JPS63228789A - Photo-semiconductor and manufacture thereof - Google Patents

Photo-semiconductor and manufacture thereof

Info

Publication number
JPS63228789A
JPS63228789A JP62062928A JP6292887A JPS63228789A JP S63228789 A JPS63228789 A JP S63228789A JP 62062928 A JP62062928 A JP 62062928A JP 6292887 A JP6292887 A JP 6292887A JP S63228789 A JPS63228789 A JP S63228789A
Authority
JP
Japan
Prior art keywords
polyimide resin
convex lens
semiconductor
resin
optical output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62062928A
Other languages
Japanese (ja)
Inventor
Seiji Onaka
清司 大仲
Hiraaki Tsujii
辻井 平明
Yoichi Sasai
佐々井 洋一
Atsushi Shida
紫田 淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62062928A priority Critical patent/JPS63228789A/en
Publication of JPS63228789A publication Critical patent/JPS63228789A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify the coupling of a semiconductor laser with an optical fiber and to improve the reproducibility of the coupling efficiency or the like by providing a resin shaped in a convex lens for focussing the optical output and controlling the emission direction in the optical output section of the semiconductor laser. CONSTITUTION:The emitted light from the resonator surface is upwardly reflected at a reflecting surface which is inclined by about 45 deg. with respect to the principal surface of a semiconductor substrate 1 positioned in front, and is focussed by a polyimide resin 10 of the shape of a convex lens formed between the resonator surface and the reflecting surface. And the emission direction of the focussed optical output is made variable by changing the position of the polyimide resin 10, whereby the oblique angle of the reflecting surface becomes constant. The polyimide resin 10 is shaped into a convex lens by selectively forming a photo resist 53 on the surface of a polyimide resin 52 formed on a semiconductor substrate 51, and isotropically etching the polyimide resin 52 and the photo resist 53 in an oxygen plasma atmosphere.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光フアイバ通信などの光源として用いる半導
体レーザ(Ll))や発光ダイオード(LED)などの
光半導体装置およびその製造方法に関するっ 従来の技術 ム5GmAg /GaAsのダブルへゾロ構造の半導体
レーザが発明されて以来、半導体レーザの性能は急速な
進歩を遂げ、現在、発振しきい値が数10mA 、寿命
が数10万時間といった高性能かつ高信頼性のものが市
販されるにまで至っている。半導体レーザの応用面では
CD(コンパクト・ディスク)や光ディスクなどのよう
に大容量の情報を小さな媒体に高密度で記録・再生する
ような電子機器が市販されはじめ文いる。また、光フア
イバー通信の光源としても半導体レーザが用いられ、都
市間を光ファイバーでつないで情報の伝送を行なったり
、LAN(ローカル・エリア・ネットワーク)などのよ
うに、工場内やオフィス内の情報の伝達に用いられたり
するなど、半導体レーザの応用範囲はしだいに拡大しつ
つある。このように有用な半導体レーザの構造として従
来より種々の構造が提案されている。たとえばS、M、
Sze著の半導体デバイスの物理(Physics o
f Sem1−conductor Devices 
)の第2版1981年JohnWiley & 5on
s  出版の726頁にあるように種種の構造がある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to optical semiconductor devices such as semiconductor lasers (Ll) and light emitting diodes (LEDs) used as light sources in optical fiber communications, etc., and to conventional techniques for manufacturing the same. Since the invention of the 5GmAg/GaAs double helix structure semiconductor laser, the performance of semiconductor lasers has progressed rapidly, and today, high-performance and high-performance lasers with oscillation thresholds of several tens of mA and lifetimes of several hundred thousand hours have been made. Reliable products have even reached the point where they are commercially available. In terms of applications for semiconductor lasers, electronic devices such as CDs (compact discs) and optical discs that record and reproduce large amounts of information on small media at high density are beginning to become commercially available. Semiconductor lasers are also used as light sources for optical fiber communications, and they are used to connect cities with optical fibers to transmit information, and to transmit information within factories and offices as in LAN (Local Area Network). The range of applications for semiconductor lasers is gradually expanding, including being used for transmission. As described above, various structures have been proposed as useful semiconductor laser structures. For example, S, M,
Physics of Semiconductor Devices by Sze
f Sem1-conductor Devices
) 2nd edition 1981 John Wiley & 5on
As shown on page 726 of S Publishing, there are various types of structures.

これらの半導体レーザはいずれもストライブ状の電流注
入部を有し、このストライブの両端にへき開による一対
の共振器面を備えている。しかし、このへき開の工程に
おいて、共振器の長さを再現性良く一定にしたり、また
歩留り良く良好な共振器面(へき開面)を得ることは困
難であった。また、これらの半導体レーザはへき開を行
なわないと光出力、量子効率や発振しきい値などを評価
することができないので半導体レーザの良品と不良を判
別するだめの検査に時間がかかり量産性に乏しかった。
Each of these semiconductor lasers has a stripe-shaped current injection portion, and a pair of resonator surfaces formed by cleavage are provided at both ends of the stripe. However, in this cleavage process, it is difficult to make the length of the resonator constant with good reproducibility or to obtain a good resonator surface (cleavage surface) with a high yield. In addition, it is not possible to evaluate the optical output, quantum efficiency, oscillation threshold, etc. of these semiconductor lasers unless they are cleaved, so the inspection to distinguish between good and bad semiconductor lasers takes time and is difficult for mass production. Ta.

また、同一基板上に複数個のレーザをアレイ状に形成す
ることも困難であった。
Furthermore, it is difficult to form a plurality of lasers in an array on the same substrate.

そこで、これらの問題を解決する方法として、たとえば
アプライド・フィツクス・ンターズ(Applied 
Physics Letters)の第46巻第2号1
16頁〜117頁(1985年)にあるように半導体レ
ーザの共振器を化学エツチングによシ形成し、マストラ
ンスポート法を用いて出射光を基板の表面に垂直に出射
するための基板表面に対して46°に傾いた凹面の反射
板を設ける方法がZ、L、L工aU 等によって提案さ
れている(上記文献の第1図参照)。この方法によれば
半導体レーザを形成するのにへき開を必要とせず、光出
力が基板表面に対して垂直に出射するのでウニノー−の
ままで光出力や量子効率、発振しきい埴などの特性が評
価できるので検査に要する時間が短縮される。また、歩
留りおよび再現性の悪いへき開工程が不要になるといっ
た利点がある。さらに、反射板が凹面鏡であるので出射
光が集束されるといった利点もある。
Therefore, as a way to solve these problems, for example, Applied Fixtures
Physics Letters, Volume 46, No. 2, No. 1
As shown on pages 16 to 117 (1985), a semiconductor laser cavity is formed by chemical etching, and a mass transport method is used to form a semiconductor laser cavity on the substrate surface in order to emit the emitted light perpendicular to the substrate surface. On the other hand, a method of providing a concave reflecting plate tilted at 46° has been proposed by Z, L, L, et al. (see FIG. 1 of the above-mentioned document). According to this method, cleavage is not required to form a semiconductor laser, and the optical output is emitted perpendicular to the substrate surface, so characteristics such as optical output, quantum efficiency, and oscillation threshold can be maintained as is. Since it can be evaluated, the time required for inspection is shortened. Further, there is an advantage that a cleavage step with poor yield and reproducibility is not required. Furthermore, since the reflecting plate is a concave mirror, there is an advantage that the emitted light is focused.

発明が解決しようとする問題点 上述のように46°反射面を備えた半導体レーザは種々
の利点を有するが素子の製作工程において次のような問
題点を有している。
Problems to be Solved by the Invention Although the semiconductor laser having the 46° reflection surface has various advantages as described above, it also has the following problems in the manufacturing process of the device.

(1)  マストランスポートにより形成する45°反
射面を製作する際の再現性が良くない。すなわち発明者
らの実験によると、マストランスポートはマストランス
ポートを行なう時の基板の表面状態によって大きく影響
を受ける。従って反射面の角度を46°に再現性良く作
成することは困難であった。よって、半導体基板の主面
に対する出射光の出射角を再現性良くすることは困難で
あり、出射光を光ファイバーに結合するときの結合効率
がばらついてしまっていた。
(1) The reproducibility when manufacturing a 45° reflective surface formed by mass transport is poor. That is, according to the inventors' experiments, mass transport is greatly influenced by the surface condition of the substrate at the time of mass transport. Therefore, it was difficult to create a reflective surface having an angle of 46° with good reproducibility. Therefore, it is difficult to improve the reproducibility of the output angle of the output light with respect to the main surface of the semiconductor substrate, and the coupling efficiency when coupling the output light to the optical fiber varies.

(2)共振器面と46°反射面との間の溝にゴミがたま
りやすく、ゴミによって出射光が散乱されたりする。
(2) Dust tends to accumulate in the groove between the resonator surface and the 46° reflection surface, and the emitted light is scattered by the dust.

問題点を解決するための手段 本発明は上述のような従来の半導体レーザにおける問題
点に鑑みてなされたもので、半導体基板の主面に対して
ほぼ垂直に光出力を出射する表面に凸レンズ状の樹脂を
備えた構成を有するものである。
Means for Solving the Problems The present invention has been made in view of the problems in conventional semiconductor lasers as described above. It has a structure including resin.

作用 上述のような構成によって次のような作用効果を有する
。(1)凸レンズ状の樹脂で出射光を集束する。(2)
凸レンズの位置と光出力が出射される位置との相対的な
位置関係によって出射角を可変できるので目的に応じて
出射角を自由に設定できる。
Effects The above-described configuration has the following effects. (1) Outgoing light is focused with a convex lens-shaped resin. (2)
Since the output angle can be varied depending on the relative positional relationship between the position of the convex lens and the position from which the light output is emitted, the output angle can be freely set according to the purpose.

(3)共振器面と反射板との間の溝が樹脂で埋められて
いるのでゴミがたまるようなこともない。
(3) Since the groove between the resonator surface and the reflection plate is filled with resin, no dust will accumulate.

実施例 本発明をInGaAg P  半導体レーザに応用した
場合の一実施例について説明する。第1図に本発明の一
実施例の半導体レーザの断面図を示す。第1図において
、1は半絶縁性InP基板、2はn+型InP第1クラ
ンド層、3はバンドギャップ波長λg=L3pmのIn
GaAs P  活性層、4はp型InGaAs P光
導波層、6はp+型InP第2クラッド層、eはp 型
I nGaムSコンタクト層、7および8は共振器面の
反射率を高めるためのそれぞれSiO□膜および非晶質
S1膜、10idポリイミド樹脂である。第1図で点線
は光出力を示し、共振器面から出射した光は共振器面の
前方にある半導体基板の主面に対してほぼ45°の傾き
をもった反射面で上方に反射される。本発明においては
第1図に示したように凸レンズ状のポリイミド樹脂10
が、共振器面と反射面との間に形成されているので、出
射光が集束される。レーザの共謳器端面から出射する光
は約30°の拡がり角を有しているがポリイミド樹脂1
0によって集束され、約10°の拡がり角になる。また
、第1図かられかるように共振器面と反射面との間に形
成された溝にはポリイミド樹脂10が埋め込まれている
ので、溝にゴミがたまることもない。
EXAMPLE An example in which the present invention is applied to an InGaAg P semiconductor laser will be described. FIG. 1 shows a cross-sectional view of a semiconductor laser according to an embodiment of the present invention. In FIG. 1, 1 is a semi-insulating InP substrate, 2 is an n+ type InP first ground layer, and 3 is an InP substrate with a bandgap wavelength λg=L3pm.
GaAs P active layer, 4 is a p-type InGaAs P optical waveguide layer, 6 is a p + type InP second cladding layer, e is a p-type InGa S contact layer, 7 and 8 are layers for increasing the reflectance of the cavity surface. They are a SiO□ film, an amorphous S1 film, and a 10id polyimide resin, respectively. In Figure 1, the dotted line indicates the optical output, and the light emitted from the resonator surface is reflected upward by a reflective surface tilted at approximately 45 degrees with respect to the main surface of the semiconductor substrate in front of the resonator surface. . In the present invention, a convex lens-shaped polyimide resin 10 is used as shown in FIG.
is formed between the resonator surface and the reflective surface, so the emitted light is focused. The light emitted from the end face of the laser resonator has a divergence angle of about 30°, but polyimide resin 1
0 and a divergence angle of about 10°. Further, as shown in FIG. 1, since polyimide resin 10 is embedded in the groove formed between the resonator surface and the reflective surface, no dust will accumulate in the groove.

本発明は上述のようにポリイミド樹脂10によって集束
した光出力を得ることができるばかシでなく、光出力の
出射方向を可変にすることができる。その様子を第2図
a、b、cに模式的に示す。
The present invention is not limited to being able to obtain a focused light output using the polyimide resin 10 as described above, but it is also possible to make the output direction of the light output variable. The situation is schematically shown in FIGS. 2a, b, and c.

第2図a、b、cにおいて21は半導体基板、22は活
性層、23はクラッド層、24Vi凸レンズ状のポリイ
ミド樹脂である。点線は光出力を示すが第2図a、b、
cのようにポリイミド樹脂24の位置を変えることによ
って光出力の出射方向が変えられることがわかる。たと
えば光ファイバーを半導体基板21の主面に対して垂直
に配置した場合、半導体基板21の主面に垂直に光出力
を出射すると光ファイバーの端面で反射された光が共撮
器端面に戻り雑音の発生の原因となるので光出力は垂直
ではなく傾斜しているほうが良い。
In FIGS. 2a, b, and c, 21 is a semiconductor substrate, 22 is an active layer, 23 is a cladding layer, and 24Vi convex lens-shaped polyimide resin. The dotted lines indicate the light output, but in Figure 2 a, b,
It can be seen that the direction of light output can be changed by changing the position of the polyimide resin 24 as shown in c. For example, when an optical fiber is arranged perpendicularly to the main surface of the semiconductor substrate 21 and the optical output is emitted perpendicularly to the main surface of the semiconductor substrate 21, the light reflected from the end face of the optical fiber returns to the end face of the common camera and generates noise. Therefore, it is better to have the light output at an angle rather than vertically.

また、あまり光出力が光ファイバーに対して傾斜しすぎ
ると結合効率が悪くなってしまう。本発明の場合、反射
面をたとえば(111)人血とした場合、反射面の傾き
角を一定にすることができるのでポリイミド樹脂24の
位置合わせ全精密に行なうことによって光出力の出射方
向をたとえば半導体基板21の主面の法線に対して6°
傾くような光出力を再現性良く得ることが可能である。
Furthermore, if the optical output is too inclined with respect to the optical fiber, the coupling efficiency will deteriorate. In the case of the present invention, when the reflective surface is made of (111) human blood, for example, the inclination angle of the reflective surface can be made constant, so by precisely aligning the polyimide resin 24, the direction of light output can be adjusted, for example. 6° to the normal to the main surface of the semiconductor substrate 21
It is possible to obtain tilted optical output with good reproducibility.

第3図にポリイミド樹脂を凸レンズ状に加工するための
方法を示す。まず第3図乙に示すように基板51の表面
に形成されたポリイミド樹脂52の表面にホトレジスト
63を選択的に形成する。
FIG. 3 shows a method for processing polyimide resin into a convex lens shape. First, as shown in FIG. 3B, a photoresist 63 is selectively formed on the surface of the polyimide resin 52 formed on the surface of the substrate 51. Then, as shown in FIG.

次にこの試料を酸素プラズマの雰囲気中に入れポリイミ
ド樹脂52およびホトレジスト53をエツチングする。
Next, this sample is placed in an oxygen plasma atmosphere and the polyimide resin 52 and photoresist 53 are etched.

このエツチングに際したとえば雰囲気の圧力を0,5 
Torrにすると、ポリイミド樹脂62およびホトレジ
スト53が等方的にエツチングされ、第3図すに示した
ようにポリイミド樹脂62が凸レンズ状に加工される。
During this etching, the pressure of the atmosphere is reduced to 0.5, for example.
When the temperature is set to Torr, the polyimide resin 62 and the photoresist 53 are etched isotropically, and the polyimide resin 62 is processed into a convex lens shape as shown in FIG.

発明の効果 以上本発明は、半導体レーザの光出力部に凸レンズ状の
樹脂を設けるという構成により、光出力を集束させ、し
かも光出力の出射方向を制御することが可能である。従
って、半導体レーザと光ファイバーの結合が容易になり
結合効率などの再現性も向上するので工業的価値は高い
Effects of the Invention According to the present invention, by providing a resin in the shape of a convex lens in the light output section of a semiconductor laser, it is possible to focus the light output and control the output direction of the light output. Therefore, the coupling between the semiconductor laser and the optical fiber is facilitated, and the reproducibility of the coupling efficiency and the like is improved, so the industrial value is high.

【図面の簡単な説明】 第1図は本発明の一実施例の半導体レーザを示す断面図
、第2図は同レーザにおける光出力の出射方向の制御方
法を説明するための断面図、第3図は同レーザの製造方
法におけるポリイミド樹脂を凸レンズ状に加工する方法
を説明するための工程断面図である。 10.24.52・・・・・・ポリイミド樹脂、63・
・・・・・ホトレジスト。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名1−
一半艶球+trpP革1久 to−°−丁Jリイ汀#八暑
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a sectional view showing a semiconductor laser according to an embodiment of the present invention, FIG. The figure is a process sectional view for explaining a method of processing a polyimide resin into a convex lens shape in the same laser manufacturing method. 10.24.52...Polyimide resin, 63.
...Photoresist. Name of agent: Patent attorney Toshio Nakao and 1 other person1-
One and a half shiny ball + trpP leather 1ku to - ° - Ding J Lii 汀 # 8 heat

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板の主面に対してほぼ垂直に光出力を出
射する表面に凸レンズ状の樹脂を備えてなる光半導体装
置。
(1) An optical semiconductor device comprising a convex lens-shaped resin on a surface that emits optical output substantially perpendicularly to the main surface of a semiconductor substrate.
(2)半導体基板の主面に樹脂を形成する工程と、前記
樹脂の表面にホトレジストを選択的に形成する工程と、
前記樹脂と前記ホトレジストを酸素プラズマでエッチン
グして凸レンズ状に加工する工程とを備えてなる光半導
体装置の製造方法。
(2) forming a resin on the main surface of the semiconductor substrate; selectively forming a photoresist on the surface of the resin;
A method for manufacturing an optical semiconductor device, comprising the step of etching the resin and the photoresist with oxygen plasma to form a convex lens shape.
JP62062928A 1987-03-18 1987-03-18 Photo-semiconductor and manufacture thereof Pending JPS63228789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62062928A JPS63228789A (en) 1987-03-18 1987-03-18 Photo-semiconductor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62062928A JPS63228789A (en) 1987-03-18 1987-03-18 Photo-semiconductor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS63228789A true JPS63228789A (en) 1988-09-22

Family

ID=13214429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62062928A Pending JPS63228789A (en) 1987-03-18 1987-03-18 Photo-semiconductor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS63228789A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01189978A (en) * 1988-01-25 1989-07-31 Nec Corp Luminous surface type semiconductor laser
US8350238B2 (en) 2004-12-30 2013-01-08 E.I. Du Pont De Nemours And Company Device patterning using irradiation
JP2017028125A (en) * 2015-07-23 2017-02-02 日本電信電話株式会社 Semiconductor laser element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01189978A (en) * 1988-01-25 1989-07-31 Nec Corp Luminous surface type semiconductor laser
US8350238B2 (en) 2004-12-30 2013-01-08 E.I. Du Pont De Nemours And Company Device patterning using irradiation
JP2017028125A (en) * 2015-07-23 2017-02-02 日本電信電話株式会社 Semiconductor laser element

Similar Documents

Publication Publication Date Title
JP2001281473A (en) Photonics crystal and method for manufacturing the same, optical module as well as optical system
JPH0555703A (en) Plane emission laser device
KR100731241B1 (en) Semiconductor laser device and method of producing semiconductor laser
US4971927A (en) Method of making embedded integrated laser arrays and support circuits
JP2001244570A (en) Semiconductor laser, laser coupler data regenerating device, data recording device and method of manufacturing semiconductor laser
GB2181892A (en) A semi-conductor laser
US5438208A (en) Mirror coupled monolithic laser diode and photodetector
JP2001028456A (en) Semiconductor light emitting device
JPS63228789A (en) Photo-semiconductor and manufacture thereof
JPS60124983A (en) Semiconductor laser
JPH0337877B2 (en)
EP0332723A1 (en) High-power semiconductor diode laser
CN113812049A (en) Distributed feedback laser device for photonic integrated circuit and improvement and manufacturing method thereof
JP2798720B2 (en) Semiconductor laser array
JP2532449B2 (en) Semiconductor laser device
JPH0319292A (en) Semiconductor laser
JP2546150B2 (en) Three-dimensional cavity surface emitting laser
JP2007142227A (en) Semiconductor laser device
JPS63228790A (en) Semiconductor light emitting device and manufacture thereof
JPH06326409A (en) Surface emission element
JPS62219684A (en) Distributed feedback type semiconductor laser
JP2003347649A (en) Light emitting device and its producing process
JPH10290052A (en) Semiconductor laser
JP2003222762A (en) Optical module
JP3536835B2 (en) Light emitting device and manufacturing method thereof