method for charging raw material in blast furnace
JP5292845B2 (en) Raw material charging method to sintering machine