JPS63230534A - Cooling of wire material and device therefor - Google Patents

Cooling of wire material and device therefor

Info

Publication number
JPS63230534A
JPS63230534A JP6343187A JP6343187A JPS63230534A JP S63230534 A JPS63230534 A JP S63230534A JP 6343187 A JP6343187 A JP 6343187A JP 6343187 A JP6343187 A JP 6343187A JP S63230534 A JPS63230534 A JP S63230534A
Authority
JP
Japan
Prior art keywords
temperature
wire
optical fiber
plate
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6343187A
Other languages
Japanese (ja)
Inventor
Hiroaki Sano
裕昭 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP6343187A priority Critical patent/JPS63230534A/en
Publication of JPS63230534A publication Critical patent/JPS63230534A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02718Thermal treatment of the fibre during the drawing process, e.g. cooling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/50Cooling the drawn fibre using liquid coolant prior to coating, e.g. indirect cooling via cooling jacket

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To enable cooling of a high-temperature wire material in small space economically and efficiently, by introducing the wire material formed by spinning to a room temperature gas atmosphere separated by a plate material with a small hole isolated from a high-temperature gas layer. CONSTITUTION:A preform 11 is subjected to melt spinning in a heating furnace 7, a prepared optical fiber 2 is drawn to a room temperature gas atmosphere (e.g. air) and coated with a silicone resin by a resin coater 8. Successively, the resin is cured by a resin curing furnace 9 and wound by a winder 10. A wire material cooler 12 is set between the heating furnace 7 and the resin coater 8 and the high-temperature optical fiber 2 drawn out from the heating furnace 7 is cooled. The high-temperature optical fiber 2 pulled out from the heating furnace to air is moved in the arrow direction by the winder 10 to transfer the high-temperature wire material in the axial direction, passed through a small hole 1, a high-temperature air layer formed around the periphery of the high-containing optical fiber 2 by receiving heat of the optical fiber itself is at least partially isolated, removed and the optical fiber is introduced to an air atmosphere separated by a plate material 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は線材の冷却方法および装置、さらに詳しく云え
ば、例えば溶融紡糸された高温の光ファイバ等の線材の
冷却方法および装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for cooling a wire, and more particularly, to a method and apparatus for cooling a wire such as a melt-spun high-temperature optical fiber.

〔従来の技術〕[Conventional technology]

従来このような分野の技術としては、例えば特公昭59
−7655号公報に示されているものや、米国特許第4
.208,200号明細書に示されるものがあった。
Conventional technologies in this field include, for example, the
-7655, and U.S. Pat.
.. There was one shown in the specification of No. 208,200.

一般にこの種の線材冷却装置は、光フアイバ製造装置の
うち線引炉と樹脂(例えばシリコン樹脂)被覆装置との
間に設置される。そして、樹脂塗布の際の線材(光ファ
イバ)の温度を一定レベル以下に保持する役割を果たし
ている。
Generally, this type of wire cooling device is installed between a drawing furnace and a resin (for example, silicone resin) coating device in an optical fiber manufacturing device. It also plays a role in keeping the temperature of the wire (optical fiber) below a certain level during resin coating.

この冷却を行なう理由は、光ファイバの表面温度が被覆
樹脂層に影響を与えて被覆外径の減少や外観異常を与え
るのを防ぐためである。
The reason for performing this cooling is to prevent the surface temperature of the optical fiber from affecting the coating resin layer and causing a decrease in the outer diameter of the coating or an abnormal appearance.

従来のかかる冷却装置における線材の冷却は、線引、紡
糸後の高温の光ファイバを円筒に挿通し、この円筒内に
冷却ガスを吹き込み、この冷却ガスを光ファイバに吹き
つけることにより冷却したり(特公昭59−7655号
)、あるいは、適当な冷却液(例えばグリコールエーテ
ル、グリコールアセテート、・・・・・・等)のはいっ
ている円筒形の貯蔵器を通過させて冷却したり(米国特
許第4,208.200号)した。
Conventional cooling of the wire in such a cooling device involves inserting a high-temperature optical fiber after drawing and spinning into a cylinder, blowing cooling gas into the cylinder, and cooling the optical fiber by blowing the cooling gas onto the optical fiber. (Japanese Patent Publication No. 59-7655), or cooling by passing through a cylindrical reservoir containing a suitable cooling liquid (e.g. glycol ether, glycol acetate, etc.) (U.S. Pat. No. 4,208.200).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のように、従来の冷却方法は、円筒中でガスを流す
ことにより、あるいは円筒状貯蔵器中の冷却液により、
光ファイバの冷却を行なっていたため、この円筒長のス
ペースをパスライン中に設けることが必要であるが、従
来の冷却装置は円筒あるいは円筒状の物体を含むため、
所要スペースがかなり大きく、また冷却装置を設置した
スペース中には他の設備を併設することはできず、この
冷却装置のみのためにパスライン中にかなり多くのスペ
ースを確保する必要があり、パスラインが短くならない
という問題があった。
As mentioned above, traditional cooling methods include flowing gas in a cylinder or by cooling liquid in a cylindrical reservoir.
Since the optical fiber was being cooled, it was necessary to provide a cylindrical space in the path line, but since conventional cooling devices include cylinders or cylindrical objects,
The required space is quite large, and it is not possible to install other equipment in the space where the cooling device is installed, so it is necessary to secure a considerable amount of space in the pass line just for this cooling device. There was a problem that the line could not be shortened.

また、ガス供給装置や流N調整器等の設備の整備等大き
な設備投資が必要であるという問題があった。
Further, there is a problem in that a large capital investment is required for the maintenance of equipment such as a gas supply device and a N flow regulator.

さらに、冷却にボ温のガスを用いるため、光ファイバが
通過する円筒上下の結露等により水分が光ファイバに付
着し、光ファイバの強度を低下させるという問題があっ
た。
Furthermore, since a low-temperature gas is used for cooling, there is a problem in that moisture adheres to the optical fiber due to dew condensation on the upper and lower surfaces of the cylinder through which the optical fiber passes, reducing the strength of the optical fiber.

さらにまた、光ファイバをこの円筒に挿通する作業は、
円筒が長く、光ファイバが絶縁体で静電気を帯び易いた
め、容易でないという問題があった。
Furthermore, the work of inserting the optical fiber into this cylinder is
This is difficult because the cylinder is long and the optical fiber is an insulator and is easily charged with static electricity.

従来のこの種の装置で、上記のように、円筒中で冷却さ
れたガスを吹流し光ファイバを冷却するものにおいては
、熱交換に用いられずに排出される冷却ガスが多量にあ
り、ガスコスト、エネルギーコストの面で不利であると
いう問題があり、その冷却原理が冷却ガス層えの熱の伝
導であるため、効率を上げようとすれば、冷却区間(円
筒長)の延長か、ガス流量の増加かの手段によるしかな
く、前者を用いた場合は、設備の所要スペースが増大し
、後者を用いた場合は、ガス冷却装置の容量やガス供給
長を増大しなければならないという問題があった。
In conventional devices of this kind, as mentioned above, in which the optical fiber is cooled by blowing gas cooled in a cylinder, a large amount of cooling gas is discharged without being used for heat exchange, which reduces the gas cost. , there is a problem that it is disadvantageous in terms of energy cost, and the cooling principle is heat conduction in the cooling gas layer, so if you want to increase the efficiency, it is necessary to lengthen the cooling section (cylindrical length) or increase the gas flow rate. If the former method is used, the space required for the equipment increases, and if the latter method is used, the capacity of the gas cooling device and the gas supply length must be increased. Ta.

本発明は、上記の問題点を解牛し、高温の光ファイバ等
の線材を比較的小さいスペース内において、経済的にか
つ効率的に冷却することが可能な線材の冷却方法および
装置を提供することを目的とする。
The present invention solves the above problems and provides a method and apparatus for cooling a wire such as a high-temperature optical fiber, which can be economically and efficiently cooled in a relatively small space. The purpose is to

c問題点を解決するための手段〕 本発明によれば、上記の問題点は、光ファイバ等の線材
を線引、紡糸により形成し、該線材を高温のまま該線材
より温度の低い室温の気体雰囲気中に引き出し、上記引
き出された高温の線材を、該線材の周辺に該線材自身の
熱を受けて生成された高温気体層の少くとも一部を遮断
する大きさの小孔の設けられた板状体よりなる冷却装置
の上記小孔に挿通し、上記高温気体層の少くとも一部を
遮断して該小孔の設けられた板状体により上記の気体雰
囲気と分離された室温の気体雰囲気中に引き込むことを
特徴とする線材冷却方法によって解決される。
c. Means for Solving the Problem] According to the present invention, the above problem can be solved by forming a wire such as an optical fiber by drawing or spinning, and then heating the wire at a high temperature to a room temperature lower than that of the wire. The high-temperature wire is drawn out into a gas atmosphere, and a small hole is provided around the wire to block at least part of the high-temperature gas layer generated by receiving heat from the wire itself. It is inserted into the small hole of the cooling device made of a plate-shaped body, and blocks at least a part of the high-temperature gas layer, thereby creating a room-temperature temperature separated from the gas atmosphere by the plate-shaped body provided with the small hole. The problem is solved by a method of cooling the wire, which is characterized by drawing it into a gas atmosphere.

〔作 用〕[For production]

高温の線材の周辺に該線材自身の熱を受けて生成された
高温気体層の少くとも一部を遮断する大きさの小孔を設
けた板状体で室温の気体雰囲気を分割し、高温の線材を
該小孔に挿通し、一方の室温の気体雰囲気から、分離さ
れた他方の気体雰囲気中に引き込み、線材周辺の高温の
気体層を除去することにより、線材の冷却を行なうもの
である。
The room-temperature gas atmosphere is divided by a plate-like body that has small holes around the high-temperature wire that are large enough to block at least part of the high-temperature gas layer that is generated by the heat of the wire itself. The wire is inserted into the small hole, drawn from one gas atmosphere at room temperature into the separated gas atmosphere of the other, and the wire is cooled by removing the high temperature gas layer around the wire.

〔実施例〕〔Example〕

本発明の冷却方法は、前記の従来の方法が、高温の光フ
ァイバが通過する円筒中に低温のガスを吹き込み、この
ガスへの加熱空気層を介しての熱の伝導により冷却を行
なっていたのと全く異り、熱の不良扉体であり、光ファ
イバの温度に対して保温効果を有している光フアイバ周
辺の、光フアイバ自身により加熱されて生成した空気層
を強制的に除去して室温の空気と置き換えることにより
室温の空気により光ファイバを必要な温度レベルまで冷
却するものである。
The cooling method of the present invention differs from the conventional method in which low-temperature gas is blown into a cylinder through which a high-temperature optical fiber passes, and cooling is performed by conduction of heat to this gas via a heated air layer. This is a thermally defective gate, which forcibly removes the air layer around the optical fiber that is heated by the optical fiber itself and has a heat-retaining effect on the temperature of the optical fiber. By replacing the room temperature air with room temperature air, the optical fiber is cooled to the required temperature level by the room temperature air.

以下、本発明の実施例を図面について説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明による線材冷却方法の概要を示す図であ
る。
FIG. 1 is a diagram showing an outline of the wire cooling method according to the present invention.

図において、プリフォーム11は加熱炉zも融結糸され
、得られた光ファイバ2は室温の気体雰囲気、例えば空
気中に引き出され、樹脂被覆装置8でシリコン樹脂を塗
布され、続いて樹脂硬化炉9で硬化され、巻取袋210
に巻取られる。
In the figure, a preform 11 is also fused in a heating furnace z, and the obtained optical fiber 2 is drawn out into a gas atmosphere at room temperature, for example air, and is coated with silicone resin in a resin coating device 8, followed by resin curing. It is hardened in the furnace 9 and rolled into a winding bag 210.
It is wound up.

加熱炉7と樹脂被覆装置8との間に本発明による線材冷
却装置12を付加し、加熱炉7がら引き出された高温の
光ファイバ2を冷却する。
A wire cooling device 12 according to the present invention is added between the heating furnace 7 and the resin coating device 8 to cool the high-temperature optical fiber 2 drawn out from the heating furnace 7.

第2図は第1図に示す本発明による線材冷却方法を実施
する場合に使用する本発明による線材冷却袋F aa 
1例の斜視図である。
FIG. 2 shows a wire cooling bag F aa according to the present invention used when carrying out the wire cooling method according to the present invention shown in FIG.
It is a perspective view of one example.

第2図において、1は板状体3に設けられた小孔であっ
て、加熱炉から空気中に引き出された高温の光ファイバ
2は該高温の線材を軸方向に移動させる移動手段、例え
ば巻取装置(第1図のlO)により矢印方向に移動して
小孔lを通過し、高温ノ光ファイバ2の周辺に、該光フ
アイバ自身の熱を受けて生成された高温空気層の少くと
も一部が遮断され、取除かれ、板状体3で分離された空
気雰囲気中に引き出される。
In FIG. 2, reference numeral 1 denotes a small hole provided in a plate-shaped body 3, and a high-temperature optical fiber 2 drawn out from a heating furnace into the air is connected to a moving means for moving the high-temperature wire in the axial direction, for example. It is moved in the direction of the arrow by the winding device (lO in Fig. 1), passes through the small hole l, and a small portion of the high-temperature air layer generated by receiving the heat of the optical fiber itself is formed around the high-temperature optical fiber 2. A portion of both is cut off, removed, and drawn out into an air atmosphere separated by a plate-shaped body 3.

本発明による線材冷却装置は、高温の線材周辺に該線材
自身の熱を受けて生成された高温気体層の少くとも一部
を遮断する大きさの小孔の設けられた熱の良導体よりな
る板状体と、上記高温の線材を軸方向に移動させる移動
手段とを具備し、上記板状体を室温の気体雰囲気中に設
置し、上記高温の線材を上記板状体の小孔に挿通して上
記移動手段により軸方向に移動させ、該板状体により分
離された雰囲気中に引き込むように構成されている。
The wire cooling device according to the present invention is a plate made of a good thermal conductor, which is provided with small holes around the high-temperature wire that are large enough to block at least a portion of the high-temperature gas layer generated by receiving the heat of the wire itself. and a moving means for moving the high-temperature wire in the axial direction, the plate-shaped body is installed in a gas atmosphere at room temperature, and the high-temperature wire is inserted into the small hole of the plate-shaped body. It is configured to be moved in the axial direction by the moving means and drawn into the atmosphere separated by the plate-shaped body.

上記線材冷却装置は複数個(2個あるいは3個以上)の
板状体を平行に、しかも各板状体の小孔を一直線上に配
列して構成することができる。
The above-mentioned wire cooling device can be constructed by arranging a plurality of (two or three or more) plate-shaped bodies in parallel, and the small holes of each plate-shaped body are arranged in a straight line.

なお、光ファイバ2の周辺の加熱された空気層により板
状体3の温度が上昇しないようにするたけ、冷却水を流
すことにより室温または室温以下に保持するようにでき
る。
In addition, in order to prevent the temperature of the plate-shaped body 3 from rising due to the heated air layer around the optical fiber 2, it is possible to maintain the temperature at or below the room temperature by flowing cooling water.

第2図に示す冷却装置は、上記の板状体3を2個設置し
たものを示すが、さらに多数を設置することができる。
Although the cooling device shown in FIG. 2 is shown as having two of the above-mentioned plate-shaped bodies 3 installed, a larger number can be installed.

この板状体3は1個f°パスライン方向に非常に短かく
、又複数個使用する場合にも個々が独立して機能するた
め、相互間に他の設備要素、例えば外径測定器、偏肉測
定器等を設置することができ、空間効率が非常に良い。
This plate-shaped body 3 is very short in the direction of the f° pass line, and even when multiple pieces are used, each one functions independently, so other equipment elements, such as an outer diameter measuring device, etc. can be connected between them. It is possible to install a thickness unevenness measuring device, etc., and the space efficiency is very good.

第3図は板状体3の小孔lの形状を示す図であって、板
状体3を小孔lの軸を含む平面で切った断面図である。
FIG. 3 is a diagram showing the shape of the small hole l in the plate-like body 3, and is a sectional view of the plate-like body 3 taken along a plane including the axis of the small hole l.

第3図(a)は板状体3に円筒状の孔■を設けたもの、
(blは板状体3の小孔lの周囲に円錐状突起を設け、
光ファイバに対向する面を大きくしたもの、(C)は小
孔lの周囲の板状体部分を円錐状に削り光ファイバに対
向する面を小さくしたものである。ここに例示した形状
あるいはその組合せにより何れも同様の効果をあげるこ
とができる。
FIG. 3(a) shows a plate-shaped body 3 with a cylindrical hole (■),
(bl is provided with a conical projection around the small hole l of the plate-shaped body 3,
The one in which the surface facing the optical fiber is made larger, and the one in (C) is the one in which the plate-like part around the small hole 1 is shaved into a conical shape so that the surface facing the optical fiber is made smaller. Any of the shapes illustrated here or a combination thereof can produce similar effects.

第4図は板状体の1例の構造を示す図であり、2枚の板
状体41.42にそれぞれスリット43゜44を設は組
合せて使用する。これは線(光ファイバ)通しを容易と
スル。
FIG. 4 is a diagram showing the structure of an example of a plate-like body, in which two plate-like bodies 41 and 42 are provided with slits 43° and 44, respectively, and used in combination. This makes it easy to thread the wire (optical fiber) through.

第5図は高温光ファイバの周辺の空気層の温度分布を示
す図である0図は表面温度250℃直径125μの光フ
アイバ周辺の空気層の温度を熱電対を用いて測定した実
測値の一例を示すものである。図において、縦軸は光フ
アイバ周辺の空気層の温度(単位℃)を、また横軸は光
ファイバの中心軸よりの距離(単位m m )を示す。
Figure 5 is a diagram showing the temperature distribution of the air layer around a high-temperature optical fiber. Figure 0 is an example of the actual value measured using a thermocouple of the temperature of the air layer around the optical fiber with a surface temperature of 250 degrees Celsius and a diameter of 125 μm. This shows that. In the figure, the vertical axis indicates the temperature of the air layer around the optical fiber (unit: °C), and the horizontal axis indicates the distance from the central axis of the optical fiber (unit: mm).

第5図から明らかなように、光フアイバ周辺の加熱され
た空気層は数mm (5mm>以上の厚さで広がってお
り、このため、加熱された光ファイバを、半径がこの厚
みより小さい小孔(第2図の1)を通過させることによ
り、例えば板状体(第1図の3)の上部より、該板状体
により分離された該板状体の下部の気体雰囲気(空気)
中に、上記高温空気層の少くとも一部をひきはがし遮断
して引き込むことができる。
As is clear from Fig. 5, the heated air layer around the optical fiber extends to a thickness of several mm (5 mm or more), which makes it difficult to connect the heated optical fiber to a small piece with a radius smaller than this thickness. By passing through the hole (1 in Figure 2), for example, the gas atmosphere (air) in the lower part of the plate-shaped body separated by the plate-shaped body (3 in Figure 1) is separated from the upper part of the plate-shaped body (3 in Figure 1).
At least a portion of the hot air layer can be drawn off, intercepted, and drawn into the interior.

また、光ファイバを上記の小孔を通過させる際、該小孔
の前後で発生する渦流によって光フアイバ表面の高温の
空気層にも乱れが生じ光ファイバの周辺の温度は高温の
空気層が追随している場合よりはるかに低いものとなる
In addition, when an optical fiber is passed through the above-mentioned small hole, the vortex generated before and after the small hole disturbs the high-temperature air layer on the surface of the optical fiber, causing the temperature around the optical fiber to follow the high-temperature air layer. It will be much lower than if it were.

第6図は、光ファイバが小孔を通過するとき生ずる空気
の流れを模式的に示す図である。図は板状体3を光ファ
イバ2の中心軸を含む平面で切つ次に本発明による線材
冷却方法の効果を、実例について述べる。
FIG. 6 is a diagram schematically showing the air flow that occurs when the optical fiber passes through the small hole. The figure shows a plate-shaped body 3 cut along a plane including the central axis of the optical fiber 2.Next, the effects of the wire cooling method according to the present invention will be described with reference to an actual example.

この冷却効果の測定の実施は、第1図に示す概要図にお
いて、冷却装置12として、第2図に示す板状体3を3
台直列に配置したものを使用し、第1 表 第1表から明らかなように、小孔(第1図の1)の孔径
が小さい稈元ファイバ冷却効果は大きい。
The measurement of the cooling effect is carried out using the plate-shaped body 3 shown in FIG. 2 as the cooling device 12 in the schematic diagram shown in FIG. 1.
As is clear from Table 1, the cooling effect of the culm fiber with small holes (1 in FIG. 1) having a small hole diameter is large.

上記の装置を使用して1時間の連続運転を行なったとこ
ろ冷却’!li置の温度が上昇し、冷却効果がtiねれ
ることが判明した。
After one hour of continuous operation using the above device, it cooled! It was found that the temperature of the lithium ion chamber increased and the cooling effect was diminished.

このため冷却装置を構成する板状体(第1図の3)の冷
却用パイプ(第1図の4)に18℃の冷却水を循環させ
て板状体を冷却し1、小孔の直径1mmのものを使用し
、前記と同条件で測定したところ経時伯にも安定な冷却
効果が得られた。また冷却効果が若干増すことも判明し
た。
For this purpose, cooling water at 18°C is circulated through the cooling pipe (4 in Figure 1) of the plate-shaped body (3 in Figure 1) that constitutes the cooling device to cool the plate-shaped body. When a 1 mm piece was used and measured under the same conditions as above, a stable cooling effect was obtained over time. It was also found that the cooling effect was slightly increased.

この測定における結果を第2表に示す。The results of this measurement are shown in Table 2.

第2表 なお、本発明による線材冷却装置特に板状体は、通過す
る光フアイバ周辺の加熱された空気層に接して熱を受け
とり、この場合には冷却効果が損われるため、線材冷却
装置特に板状体の材管としては銅、鉄などの熱の良導体
を用いることが有効であり、この様にして受取った熱量
を除くため該装置を冷却することが望ましい。
Table 2 Note that the wire cooling device according to the present invention, especially the plate-shaped body, receives heat by coming into contact with the heated air layer around the optical fiber passing through, and in this case, the cooling effect is impaired. It is effective to use a good thermal conductor such as copper or iron as the material tube of the plate-shaped body, and it is desirable to cool the device in order to remove the amount of heat received in this way.

〔発明の効果〕〔Effect of the invention〕

本発明は上記のように構成されているので、先ファイバ
の製造工程特に線引工程など、パスライン方向に外径測
定装置や被覆装置等の複雑な装置が配置されている様な
線材製造工程において線材の冷却が容易に行い得られ、
かつ装置のコストも低減させることができる効果がある
Since the present invention is configured as described above, it can be used in wire manufacturing processes such as fiber manufacturing processes, particularly wire drawing processes, in which complicated devices such as outer diameter measuring devices and coating devices are arranged in the pass line direction. The wire can be easily cooled in
Moreover, there is an effect that the cost of the device can also be reduced.

なお詳しく云えば、上記パスラインを従来技術に比して
短くすることができ、設備投資を減少させ、ガスコスト
、エネルギーコストの点でも従来技術に比して有利とな
る効果がある。
More specifically, the pass line can be made shorter than in the prior art, reducing equipment investment and providing advantages over the prior art in terms of gas cost and energy cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による線材冷却方法の概要図、第2図は
本発明による冷却方法において使用する冷却装置の一例
の斜視図、第3図は第2図の板状体の小孔の形状を示す
図、第4図は第2図の板状体の一例を示す図、第5図は
高温光ファイバの周辺の空気層の温度、第6図は光ファ
イバが小孔を通過するとき生ずる空気の流れを模式的に
示す図である。 ■・・・小孔、2・・・光ファイバ、3・・・板状体、
4・・・冷却用パイプ、5・・・小孔付近の空気の推定
流線、7・・・加熱炉、8・・・樹脂#躍装置、9・・
・樹脂硬化炉IO・・・巻取装置、11・・・プリフォ
ーム、12・・・線材冷却装置、13・・・光フアイバ
温度測定位置特許出願人  住友電気工業株式会社 代理人 弁理士 玉 蟲 久五部 9、樹脂硬化炉 本発明による線材冷却方法の概要図 第  2  図 第  4  図 第2図の板状体の小孔の形状を示す間 第  3  m 光ファイバの中心軸からの距離 (mm)高温光ファイ
バの周辺の空気層の温度 第  5  図 1:小孔      3:板状体 2°光フアイバ   5 小孔付近の空気の推定流線光
ファイバが小孔を通過するとき生ずる空気の流れを模式
的に示す図 第  6  図 手続補装置 昭和62年10月26日 1、事件の表示 昭和62年特許願第63431号 2、発明の名称 線材冷却方法および装置 3、補正をする者 事件との関係 特許出願人 住 所 大阪市東区北浜5丁目15番地名 称 (21
3)住友電気工業株式会社代表者川上哲 部 4、代理人 、Eイノ〕 5、補正により増加する発明の数  なし6、補正の対
象 明細書の発明の詳細な説明の欄7、補正の内容 別
紙の通り /−゛ (11明細書第6頁第2行の「冷却ガス層えの」を「冷
却ガス層への」に補正する。 (2)同第6頁第7行の「供給長」を「供給量」に補正
する。
Fig. 1 is a schematic diagram of the wire cooling method according to the present invention, Fig. 2 is a perspective view of an example of a cooling device used in the cooling method according to the present invention, and Fig. 3 is the shape of the small hole in the plate-shaped body of Fig. 2. Figure 4 is a diagram showing an example of the plate-like body in Figure 2, Figure 5 is the temperature of the air layer around the high-temperature optical fiber, and Figure 6 is the temperature that occurs when the optical fiber passes through the small hole. FIG. 3 is a diagram schematically showing the flow of air. ■...Small hole, 2...Optical fiber, 3...Plate-shaped body,
4... Cooling pipe, 5... Estimated flow line of air near the small hole, 7... Heating furnace, 8... Resin pumping device, 9...
・Resin curing furnace IO... Winding device, 11... Preform, 12... Wire cooling device, 13... Optical fiber temperature measurement position Patent applicant Sumitomo Electric Industries Co., Ltd. Agent Patent attorney Tama Mushi Kugobe 9, Resin curing furnace Schematic diagram of the wire cooling method according to the present invention. mm) Temperature of the air layer around the high-temperature optical fiber 5 Figure 1: Small hole 3: Plate-like 2° optical fiber 5 Estimated streamline of air near the small hole Air flow generated when the optical fiber passes through the small hole Diagram schematically showing the flow Figure 6 Procedure auxiliary device October 26, 1988 1, Display of the case Patent Application No. 63431 of 1988 2, Name of the invention Wire cooling method and device 3, Person making the amendment Case Relationship with Patent applicant address 5-15 Kitahama, Higashi-ku, Osaka Name (21
3) Sumitomo Electric Industries Co., Ltd. Representative Tetsu Kawakami Department 4, Agent, E Ino] 5. Number of inventions increased by amendment None 6. Subject of amendment Column 7 for detailed explanation of the invention in the specification, Contents of amendment As shown in the attached sheet/-゛(11. "Cooling gas layer" on page 6, line 2 of the specification is corrected to "to cooling gas layer." (2) "Supply length" on page 6, line 7 of the same specification. ” is corrected to “supply amount”.

Claims (6)

【特許請求の範囲】[Claims] (1)光ファイバ等の線材を線引、紡糸により形成し、
該線材を高温のまま該線材より温度の低い室温の気体雰
囲気中に引き出し、 上記引き出された高温の線材を、該線材の周辺に該線材
自身の熱を受けて生成された高温気体層の少くとも一部
を遮断する大きさの小孔の設けられた板状体よりなる冷
却装置の上記の小孔に挿通し、上記高温気体層の少くと
も一部を遮断して該小孔の設けられた板状体により上記
の気体雰囲気と分離された室温の気体雰囲気中に引き込
むことを特徴とする線材冷却方法。
(1) Forming a wire rod such as an optical fiber by drawing or spinning,
The wire rod is drawn out at a high temperature into a gas atmosphere at a room temperature that is lower in temperature than the wire rod, and the drawn out high-temperature wire rod is removed from a high temperature gas layer generated around the wire rod by receiving the heat of the wire rod itself. It is inserted into the above-mentioned small hole of the cooling device made of a plate-shaped body provided with a small hole of a size that blocks both parts of the high-temperature gas layer, and blocks at least a part of the high-temperature gas layer. A wire cooling method characterized by drawing the wire into a room temperature gas atmosphere separated from the above gas atmosphere by a plate-shaped body.
(2)上記冷却方法として上記板状体を複数個直列に使
用することを特徴とする特許請求の範囲第1項記載の線
材冷却方法。
(2) The wire cooling method according to claim 1, wherein a plurality of the plate-like bodies are used in series as the cooling method.
(3)上記板状体を室温以下に冷却することを特徴とす
る特許請求の範囲第1項あるいは第2項記載の線材冷却
方法。
(3) The wire cooling method according to claim 1 or 2, characterized in that the plate-shaped body is cooled to below room temperature.
(4)高温の線材周辺に該線材自身の熱を受けて生成さ
れた高温気体層の少くとも一部を遮断する大きさの小孔
の設けられた熱の良導体よりなる板状体と、 上記高温の線材を軸方向に移動させる移動手段と、 を具備し、 上記板状体を室温の気体雰囲気中に設置し、上記高温の
線材を上記板状体の小孔に挿通して上記移動手段により
軸方向に移動させ該板状体により分離された雰囲気中に
引き込むことを特徴とする線材冷却装置。
(4) A plate-shaped body made of a good thermal conductor and having small holes around the high-temperature wire that are large enough to block at least part of the high-temperature gas layer generated by the heat of the wire; a moving means for moving the high-temperature wire in the axial direction; the plate-shaped body is installed in a gas atmosphere at room temperature; the high-temperature wire is inserted into a small hole in the plate-shaped body; A wire cooling device characterized in that the wire rod is moved in the axial direction by the plate member and drawn into an atmosphere separated by the plate member.
(5)上記冷却装置は平行に配置された複数個の板状体
から成り、各板状体の小孔を一直線上に配列したもので
あることを特徴とする特許請求の範囲第4項記載の線材
冷却装置。
(5) The cooling device is comprised of a plurality of plate-like bodies arranged in parallel, and the small holes of each plate-like body are arranged in a straight line. wire cooling device.
(6)上記板状体は、その温度を室温以下に保持する冷
却手段を有することを特徴とする特許請求の範囲第4項
あるいは第5項記載の線材冷却装置。
(6) The wire cooling device according to claim 4 or 5, wherein the plate-shaped body has cooling means for maintaining its temperature below room temperature.
JP6343187A 1987-03-18 1987-03-18 Cooling of wire material and device therefor Pending JPS63230534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6343187A JPS63230534A (en) 1987-03-18 1987-03-18 Cooling of wire material and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6343187A JPS63230534A (en) 1987-03-18 1987-03-18 Cooling of wire material and device therefor

Publications (1)

Publication Number Publication Date
JPS63230534A true JPS63230534A (en) 1988-09-27

Family

ID=13229079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6343187A Pending JPS63230534A (en) 1987-03-18 1987-03-18 Cooling of wire material and device therefor

Country Status (1)

Country Link
JP (1) JPS63230534A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0319374A2 (en) * 1987-12-01 1989-06-07 Alcatel N.V. Inert atmosphere cooler for optical fibers and method of using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0319374A2 (en) * 1987-12-01 1989-06-07 Alcatel N.V. Inert atmosphere cooler for optical fibers and method of using the same

Similar Documents

Publication Publication Date Title
KR950000625B1 (en) Process and furnace for heat application
AU741066B2 (en) Method and apparatus for cooling optical fibers
CN105349765B (en) A kind of amorphous band heat-treatment furnace
US6715323B1 (en) Method and apparatus for cooling optical fibers
US4838918A (en) Inert atmosphere cooler for optical fibers
CN111116013B (en) Molding and cooling device and method for fluorophosphate optical glass
CN103714917A (en) Enameling machine suitable for light-cured insulating paint
JPS63230534A (en) Cooling of wire material and device therefor
CN111834050B (en) Painting method of superconducting wire
US4330312A (en) Apparatus for flowing streams of fiber-forming material for attenuation to fibers or filaments
JPH038738A (en) Furnace and method for drawing optical fiber
CN105271639B (en) A kind of anti-crystallization material leakage pipe device
CN210314013U (en) High-speed optical fiber drawing tower
CN203706744U (en) Enamelling machine suitable for light-cured insulating varnish
JP2001500466A (en) Glass fiber spinning equipment
WO2019192206A1 (en) Cooling device, glass fiber forming device, and glass fiber cooling and forming methods
CN220904097U (en) Rust-proof film pressing mechanism
CN105983514A (en) Photocuring coating device applicable to hydrophilic aluminum foil coating and coating method based on device
JPH077289Y2 (en) Cooling system
JPH047159Y2 (en)
JPH03153541A (en) Device and method for cooling optical fiber
CN211226890U (en) Cooling water drum assembly for producing high-strength thin glass and tin bath thereof
JP2522550Y2 (en) Optical fiber manufacturing equipment
JPH01197340A (en) Production of optical fiber and device therefor
JPH10226531A (en) Optical fiber drawing device