JPS63230321A - Manufacture of high density polyethylene film - Google Patents

Manufacture of high density polyethylene film

Info

Publication number
JPS63230321A
JPS63230321A JP6532787A JP6532787A JPS63230321A JP S63230321 A JPS63230321 A JP S63230321A JP 6532787 A JP6532787 A JP 6532787A JP 6532787 A JP6532787 A JP 6532787A JP S63230321 A JPS63230321 A JP S63230321A
Authority
JP
Japan
Prior art keywords
film
density polyethylene
molecular weight
heated
high density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6532787A
Other languages
Japanese (ja)
Inventor
Tetsuya Takahashi
哲也 高橋
Toyoaki Tanaka
豊秋 田中
Yoshisuke Kamei
亀井 良佑
Akihiro Hashimoto
橋本 昭紘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP6532787A priority Critical patent/JPS63230321A/en
Publication of JPS63230321A publication Critical patent/JPS63230321A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a film excellent in mechanical property to be easily produced by heating and orientating the minimum width of the film having a specified weight average molecular weight and a specified molecular weight distribution continuously in order. CONSTITUTION:High density polyethylene film is used as raw material film, and unorientated and amorphous material is preferable, but low crystalline and low orientated material may be also used. For the physical property of the high density polyethylene resin of the raw material film, a resin in which its weight average molecular weight Mw is 100-200 thousands and molecular weight distribution (Mw/numerical average molecular weight Mn) is 2-7 and preferably 2.5-5 of narrow range thereof, is used. In this manufacture, the minimum part of a high density polyethylene film is heated and orientated under tension at the temperature equal to crystal dispersion temperature or higher and equal to melting point or lower. The minimum part of a product film is heated, and since the heated part is orientated by the tension always applied, a film excellent in molecular structure and various mechanical properties is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高密度ポリエチレンフィルムをゾーン加熱・
延伸してつくられる極めて機械的特性のすぐれたフィル
ムの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention provides zone heating and
This invention relates to a method for producing a film with extremely excellent mechanical properties that is produced by stretching.

〔従来の技術〕[Conventional technology]

高配向、高弾性フィルムは、今後すぐれた機械的特性を
必要とする分野に広く使用されることが予想され、それ
に伴なって汎用ポリマーの高次構造再編成の研究が活発
化している。
Highly oriented, highly elastic films are expected to be widely used in fields requiring excellent mechanical properties in the future, and as a result, research on higher-order structure rearrangement of general-purpose polymers is becoming more active.

従来、プラスチックを高弾性、高強1哀とする技術は、
mNを対象としたものが多く、[tについては次のもの
が発表されている。すなわち、(a)高圧押出し法〔例
えば、ジャーナル・オブ・ポリマーサイエンス、ボリマ
ーフイジツクスエデッション(J、Polym、Sci
、Polym、Phys、Ed ) 12゜635 (
1974))、 (b)ダイ延伸法〔例えば、ジャーナル・オブ・ポリマ
ー・エンジニアリング・サイエンス(J、of、Po1
y、Eng、Sci ) 20.1229 (1981
))、(c)ゲル紡糸法(例えば、J、Smook a
nd A、J、Penn1nos、Polymer、B
ull、975 (1983) )、(d)高速による
溶融防止法〔例えば、繊維学会誌、邦、T−208(1
977))、 (e)ゾーン・延伸、熱処理法〔例えば、ジャーナル・
オブ・アプライド・ポリマー・サイエンス(J、Pol
ym、Sci  ) Vol、26.1951〜196
0  (1981)  、IIM学会誌Vo1.40.
 No、9 (1984)、特公昭57−193513
号公報、特公昭60−24852号公報〕などがある。
Conventionally, the technology to make plastics highly elastic and strong is
Many of them target mN, and the following have been published for [t. That is, (a) high pressure extrusion method [for example, Journal of Polymer Science, Polymer Physics Edition (J, Polym, Sci.
, Polym, Phys, Ed) 12°635 (
(1974)), (b) die drawing method [for example, Journal of Polymer Engineering Science (J, of, Po1
Y, Eng, Sci) 20.1229 (1981
)), (c) gel spinning method (e.g. J, Smook a
nd A, J, Penn1nos, Polymer, B
ull, 975 (1983)), (d) Melting prevention method using high speed [e.g.
977)), (e) Zone/stretching, heat treatment methods [e.g.
of Applied Polymer Science (J, Pol
ym, Sci) Vol, 26.1951-196
0 (1981), IIM Journal Vol. 1.40.
No. 9 (1984), Special Publication No. 57-193513
Japanese Patent Publication No. 60-24852].

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、(a)の高圧押出し法、(b)のダイ延伸法は
、引張力が原料側に加える高圧に比べて非常に小さく補
助的である。そのため、口金付近において分子鎖が糸く
ず状につまる懸念があり、分子鎖の配向は容易でない。
However, in the high pressure extrusion method (a) and the die stretching method (b), the tensile force is very small and auxiliary compared to the high pressure applied to the raw material side. Therefore, there is a concern that the molecular chains may become clogged in the form of threads near the mouthpiece, and orientation of the molecular chains is not easy.

(C)のゲル紡糸法は、溶融工程で有機溶媒を用いるた
め、非常にコスト高になり、また、大量の有機溶媒を用
いるため後処理の問題も残り、工業化による大量生産の
可能性が少ない。
The gel spinning method (C) uses an organic solvent in the melting process, making it very expensive. Also, since it uses a large amount of organic solvent, there are still problems with post-processing, and there is little possibility of mass production through industrialization. .

(d)の高速による溶融防止法は、高速、凍結などの手
段によって分子鎖のunfoldingを促進させるの
で、得られた繊維は安定な結晶組織を形成させることが
できず、非晶構造になり易い欠点がある。
The melting prevention method using high speed (d) promotes the unfolding of molecular chains by high speed, freezing, etc., so the obtained fibers cannot form a stable crystalline structure and tend to have an amorphous structure. There are drawbacks.

(e)のゾーン・延伸熱処理法は、特公昭60−248
52号公報に、非晶質あるいは可能な限り低結晶性の原
繊維を、ゾーン延伸およびゾーン熱処理することにより
、高弾性、高強度の繊維を術る方法が記載されているが
、延伸後に熱処理を必要とし、二度の操作を伴う難点が
あり、さらに、得られた繊維の弾性率も低いものにとど
まる。また前に示した4811学会誌による発表を含め
て、もともとが実験室的なもので、■業的規模での連続
化は難しい。さらに、原料となるポリマーロンドに一定
荷重をかけて延伸させるので、原料ロッド横断面積の不
均一により、印加応力が不均一となり、延伸した繊維の
断面積がバラついたり破断したりする問題があった。
The zone/stretch heat treatment method of (e) is
No. 52 describes a method for producing highly elastic and high-strength fibers by subjecting amorphous or as low-crystalline fibrils as possible to zone stretching and zone heat treatment. However, the method requires two operations, and furthermore, the modulus of elasticity of the obtained fiber remains low. In addition, the publications, including those published in the 4811 academic journal mentioned above, were originally laboratory-based, and it would be difficult to serialize them on an industrial scale. Furthermore, since a constant load is applied to the raw polymer rod to draw it, there is a problem that the cross-sectional area of the raw material rod is non-uniform, which causes the applied stress to become non-uniform, causing the cross-sectional area of the drawn fibers to vary or break. Ta.

これらの方法は、いずれも繊維を対象に開発されたもの
で、これをフィルムに応用することは無理であり、しか
も分子配向の問題があるなど、その工業化や製品品質な
どに難点が多く、かつコストも高いものとなり、工業化
は非現実的で、十分にその目的を達成していないのが現
状である。
All of these methods were developed for fibers, and it is impossible to apply them to films.Moreover, there are many difficulties in industrialization and product quality, such as problems with molecular orientation. The cost is also high, making industrialization unrealistic, and the current situation is that the goal has not been fully achieved.

本発明は上記の事情に鑑み、優れた機械的特性を有し、
容易に製作可能で、しかも今後広い用途が予想される高
密度ポリエチレンフィルムの製造方法を提供することを
目的とする。
In view of the above circumstances, the present invention has excellent mechanical properties,
The purpose of the present invention is to provide a method for producing a high-density polyethylene film that can be easily produced and is expected to have a wide range of uses in the future.

C問題点を解決するための手段〕 本発明は上記の目的を達成寸べくなされたもので、その
要旨は、高密度ポリエチレンフィルムを緊張下で、かつ
ポリエチレンの結晶分散温度以上であるが、融点以下の
温度で加熱・延伸させるフィルムの製造方法であって、
ポリエチレンの小量平均分子量(MW)は10〜20万
であり、かつ分子も1分布〔Mw/数平均分子1f(H
n))は2〜7であり、しかも該フィルムの極小幅を順
次連続的に加熱・延伸する高密度ポリエチレンフイルム
の製造方法にある。
Means for Solving Problem C] The present invention has been made to achieve the above-mentioned object, and its gist is that a high-density polyethylene film is heated under tension and at a temperature higher than the crystal dispersion temperature of polyethylene, but at a temperature higher than the melting point. A method for producing a film that is heated and stretched at a temperature of:
The small average molecular weight (MW) of polyethylene is 100,000 to 200,000, and the number of molecules is 1 distribution [Mw/number average molecule 1f (H
n)) is from 2 to 7, and the method for producing a high-density polyethylene film involves sequentially and continuously heating and stretching the minimum width of the film.

〔発明の具体的構成および作用〕[Specific structure and operation of the invention]

以下本発明の詳細な説明する。 The present invention will be explained in detail below.

本発明においては、高密度ポリエチレンフィルムが原料
フィルムとして用いられ、未配向の非晶質のものが好ま
しいが、低結晶性、低配向のものも使用可能である。
In the present invention, a high-density polyethylene film is used as a raw material film, and an unoriented amorphous film is preferred, but a low-crystalline and low-oriented film can also be used.

また、原料フィルムの高密度ポリエチレン樹脂の物性は
、その重量平均分子lHwが10〜20万で、分子量分
布〔Mw/数平均分子MHn)が2〜7、好ましくは2
.5〜5の分子量分布の幅の狭い樹脂を使用する。この
際、樹脂の密度は0.945g/C11?以上、好まし
くは、0.945〜0.975g/crf、特に0.9
50〜0.975g/dが好適である。
In addition, the physical properties of the high-density polyethylene resin of the raw material film are such that its weight average molecule lHw is 100,000 to 200,000, and its molecular weight distribution [Mw/number average molecule MHn] is 2 to 7, preferably 2.
.. A resin with a narrow molecular weight distribution of 5 to 5 is used. At this time, the density of the resin is 0.945g/C11? Above, preferably 0.945 to 0.975g/crf, especially 0.9
50 to 0.975 g/d is suitable.

Hwが10〜20万、分子量分布Hw/ Hnが2〜7
以外の高密度ポリエチレンフィルムが原お1フイルムと
して使用した場合には、物質特性の帰れた高配向、高弾
性のフィルムは得られない。
Hw is 100,000 to 200,000, molecular weight distribution Hw/Hn is 2 to 7
If a high density polyethylene film other than the above is used as the base film, a highly oriented, highly elastic film with good material properties cannot be obtained.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

本発明の方法は、高密度ポリエチレンフィルムを緊張下
、その極少部分を、ポリエチレンの結晶分散温度以上で
あるが融点以下の温度で加熱延伸してつくられる。
The method of the present invention is made by heating and stretching a very small portion of a high-density polyethylene film under tension at a temperature above the crystal dispersion temperature but below the melting point of polyethylene.

第1図および第2図は、本発明のフィルムをつくる装置
の一例を示すもので、第1図は概略側面図である。図中
符号1,2は、それぞれモータ(図示せず)によって駆
動される送り出しロールおよび巻ぎ取りロールで、その
回転数の差によって原料フィルム3に張力を与え、これ
を連続的に延伸する。
1 and 2 show an example of an apparatus for producing the film of the present invention, and FIG. 1 is a schematic side view. Reference numerals 1 and 2 in the figure are a delivery roll and a take-up roll driven by a motor (not shown), respectively, and the difference in their rotational speeds applies tension to the raw material film 3 to continuously stretch it.

今、送り出しロール1による送り出し速度をVCmm/
min 、巻き取りロール2によって巻き取る速度をV
Dm/minとすると、原料フィルム3に対する延伸倍
率λは次式によって与えられる。
Now, set the feed speed by feed roll 1 to VCmm/
min, the winding speed by the winding roll 2 is V
When Dm/min, the stretching ratio λ for the raw material film 3 is given by the following equation.

λ−1+VD二■( Vo        ・・・(1) したがって、(1)式において、VCに対してVDを適
当にえらぶことによって、任意の延伸倍率のフィルムが
得られるが、高配向のフィルムとするには、λ〉8であ
ることが好ましい。
λ-1+VD2 (Vo...(1) Therefore, in formula (1), by appropriately selecting VD for VC, a film with any stretching ratio can be obtained, but a highly oriented film can be obtained. It is preferable that λ>8.

また、上記ロール1,2間には、極小プレートヒータ4
が設けられており、結晶分散温度域で、原料フィルム3
の極小部分を加熱する。この加熱部分を極少とするため
、例えば2#のプレートヒータ4が用いられる。また、
プレートヒータ4による加熱部4′における熱分散を防
ぎ、原料フィルム3の加熱範囲が広がらないように、加
熱部4′の両側に冷却部5,5が設けられている。その
拡大図を第2図に示すように、上記冷却部5には、冷却
媒体6、例えば液体窒素の気化冷気が導入され、それぞ
れプレートヒータ4と反対側に放出され、加熱部4′か
らの熱分散を最小限にとどめるようにしている。したが
って、印加応力を極小加熱部に1線集中させることが出
来る。この際、極小加熱部の幅は20s以下、好ましく
は10mm以下、特に8mm以下がよく、原料フィルム
に対でる加熱温度(延伸温度)は約80〜130℃が適
当である。また、冷却部5の冷却渇痕は、冷却媒体6の
注入量、温度によって調整されるが、分子量のunfo
ldingの緩和防止の必要性からO′C以下であるこ
とが望ましい。
Moreover, between the rolls 1 and 2, there is a very small plate heater 4.
is provided, and in the crystal dispersion temperature range, the raw material film 3
heats a very small part of the In order to minimize this heated portion, for example, a 2# plate heater 4 is used. Also,
Cooling units 5, 5 are provided on both sides of the heating unit 4' to prevent heat dispersion in the heating unit 4' caused by the plate heater 4 and to prevent the heating range of the raw material film 3 from expanding. As shown in an enlarged view in FIG. 2, the cooling medium 6, for example, vaporized cold air of liquid nitrogen, is introduced into the cooling section 5, and is discharged to the side opposite to the plate heater 4, and the cooling air is emitted from the heating section 4'. We try to keep heat dispersion to a minimum. Therefore, the applied stress can be concentrated in one line on the extremely small heating section. In this case, the width of the minimal heating section is preferably 20 seconds or less, preferably 10 mm or less, particularly 8 mm or less, and the heating temperature (stretching temperature) for the raw material film is suitably about 80 to 130°C. Moreover, the cooling scar of the cooling part 5 is adjusted by the injection amount and temperature of the cooling medium 6, but the molecular weight unfo
From the necessity of preventing relaxation of lding, it is desirable that the temperature be below O'C.

上記のようにして製造されたフィルムは、極小部分が加
熱され、この加熱された部分が常時加えられている張力
によって延伸されるので、分子構造上、或いは各種機械
的特性においても優れたフィルムが得られる。特に本発
明のフィルムの弾性率は、ゲル紡糸による繊維や、従来
のゾーン延伸・熱処理によるmHより格段に向上し、1
5〜60 Gpaを示す。
The film produced as described above is heated in its extremely small portion, and this heated portion is stretched under constant tension, resulting in a film with excellent molecular structure and various mechanical properties. can get. In particular, the elastic modulus of the film of the present invention is much higher than that of gel-spun fibers or conventional zone-stretched/heat-treated fibers;
It shows 5-60 Gpa.

なお、図中7,8はガイドローラである。また上記説明
では加熱に極小プレートヒータを用い、装置を横型とし
たが、極小部分が加熱出来れば加熱手段に制限はなく、
また、装置を縦型としてもよい。
Note that 7 and 8 in the figure are guide rollers. In addition, in the above explanation, a very small plate heater was used for heating and the device was a horizontal type, but there is no restriction on the heating means as long as a very small part can be heated.
Alternatively, the device may be of a vertical type.

〔実施例〕〔Example〕

以下、実施例、比較例を示して本発明を説明する。 The present invention will be described below with reference to Examples and Comparative Examples.

実施例、比較例においては、フィルムの機械的特性など
、各種物性を測定比較するが、これら物性の測定方法を
次に示す。
In Examples and Comparative Examples, various physical properties such as mechanical properties of the films are measured and compared, and methods for measuring these physical properties are shown below.

(a)引張り弾性率、破断強度測定 引張り弾性率E、破断強度測定はテンシロンの条件を以
下のように定めて行なった。試料の長さを20#9幅を
6 trmr 、クロスヘッド引張速度を20mm/m
inとし、試料の断面積はマイクロメータと厚み泪を用
いて最低5回測定し、その平均値をとった。なお、破断
強度σbは、チャック切れが生じるため誤差が大きく、
実際の値より小さく出る可能性が強いので参完程度とな
ろう。弾性率Eは引張試験より17られた応力−歪曲線
の初期勾配より算出した。
(a) Measurement of tensile modulus of elasticity and breaking strength Measurement of tensile modulus of elasticity E and breaking strength was carried out under the following Tensilon conditions. The length of the sample was 20#9, the width was 6 trmr, and the crosshead tension speed was 20 mm/m.
The cross-sectional area of the sample was measured at least five times using a micrometer and a thickness gauge, and the average value was taken. Note that the breaking strength σb has a large error due to chuck breakage.
There is a strong possibility that it will come out smaller than the actual value, so it will probably be a perfect guess. The elastic modulus E was calculated from the initial slope of the stress-strain curve obtained from the tensile test.

(b)苦瓜測定 密度測定は、水−メタノール系密面勾配等を用いて25
℃において浮沈法により測定した。
(b) Bitter melon measurement Density measurement is performed using a water-methanol system dense surface gradient, etc.
It was measured by the float-sink method at ℃.

この際、水−メタノール系混合溶液中でアスピレータ−
を使用して、約5分〜20分間にわたってほぼ完全に気
泡をめいでから勾配配管中に入れて測定を行なった。
At this time, an aspirator was used in a water-methanol mixed solution.
The measurement was carried out after almost completely removing the air bubbles and introducing the tube into the gradient piping over a period of about 5 to 20 minutes.

結晶化度XCは、測定された密度より下式(2)によっ
て求めた。但し、ポリエチレンの結晶密度ρC9非結晶
密度ρaはρC=1,000、ρa =0.852とす
る。
The crystallinity XC was determined by the following formula (2) from the measured density. However, the crystal density ρC9 and the amorphous density ρa of polyethylene are ρC=1,000 and ρa=0.852.

測定した密度をρとすると、 ρ−、QCxρa +pa  (1−Xc )(C)複
屈折測定 試料の複屈折は、コンペンセータを備えた偏光顕微鏡に
より、ナトリウムを光源として測定した。
When the measured density is ρ, ρ−,QCxρa +pa (1−Xc) (C) Birefringence measurement The birefringence of the sample was measured using a polarizing microscope equipped with a compensator using sodium as a light source.

実施例1,2、比較例1〜3 第1図に示した装置を用い、フィルムの極小部を加熱・
延伸した。
Examples 1 and 2, Comparative Examples 1 to 3 Using the apparatus shown in Figure 1, the smallest part of the film was heated and
Stretched.

原フィルムとしては、幅6.0mm、厚み0.6mmの
Tダイ成形したままの状態で、第1表に示すように、物
性値の異なるA〜Fの5種の高密度ポリエチレンフィル
ムを用いた。
As the original film, five types of high-density polyethylene films A to F with different physical properties were used as shown in Table 1, in the T-die molded state with a width of 6.0 mm and a thickness of 0.6 mm. .

第1表 また、加熱温石はいずれも120℃とし、延伸倍率λは
、それぞれの試料のほぼ最大延伸倍率で延伸したが、原
フィルムは、極小部分が加熱され、ネッキングを伴ない
ながらスムーズに延伸された。
Table 1 In addition, the heating stone was set at 120°C for each sample, and the stretching ratio λ was approximately the maximum stretching ratio for each sample. However, the raw film was heated in the very small part and stretched smoothly without necking. It was done.

これら延伸されたフィルムについて各硬物性を測定し、
結果を第2表に示した。
Each hard physical property was measured for these stretched films,
The results are shown in Table 2.

第2表から、Hwが15万、 Hw/Hnの値が3.5
の試料が、最大延伸倍率、複屈折率、結晶化麿が最も大
きく、弾性率、破断強度が最大値を示しているが、Hw
が10〜20万、 Hw/Hnの値が3〜5の範囲の高
密度ポリエチレンフィルムを用いると、弾性率、破断強
度が共に大きくなることがわかる。
From Table 2, Hw is 150,000, and the value of Hw/Hn is 3.5.
The sample has the highest maximum stretching ratio, birefringence, and crystallization ratio, and the highest elastic modulus and breaking strength, but Hw
It can be seen that when a high-density polyethylene film having a Hw/Hn value of 100,000 to 200,000 and a Hw/Hn value of 3 to 5 is used, both the elastic modulus and the breaking strength become large.

上記範囲の物性値は、通常の高密度ポリエチレンから選
択出来たものである。
The physical property values in the above range can be selected from ordinary high-density polyethylene.

実施例3 延伸倍率λを変えるための巻き取りロール速度VDや延
伸湿度を変えた伯は、実施例1と同様にして極小加熱部
延伸を行なった。
Example 3 Minimal heating zone stretching was carried out in the same manner as in Example 1, except that the take-up roll speed VD and stretching humidity were changed to change the stretching ratio λ.

各延伸条件において室温で測定した動的弾性率E′を延
伸条件に対してプロットした図を第3図に示す。第3図
に示した室温での動的弾性率E′はテンシロンによる応
力−歪曲線の初期勾配より求めた引張弾性率Eに相当す
る。
FIG. 3 shows a graph in which the dynamic elastic modulus E' measured at room temperature under each stretching condition is plotted against the stretching conditions. The dynamic elastic modulus E' at room temperature shown in FIG. 3 corresponds to the tensile elastic modulus E determined from the initial slope of the stress-strain curve by Tensilon.

特に、第3図において室温での動的弾性率E′が各延伸
倍率に対して延伸温度が110〜120℃付近でピーク
を持つことがわかる。一方、テンシロンによる引張り試
験により得られた応力−歪曲線の初期勾配より求めた引
張り弾性率Eを各延伸条件に対してプロットした図を第
4図に示す。
In particular, it can be seen in FIG. 3 that the dynamic elastic modulus E' at room temperature has a peak at a stretching temperature of around 110 to 120 DEG C. for each stretching ratio. On the other hand, FIG. 4 shows a plot of the tensile modulus E determined from the initial slope of the stress-strain curve obtained by the Tensilon tensile test for each stretching condition.

第4図に示す引張り弾性率Eの各延伸条件に対する挙動
は、動的弾性率F′の場合とほぼ一致している。この場
名も120℃の延伸温度付近で20倍に延伸さ4!た試
料の弾性率は約42.1GPaで、引張り弾性率として
はかなり高い値を示している。
The behavior of the tensile modulus E shown in FIG. 4 with respect to each stretching condition is almost the same as that of the dynamic modulus F'. The name of this case is also that it is stretched 20 times at a stretching temperature of 120℃. The elastic modulus of the sample was approximately 42.1 GPa, which is a fairly high tensile modulus.

〔効果〕〔effect〕

以上述べたように、本発明のポリエチレンフィルムは、
機械的強度が格段に優れ、強度が要求される種々な目的
に広く対応出来、しかも製法が容易で、その工業的価値
は極めて大きい。
As mentioned above, the polyethylene film of the present invention is
It has extremely excellent mechanical strength, can be widely used for various purposes requiring strength, and is easy to manufacture, so its industrial value is extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のフィルムを製造する装置の一例を示す
図、第2図は、部分拡大図、第3図おJ:び第4図は、
それぞれ本発明のフィルムの弾性率と延伸温度との関係
を示す図である。 1・・・送り出しロール、2・・・巻き取りロール、3
・・・高密度ポリエチレンフィルム(原料フィルム)、
4・・・プレートヒータ、4′・・・加熱部、5・・・
冷却部、6・・・冷却媒体、7,8・・・ガイドロール
FIG. 1 is a diagram showing an example of an apparatus for manufacturing the film of the present invention, FIG. 2 is a partially enlarged view, and FIGS. 3 and 4 are
FIG. 3 is a diagram showing the relationship between the elastic modulus and stretching temperature of the film of the present invention, respectively. 1... Delivery roll, 2... Take-up roll, 3
...High-density polyethylene film (raw material film),
4...Plate heater, 4'...Heating part, 5...
Cooling section, 6... Cooling medium, 7, 8... Guide roll.

Claims (1)

【特許請求の範囲】 高密度ポリエチレンフィルムを緊張下で、かつポリエチ
レンの結晶分散温度以上であるが、融点以下の温度で加
熱・延伸させるフィルムの製造方法であって、ポリエチ
レンの重量平均分子量(Mw)は10〜20万であり、
かつ分子量分布〔Mw/数平均分子量(Mn)〕は2〜
7であり、しかも該フィルムの極小幅を順次連続的に加
熱・延伸することを特徴とする高密度ポリエチレンフィ
ルムの製造方法。
[Scope of Claims] A method for producing a film in which a high-density polyethylene film is heated and stretched under tension at a temperature above the crystal dispersion temperature of polyethylene but below the melting point, the method comprising: ) is 100,000 to 200,000,
and the molecular weight distribution [Mw/number average molecular weight (Mn)] is 2 to
7, and furthermore, the method for producing a high-density polyethylene film is characterized in that the extremely small width of the film is successively heated and stretched.
JP6532787A 1987-03-19 1987-03-19 Manufacture of high density polyethylene film Pending JPS63230321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6532787A JPS63230321A (en) 1987-03-19 1987-03-19 Manufacture of high density polyethylene film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6532787A JPS63230321A (en) 1987-03-19 1987-03-19 Manufacture of high density polyethylene film

Publications (1)

Publication Number Publication Date
JPS63230321A true JPS63230321A (en) 1988-09-26

Family

ID=13283709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6532787A Pending JPS63230321A (en) 1987-03-19 1987-03-19 Manufacture of high density polyethylene film

Country Status (1)

Country Link
JP (1) JPS63230321A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02193140A (en) * 1989-01-23 1990-07-30 Fuji Photo Film Co Ltd Container cap for photographic film cartridge
JP2000052428A (en) * 1998-08-11 2000-02-22 Sekisui Chem Co Ltd Laminate producing method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02193140A (en) * 1989-01-23 1990-07-30 Fuji Photo Film Co Ltd Container cap for photographic film cartridge
JP2000052428A (en) * 1998-08-11 2000-02-22 Sekisui Chem Co Ltd Laminate producing method and apparatus

Similar Documents

Publication Publication Date Title
JPS626907A (en) High strength polyester yarn having markedly stable inner structure
JP4562316B2 (en) Biodegradable fiber and method for producing the same
JPH0332821A (en) High molecular substance
US4447599A (en) Thermotropic liquid crystal shaped article
US3069406A (en) Uniaxially oriented crystalline polymers
JPS6216813B2 (en)
JPH07505455A (en) Polyamide monofilaments exhibiting high tenacity and methods for producing them
JPH01272814A (en) Polyvinyl alcohol-based yarn having excellent hot water resistance and production thereof
JPH0331331B2 (en)
Hofmann et al. Investigations on supermolecular structure of poly (ethylene terephthalate) samples of higher modulus
JPS63230321A (en) Manufacture of high density polyethylene film
Foot et al. The cold drawing of amorphous polyethylene terephthalate
Hobbs et al. Preparation of high performance poly (ethylene terephthalate) fibers: two-stage drawing using high pressure CO2
JPS61193826A (en) Manufacture of polyolefin gel product and manufacture of product having high tensile strength and high modulus from said product
JPS6312767B2 (en)
JP5313747B2 (en) Method for producing polyolefin molded body
JPH06503521A (en) Processing method of oriented polybenzazole film
JPH0371974B2 (en)
JPH0938195A (en) Catheter balloon and manufacture of the same
JPS6097835A (en) Monoaxially stretched crystalline high-molecular film or sheet with super coefficient of elasticity and manufacture thereof
JPH0250817A (en) Method and device for manufacturing plastic continuum
JPS62133106A (en) Highly elastic yarn
JPH11293517A (en) Polylactic acid fiber and its production
JP2825728B2 (en) Method for producing biaxially oriented polyester film
Alfrey Polymer Crystallization Induced by Biaxial Stretching During Film Manufacture