JPS62133106A - Highly elastic yarn - Google Patents

Highly elastic yarn

Info

Publication number
JPS62133106A
JPS62133106A JP26737785A JP26737785A JPS62133106A JP S62133106 A JPS62133106 A JP S62133106A JP 26737785 A JP26737785 A JP 26737785A JP 26737785 A JP26737785 A JP 26737785A JP S62133106 A JPS62133106 A JP S62133106A
Authority
JP
Japan
Prior art keywords
stretching
molecular weight
density
heating
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26737785A
Other languages
Japanese (ja)
Inventor
Tetsuya Takahashi
哲也 高橋
Toyoaki Tanaka
豊秋 田中
Ryosuke Kamei
亀井 良祐
Akihiro Hashimoto
橋本 昭紘
Tetsuya Sakai
哲也 酒井
Tokumasa Okui
奥居 徳昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP26737785A priority Critical patent/JPS62133106A/en
Publication of JPS62133106A publication Critical patent/JPS62133106A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

PURPOSE:The titled yarn having extremely improved mechanical characteristics, obtained by drawing the minimum part of undrawn yarn consisting of a high- density PE resin which has molecular weight in a specific range and narrow molecular weight distribution under heating under stretching. CONSTITUTION:Undrawn yarn consisting of a high-density PE resin having molecular weight Mw of 140,000-200,000, molecular weight distribution Mw/Mn of 3-5 and density of preferably 0.94-0.97 is subjected to zone drawing to draw its minimum part under heating under stretching to give the aimed yarn having modulus of elasticity of 100-250GPa. The zone drawing, for example, is carried out by heating the undrawn yarn 3 stretched between rolls 1 and 2 by a minimum band heater 4 (e.g., having 2mm width) at 100-130 deg.C.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は機械的特性に優れた繊維に関し、特に、原繊維
が特定の樹脂より成る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to fibers with excellent mechanical properties, and in particular, the raw fibers are made of a specific resin.

当該繊維のゾーン加熱延伸による、高りI性率を有する
など、優れた機械的特性の具備が要求される分野に有用
な、合成樹脂製繊維に関する。
The present invention relates to synthetic resin fibers that are useful in fields that require excellent mechanical properties, such as a high I modulus obtained by zone heating drawing of the fibers.

(従来の技術] 近年、フレキシブルなポリマーから高弾性かつ高粘性の
繊維を製造する研究がなされている。かかる繊維は、優
れた機械的特性の具備が要求される分野、例えば、ゴル
フ用具などの分野において有用である。
(Prior Art) In recent years, research has been conducted to produce highly elastic and highly viscous fibers from flexible polymers.Such fibers are used in fields that require excellent mechanical properties, such as golf equipment. useful in the field.

かかる製造技術として、高圧押出[例えば、ジャーナル
・オブーポリマーサイエンス、ボリマーフィジックスエ
デンション(J @Polym。
Such manufacturing techniques include high-pressure extrusion [for example, Journal of Polymer Science, Polymer Physics Edition (J@Polym.

Sci、 Polym、 Phys 、 E d)上」
 635(1974)] 、グイ延伸[例えば、ジャー
ナル串オブ・ポリマー・エンジニアリング・サイエンス
(J * Of e Po1y、Eng、、 Sci、
 20 。
Sci, Polym, Phys, Ed)
635 (1974)], Gui stretching [e.g., Journal of Polymer Engineering Science (J*Of e Polymer Eng., Sci.
20.

1229 (1981)]、ゲル紡糸[例えば、J e
 Smook  and A 、 J 、 Penn1
g5.Polymer◆Bul!、9.75 (198
3)1 、高速による溶融紡糸[例えば、繊維学会誌、
33.T−208(1977)コ、ゾーンφ延伸熱処理
[例えば、ジャーナル・オブ・アプライドΦポリマー・
サイエン7、 (J a Polym、 Sci、) 
V  。
1229 (1981)], gel spinning [e.g.
Smook and A, J, Penn1
g5. Polymer◆Bul! , 9.75 (198
3) 1. Melt spinning at high speed [e.g.
33. T-208 (1977), zone φ stretching heat treatment [e.g., Journal of Applied φ Polymers
Scien 7, (J a Polym, Sci,)
V.

文、26,1951−1960 (1981)、繊維学
会誌Vo1.40.No9 (1984)、特公昭60
−24852号公報〕などがある。
Bun, 26, 1951-1960 (1981), Journal of the Fiber Science Society Vol. 1.40. No. 9 (1984), Special Publication Showa 60
-24852].

しかし、高圧押出、グイ延伸による方法では、引張力は
原料側に加える高圧に比べて非常に小さく補助的である
。そのため、口金付近で分子鎖が糸くず状につまる危険
があり、分子鎖の配向は容易ではない。
However, in the methods of high-pressure extrusion and Gui stretching, the tensile force is very small and auxiliary compared to the high pressure applied to the raw material side. Therefore, there is a risk that the molecular chains will become stuck in the form of threads near the cap, and it is not easy to orient the molecular chains.

また、ゲル紡糸による方法は、溶融工程で有機溶媒を用
いるため、非常にコスト高になり、また、大量の有機溶
媒を用いるため後処理の問題も残り、工業化による大量
生産の可能性は高いとはいい難いし、得られた繊維の弾
性率はせいぜい40〜60GPa程度にとどまる。
In addition, the method using gel spinning uses an organic solvent in the melting process, making it very expensive.Also, since it uses a large amount of organic solvent, there are still problems with post-processing, and there is a high possibility of mass production through industrialization. However, the elastic modulus of the obtained fibers is only about 40 to 60 GPa at most.

さらに、高速による溶融紡糸による方法では、高速・凍
結などの手段によって分子鎖のunfoldingを促
進させるので、得られた繊維は安定な結晶組織を形成さ
せることができず、非晶構造になり易いという難点があ
る。
Furthermore, in the high-speed melt spinning method, the unfolding of molecular chains is promoted by means such as high speed and freezing, so the resulting fibers cannot form a stable crystalline structure and tend to have an amorphous structure. There are some difficulties.

さらに、従来のゾーン延伸・熱処理方法にあっては、特
公昭60−24852号公報には非晶質あるいは可能な
限り低結晶性の原繊維ゾーン延伸・ゾーン熱処理するこ
とにより高弾性、高強度繊維を得る方法が記載されてい
るが、このように、延伸後に熱処理を必要とし、二度の
操作を伴なうという難点があるし、得られたtb’t 
gtのりi性率も低いものにとどまり、また、前記で掲
示した繊維学会誌も含めて従来のかかるゾーン延伸・熱
処理方法では、もともとが実験的なものにとどまり、工
業的規模での連続化は難しく、また、原繊維に一定荷重
をかけて延伸させるため、原繊維の断面積の不均一さに
よる印加応力の不均一さに原因する延伸物のバラツキや
延伸中の原繊維の破断など”の問題があった。このよう
に、従来例にあっては、分子配向の問題があるなど、そ
の工業化や製品品質などに問題が多く、かつ、コストも
非常に高いものにつき工業化は非現実的であり、十分に
その目的を達成していないのが現状である。
Furthermore, in the conventional zone drawing and heat treatment method, Japanese Patent Publication No. 60-24852 discloses that high elasticity and high strength fibers are produced by zone drawing and zone heat treatment of amorphous or as low crystalline raw fibers as possible. However, this method requires heat treatment after stretching and involves two operations, and the obtained tb't
The gt glue i property remains low, and the conventional zone stretching and heat treatment methods, including those published in the above-mentioned journal of the Japan Institute of Textile Science and Technology, are originally experimental methods and have not been implemented continuously on an industrial scale. In addition, since the fibrils are stretched by applying a constant load, there are problems such as variations in the stretched material due to non-uniform applied stress due to non-uniformity of the cross-sectional area of the fibrils, and fibril breakage during stretching. As described above, conventional methods have many problems with industrialization and product quality, such as problems with molecular orientation, and are also extremely expensive, making industrialization unrealistic. However, the current situation is that this objective has not been fully achieved.

[発明が解決しようとする問題点] 本発明の目的はかかる状況下に鑑み、従来技術の有する
欠点を解消し、優れた機械的特性を有する繊維を提供す
ることにある。
[Problems to be Solved by the Invention] In view of the above circumstances, an object of the present invention is to eliminate the drawbacks of the prior art and provide a fiber having excellent mechanical properties.

また、本発明の目的は優れた機械的特性の具備が要求さ
れる分野に有用な合成樹脂製繊維を工業的規模でa続プ
ロセスで得ることにある。
Another object of the present invention is to obtain synthetic resin fibers useful in fields requiring excellent mechanical properties on an industrial scale using an a-sequential process.

(問題点を解決するための手段1 本発明は原繊維を緊張下にその極小部を加熱延伸して成
る繊維であって、原繊維が分子量Mi+14〜20万、
分子量分布Mv/Mn3〜5の高密度ポリエチレン樹脂
より成り、繊維の弾性率が100〜250GPaの高弾
性高強度t、11維に存する。
(Means for Solving the Problems 1) The present invention is a fiber made by heating and stretching the smallest part of a fibril under tension.
It is made of high-density polyethylene resin with a molecular weight distribution Mv/Mn of 3 to 5, and has a fiber elastic modulus of 100 to 250 GPa, high elasticity and high strength t, and 11 fibers.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明で使用される原繊維としては未配向の非晶質48
 mが好ましいが、低結晶性低配向のものも使用可能で
ある。
The fibril used in the present invention is unoriented amorphous 48
m is preferred, but those with low crystallinity and low orientation can also be used.

また、原繊維の高密度ポリエチレン樹脂の物性は、その
分子iMwが14〜20万で、分子量分布Mw/Mnが
3〜5の分子量分布の幅の狭い樹脂を使用する。樹脂の
密度は0.94〜0.97であることが好ましい。
Regarding the physical properties of the high-density polyethylene resin for the fibrils, a resin with a narrow molecular weight distribution of a molecular iMw of 140,000 to 200,000 and a molecular weight distribution Mw/Mn of 3 to 5 is used. The density of the resin is preferably 0.94 to 0.97.

本発明者らの鋭意検討により、かかる物性値の樹脂がゾ
ーン延伸特に後述する本発明者らの鋭意検討による極小
部加熱延伸法において、最適であり、これにより、本発
明の意図する繊維において、無理なく伸び切り鎖結晶を
形成することができることが判明した。
As a result of intensive studies by the present inventors, resins with such physical properties are optimal for zone stretching, particularly in the minimal area heating stretching method based on intensive studies by the present inventors, which will be described later. It has been found that extended chain crystals can be formed without difficulty.

かかる原繊維はゾーン延伸に付される。Such fibrils are subjected to zone drawing.

ゾーン延伸は原繊維を緊張下にその極小部を加熱延伸す
ることにより行われる。
Zone drawing is carried out by heating and drawing the smallest portion of the fibril under tension.

次に、ゾーン延伸の好ましい方法(極小部加熱延伸法)
をその装置と共に説明する。
Next, a preferred method of zone stretching (minimum area heating stretching method)
will be explained together with its device.

この方法は、上記原繊維に対して、ロール間において一
定速度で延伸させる方式がとられる。
In this method, the fibril is stretched between rolls at a constant speed.

装置の概略を第1図に例示す。これは、送り出しロール
1と巻き取りロール2の回転数の差によって引き起こさ
れ、原繊維を連続的に延伸し得る。
An outline of the apparatus is illustrated in FIG. This is caused by the difference in rotational speed between the delivery roll 1 and the take-up roll 2, and allows the fibril to be drawn continuously.

送り出しロール1および巻き取りロール2はモーター(
図示せず)で駆動し、原繊維3を一定倍率で延伸し、原
繊維に緊張を加える。この時、送り出しロール1による
送り出し速度をV c (ff1m/ min )とし
1巻き取りロール2による巻き取り速度をV D (a
m/ min )とすると、原繊維に対する延伸倍率入
は簡単な計算により1次式で与えられる。
The delivery roll 1 and the take-up roll 2 are operated by a motor (
(not shown), the fibril 3 is stretched at a constant magnification, and tension is applied to the fibril. At this time, the delivery speed by the delivery roll 1 is V c (ff1m/min), and the winding speed by the 1 take-up roll 2 is V D (a
m/min), the draw ratio for the fibril is given by a linear equation by simple calculation.

したがって、上記から、Vcに対してVDを適当にえら
ぶことにより任意の延伸倍率の試料を作製することがで
きる。
Therefore, from the above, by appropriately selecting VD with respect to Vc, a sample with an arbitrary stretching ratio can be produced.

入〉15であることが好ましい。It is preferable that the value is 15.

ロール間で連続的に緊張を加えられた原繊維3に対して
ロール1.2間に極小バンドヒーター4を設置し、結晶
分散温度域で、極小部加熱する。なお、第1図にて、5
および6はガイドロールである。
An extremely small band heater 4 is installed between the rolls 1 and 2 of the fibril 3, which is continuously tensioned between the rolls, to heat the extremely small part in the crystal dispersion temperature range. In addition, in Figure 1, 5
and 6 are guide rolls.

極小バンドヒーター4は、例えば幅2mmに構成される
。他の加熱手段でもよい。
The extremely small band heater 4 is configured to have a width of 2 mm, for example. Other heating means may also be used.

上記に際し、当該加熱部4における熱分散を防ぐため、
該加熱部4の両側に冷却部7を設置する。これらの概略
を拡大して、第2図に示す。この冷却部7は、冷却媒体
例えば液体窒素の気化冷気8を当該冷却部7内部に注入
し、それぞれ極小バンドヒーター4とは反対側に放出さ
せ、加熱部分からの熱分散を最小限にとどめる。これに
より、印力応力を極小加熱部4に一点集中させることが
可能となる。原繊維に対する加熱温度(延伸温度)は約
100〜130°Cが好ましい。
In the above case, in order to prevent heat dispersion in the heating section 4,
Cooling units 7 are installed on both sides of the heating unit 4. These outlines are enlarged and shown in FIG. This cooling section 7 injects vaporized cold air 8 of a cooling medium such as liquid nitrogen into the inside of the cooling section 7 and discharges it to the opposite side from the micro band heater 4, thereby minimizing heat dispersion from the heating section. This makes it possible to concentrate the applied stress at one point on the minimal heating section 4. The heating temperature (stretching temperature) for the fibrils is preferably about 100 to 130°C.

冷却部7における冷却温度は液体窒素の気化冷気8注入
量により調整することができる。
The cooling temperature in the cooling section 7 can be adjusted by the amount of vaporized cold air 8 injected from liquid nitrogen.

冷却温度は、分子量のunfoldingの緩和防止の
必要性などを考慮すると、0℃以下であることが好まし
い。
The cooling temperature is preferably 0° C. or lower in consideration of the need to prevent relaxation of molecular weight unfolding.

なお、連続成極小部加熱延伸に用いた上述装置は縦型の
装置においても同様に適用できる。
Note that the above-mentioned apparatus used for continuous minimization, small area heating and stretching can be similarly applied to a vertical apparatus.

上述の製造法において連続的に製造された繊維は分子構
造上も力学的特性においても非常に顕著なものとなると
いう結果を示した。
The results showed that the fibers produced continuously by the above-mentioned production method have very remarkable molecular structure and mechanical properties.

本発明の繊維の弾性率はゲル紡糸による繊維や従来のゾ
ーン延伸・熱処理による繊維より格段と向上し、100
〜250GPaを示した。
The elastic modulus of the fibers of the present invention is significantly improved compared to gel-spun fibers and conventional zone-stretched/heat-treated fibers.
It showed ~250 GPa.

[実施例] 次に、本発明の実施例を示す。[Example] Next, examples of the present invention will be shown.

尚、実施例中の機械的特性などの測定方法を次に示す。In addition, the measuring method of mechanical properties etc. in an Example is shown next.

(1)引張り弾性率、破断強度測定 引張り弾性率E、破断強度測定はテンシロンの条件を以
下のように定めて行った。
(1) Measurement of tensile modulus of elasticity and breaking strength Measurement of tensile modulus of elasticity E and breaking strength was carried out under the following Tensilon conditions.

試料長    20mm クロスヘッド引張り速度  20 mm/ min試料
の断面積は、リニアフォトセンサーを用いた。
Sample length: 20 mm Crosshead pulling speed: 20 mm/min A linear photosensor was used to measure the cross-sectional area of the sample.

電子式太さ計を用いて最低5階測定し、その平均をとっ
た。なお、破断強度σbは、チャフ切れが生じるため誤
差が大きく実際の値より小さく出ている可能性が強いの
で参考程度となろう。弾性率Eは、引張り試験より得ら
れた応力−歪曲線の初期勾配より算出した。
A minimum of five layers were measured using an electronic thickness gauge, and the average was taken. Note that the breaking strength σb is likely to be smaller than the actual value due to large errors due to chaff breakage, so it should be used as a reference only. The elastic modulus E was calculated from the initial slope of the stress-strain curve obtained from the tensile test.

(2)密度測定 密度測定は水−メタノール系密度勾配等を用いて25℃
において浮沈法により測定した。この際、試料はいくつ
かのむすび目をつくり、水−メタノール系混合溶液中で
アスピレータ−を使用して、約5分〜20分間にわたっ
てほぼ完全に気泡をぬいてから勾配管中に入れて測定を
行った。
(2) Density measurement Density measurement is performed at 25°C using a water-methanol density gradient, etc.
It was measured by the float-sink method. At this time, the sample is made into several knots, and bubbles are almost completely removed using an aspirator in a water-methanol mixed solution over a period of about 5 to 20 minutes, and then the sample is placed into a gradient tube for measurement. I did it.

結晶化度Xcは、測定された密度より下記の計算より求
めた。ポリエチレンの結晶、非晶密度をそれぞれ 、/
’C= 1.000.ん= 0.852(3)D S 
C測定 DSC測定は第二精工台の5SC1560S yste
mを用いて試料4〜9II1gをアルミニュウム製のパ
ンに入れて、昇温速度20℃/minで75°C−17
5°Cまでの温度範囲でI11定した。なお、基準物質
はインジウムで、その融点は156.6°C1融解7%
ΔH+nd= 13.79/ gとして校正した。
The crystallinity Xc was determined from the measured density by the following calculation. The crystalline and amorphous densities of polyethylene are respectively , /
'C=1.000. = 0.852(3)D S
C measurement DSC measurement is done using Daini Seikodai's 5SC1560S yste.
Using m, put 1 g of samples 4 to 9II into an aluminum pan and heat to 75°C-17 at a heating rate of 20°C/min.
I11 was determined over a temperature range up to 5°C. The reference material is indium, whose melting point is 156.6°C1 melting 7%.
It was calibrated as ΔH+nd=13.79/g.

なお、融解熱は、マイクロコンピュータAPPLE  
][のグラフインクダブレットシスラムのディジタイザ
を用いて、ピークの面積を求めることによって算出した
In addition, the heat of fusion is calculated using the microcomputer APPLE.
] [Calculated by determining the area of the peak using a Graph Ink doublet system digitizer.

DSC測定による結晶化度Xcは (4)複屈折測定 試料の複屈折は、コンペンセーターを備えた偏光顕微鏡
により、ナトリウムを光源として測定した。この際、試
料が太いため、干渉縞の本数か非常に多くなるので鋭い
ナイフで試料を斜め切り、その断面を偏光顕微鏡で観察
して複屈折を測定した。
Crystallinity Xc determined by DSC measurement (4) Birefringence measurement The birefringence of the sample was measured using a polarizing microscope equipped with a compensator using sodium as a light source. At this time, since the sample was thick, there would be a large number of interference fringes, so the sample was cut diagonally with a sharp knife and the cross section was observed with a polarizing microscope to measure birefringence.

実施例1 および比較例1〜4 第1図に示す装置を用いて極小部加熱延伸を行なった。Example 1 and Comparative Examples 1 to 4 Minimal area heating stretching was carried out using the apparatus shown in FIG.

原繊維は、約0.6 mmの直径の紡糸したままの状態
の物性値の異なる数種類の高密度ポリエチレン繊維を使
用した。加熱温度を120°Cとし、繊維の延伸は入=
20(倍)とした。原m Mはネッキングをともないな
がらスムーズに延伸された。
As the fibrils, several types of high-density polyethylene fibers having a diameter of about 0.6 mm and having different physical properties in the as-spun state were used. The heating temperature was 120°C, and the fiber drawing was
20 (times). Original m M was stretched smoothly with some necking.

その結果を第1表に示す。The results are shown in Table 1.

第1表 以下、試才)の物性値を示す。Table 1 Hereinafter, the physical property values of the sample are shown.

35の試料で、最大延伸倍率、複屈折率、結晶化度が最
も犬きくなり、そ、れにともない弾性率、破断強度が最
大値を示している。その活用Mw/Mnの値が3〜5の
原繊維か高密度ポリエチレンでは最適であると思われる
In sample No. 35, the maximum stretching ratio, birefringence, and crystallinity are the highest, and accordingly, the elastic modulus and breaking strength are the highest. Fibrils or high-density polyethylene having an Mw/Mn value of 3 to 5 are considered to be optimal.

なお、Mnの値では15万が弾性率、破断強度とも最大
値を示し、tα適であると+1!、nわれる。
In addition, for the value of Mn, 150,000 shows the maximum value for both elastic modulus and breaking strength, and if tα is suitable, +1! ,n be defeated.

これは通常の高密度ポリエチレンの値であり、超高分子
量ポリエチレンは、:(延伸では不向きである 試料Eは超高分子・′腎ポリエチレンのゲル紡糸で得た
サンプルである。
This is the value of normal high-density polyethylene, and ultra-high molecular weight polyethylene is: (Sample E, which is unsuitable for stretching, is a sample obtained by gel spinning of ultra-high molecular weight polyethylene.

実施例2゜ 延伸倍率(入)や延伸温度や巻き取りロールの速度(V
D )を変えた以外は実施例1と同様にして極小部加熱
延伸を行なった。
Example 2゜Stretching ratio (on), stretching temperature, winding roll speed (V
D) The same procedure as in Example 1 was carried out except that the shortest part was heated and stretched.

各延伸条件において室温で測定した動的弾性率E’、E
’を延伸条件に対してプロットした図をそれぞれ第3図
、第4図に示す。第3図に示した室温での貯蔵弾性率E
′はテンシロンによる応力−歪曲線の初期勾配より求め
た引張りりl外車Eに対応する。
Dynamic elastic modulus E', E measured at room temperature under each stretching condition
Figures 3 and 4 are diagrams in which ' is plotted against the stretching conditions, respectively. Storage modulus E at room temperature shown in Figure 3
' corresponds to the tensile force E obtained from the initial slope of the stress-strain curve due to Tensilon.

特に、第3図、第4図において室温での両弾性率E、E
が各延伸倍率に対して延伸温度が110℃〜120℃付
近でピークを持つことかわかる。−報、テンシロンによ
る引張り試験により得られた応力−歪曲線の初期勾配よ
り求めた引張り弾性率Eを各延伸条件に対してプロント
した図を第5図に示す。
In particular, in Figures 3 and 4, both elastic moduli E and E at room temperature
It can be seen that the stretching temperature has a peak around 110°C to 120°C for each stretching ratio. FIG. 5 shows a plot of the tensile modulus E determined from the initial slope of the stress-strain curve obtained by the Tensilon tensile test for each stretching condition.

第5図に示す引張り弾性率Eの各延伸条件にネjする拳
動は、動的りi性率E’ 、 E″の場合とほぼ一致し
ている。この場合も120°C付近の延伸温度付近で2
0倍に延伸させた試料の弾性率は約152GPaと引張
り弾性率としてはかなり高い値を示している。
The fist movements for each stretching condition with a tensile modulus E shown in FIG. 2 around the temperature
The elastic modulus of the sample stretched 0 times is about 152 GPa, which is a fairly high value as a tensile elastic modulus.

[発明の効果] 本発明によれば機械的特性の格段に優れた合成樹脂製繊
維を得ることができ、その工業的価値は非常に高いもの
がある。
[Effects of the Invention] According to the present invention, synthetic resin fibers with extremely excellent mechanical properties can be obtained, and their industrial value is extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に使用される製造装置の一例原理図、第
2図は同拡大部分説明図、第3図〜第5図はそれぞれ本
発明の実施例の結果を示すグラフである。 l・・・供給ロール 2・・争巻き取りロール 3・・・原繊維 4・・・加熱部(極小バンドヒーター)7・・・冷却部 特許出願人  昭和電工株式会社 代理人弁理士  佐 藤 良 博 第3図 葡イ申 9L/l(’(1) 第4図 90  100 110  /2o  t3o  RL
O)(イ中 ”/A  &  (’υ 第5図 100     +20     140延神混復(°
C)
FIG. 1 is a principle diagram of an example of a manufacturing apparatus used in the present invention, FIG. 2 is an enlarged partial explanatory diagram of the same, and FIGS. 3 to 5 are graphs showing the results of examples of the present invention. l... Supply roll 2... Take-up roll 3... Raw fiber 4... Heating section (miniature band heater) 7... Cooling section Patent applicant Ryo Sato, patent attorney for Showa Denko K.K. Figure 3 Grape Ishin 9L/l ('(1) Figure 4 90 100 110 /2o t3o RL
0)
C)

Claims (1)

【特許請求の範囲】 原繊維を緊張下にその極小部を加熱延伸し て成る繊維であって、原繊維が分子量Mw14〜20万
、分子量分布Mw/Mn3〜5の高密度ポリエチレン樹
脂より成り、繊維の弾性率が100〜250GPaの高
弾性高強度繊維。
[Scope of Claims] A fiber made by heating and stretching the smallest part of a fibril under tension, the fibril being made of a high-density polyethylene resin with a molecular weight Mw of 140,000 to 200,000 and a molecular weight distribution Mw/Mn of 3 to 5, Highly elastic, high-strength fiber with an elastic modulus of 100 to 250 GPa.
JP26737785A 1985-11-29 1985-11-29 Highly elastic yarn Pending JPS62133106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26737785A JPS62133106A (en) 1985-11-29 1985-11-29 Highly elastic yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26737785A JPS62133106A (en) 1985-11-29 1985-11-29 Highly elastic yarn

Publications (1)

Publication Number Publication Date
JPS62133106A true JPS62133106A (en) 1987-06-16

Family

ID=17443992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26737785A Pending JPS62133106A (en) 1985-11-29 1985-11-29 Highly elastic yarn

Country Status (1)

Country Link
JP (1) JPS62133106A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190044497A (en) * 2017-10-20 2019-04-30 닛뽄 가야쿠 가부시키가이샤 Sealant for display and liquid crystal sealing agent using the same, and liquid crystal display cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190044497A (en) * 2017-10-20 2019-04-30 닛뽄 가야쿠 가부시키가이샤 Sealant for display and liquid crystal sealing agent using the same, and liquid crystal display cell
JP2019078785A (en) * 2017-10-20 2019-05-23 日本化薬株式会社 Sealant for display

Similar Documents

Publication Publication Date Title
JP3673401B2 (en) Polyolefin molded products
KR100909559B1 (en) High strength polyethylene fiber
JPS63528B2 (en)
US7785709B2 (en) Spinning poly(trimethylene terephthalate) yarns
JP2021120501A (en) Method for producing high-strength polyethylene terephthalate raw yarn
CA2088398A1 (en) Polyamide monofilament suture and process for its manufacture
KR102127495B1 (en) Poly(ethyleneterephthalate) Yarn, Method for Manufacturing The Same, and Tire Cord Manufactured Using The Same
JP2002503295A (en) Thermotropic aromatic polyester (amide) monofilament
JP2005179823A (en) Method for producing polyester fiber and spinning cap for melt spinning
JPS62133106A (en) Highly elastic yarn
JP3832631B2 (en) High strength polyethylene fiber
JP4791844B2 (en) Polyester fiber
EP3492635B1 (en) Polyolefin fiber and method for producing same
Yu et al. Influence of drawing and annealing on the crystallization, viscoelasticity, and mechanical properties for middle-molecular-weight polyethylene fishing monofilaments
JP2010242025A (en) Polyolefin molded product, and method for producing the same
JP3259483B2 (en) High strength polyvinylidene fluoride monofilament and method for producing the same
Mackley et al. Die-free spinning: A method for producing high performance polyethylene fibres and tapes
JPS63315608A (en) Polyester fiber
JP2000027029A (en) Production of low shrinkage polyester yarn having high toughness
JPS63230321A (en) Manufacture of high density polyethylene film
JPS62141146A (en) Apparatus for continuous production of highly elastic fiber
JP3036181B2 (en) Method for producing high-strength polyvinylidene fluoride monofilament
EP4190953A1 (en) Polyethylene yarn having improved post-processability, and fabric comprising same
EA014763B1 (en) Endless shaped article and a process for making the same
JPS63249732A (en) Zone drawing method of fiber made of thermoplastic resin