JPS63228082A - Method for diagnosing deterioration of zinc oxide type lightning arrester - Google Patents
Method for diagnosing deterioration of zinc oxide type lightning arresterInfo
- Publication number
- JPS63228082A JPS63228082A JP18475187A JP18475187A JPS63228082A JP S63228082 A JPS63228082 A JP S63228082A JP 18475187 A JP18475187 A JP 18475187A JP 18475187 A JP18475187 A JP 18475187A JP S63228082 A JPS63228082 A JP S63228082A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- current
- lightning arrester
- waveform
- arrester
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000006866 deterioration Effects 0.000 title claims description 66
- 238000000034 method Methods 0.000 title claims description 26
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 title claims description 24
- 239000011787 zinc oxide Substances 0.000 title claims description 12
- 239000002131 composite material Substances 0.000 claims abstract description 39
- 239000013598 vector Substances 0.000 claims abstract description 18
- 239000004020 conductor Substances 0.000 claims abstract description 9
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 4
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 4
- 238000003745 diagnosis Methods 0.000 claims description 16
- 238000002405 diagnostic procedure Methods 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 abstract description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 6
- 229920006395 saturated elastomer Polymers 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 20
- 230000008859 change Effects 0.000 description 9
- 238000005259 measurement Methods 0.000 description 6
- 230000018199 S phase Effects 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 5
- 239000012212 insulator Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 229910001219 R-phase Inorganic materials 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Testing Electric Properties And Detecting Electric Faults (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、1個の、または複数個直列に接続された、
酸化亜鉛を主成分とする非直線抵抗索子を容器内に収容
してなり三相避雷器の各相を構成する避雷器を通過して
いる、避雷器端子電圧と同相の抵抗分電流を用いて前記
非直線抵抗素子の劣化の有無を診断する、酸化亜鉛形避
雷器の劣化診断方法に関する。[Detailed Description of the Invention] [Industrial Application Field] This invention provides one or more serially connected
A non-linear resistance cord whose main component is zinc oxide is housed in a container, and a resistive current in the same phase as the terminal voltage of the arrester is passed through the arrester constituting each phase of the three-phase arrester. The present invention relates to a method for diagnosing deterioration of a zinc oxide lightning arrester, which diagnoses the presence or absence of deterioration of a linear resistance element.
酸化亜鉛を主成分とする非直線抵抗素子(以下単に素子
と記す)を1個もしくは複数個直列に容器内に収容して
なる避雷器においては、素子の特性により、常時の電圧
印加のもとで流れうる電流が極めて小さく、通常数10
μ八オーダであって、この程度の電流では正常な素子の
温度上昇や、この温度上昇による素子の劣化は起こり得
ないため、非直線抵抗素子と直列の放電ギャップは通常
省略されたものが実用されており、このため、非直線抵
抗素子には常時微電流が流れている。In a lightning arrester that consists of one or more non-linear resistance elements (hereinafter simply referred to as elements) containing zinc oxide as a main component housed in a container in series, due to the characteristics of the elements, it is difficult to resist under constant voltage application. The current that can flow is extremely small, usually several 10
The current is on the order of μ8, and because this level of current cannot cause a normal element temperature rise or element deterioration due to this temperature rise, the discharge gap in series with the nonlinear resistance element is usually omitted in practical use. Therefore, a small current always flows through the nonlinear resistance element.
しかし、変型なる異常電圧のもとての動作や気象条件に
基づ(熱的サイクルなどにより素子は劣化を生ずること
があり、この劣化が進行すると系統での常時の相電圧に
も耐えられなくなり、素子が破壊して系統運転に支障を
来たす、このため劣化の初期状態を判別できる抵抗分電
流を運転中常時監視可能な監視方法が望まれている。However, depending on the operation and weather conditions (thermal cycles, etc.) that cause the abnormal voltage due to deformation, the element may deteriorate, and as this deterioration progresses, it will no longer be able to withstand the constant phase voltage in the grid. However, the elements may be destroyed and the system operation may be disrupted.Therefore, there is a need for a monitoring method that can constantly monitor the resistance current during operation to determine the initial state of deterioration.
第15図に素子の電圧−電流特性を示す0図において実
M25は素子が正常な状態のときの特性を示し、一点1
1!35は劣化が進行した状態のときの特性を示す、こ
こで横軸の電流は、通常円板状に形成された素子の両端
面間の静電容量に基づく容量性電流を含まない抵抗分電
流のみを示す、系統の相電圧をVnとすると、この電圧
のもとて素子に流れる電流は素子の温度により差が生ず
るが、素子が劣化していると同一温度のもとでも流れる
電流に大きな差が生じ、たとえば素子の温度を08とす
ると、素子が正常な状態のときに流れる電流I□は!、
と大きく変化する。従って常時流れている抵抗分電流を
測定し、測定時の温度に相当した、正常状態の素子の電
流と比較することにより、劣化の有無を正しく判定する
ことができる。なお、図において、温度θの大小関係は
θ、〉θ、である。In Figure 15, which shows the voltage-current characteristics of the element, actual M25 shows the characteristics when the element is in a normal state, and each point
1!35 shows the characteristics when the deterioration has progressed. Here, the current on the horizontal axis is the resistance that does not include the capacitive current based on the capacitance between both end faces of the element, which is usually formed in a disk shape. Let Vn be the phase voltage of the system, which shows only the divided current, and the current that flows through the elements under this voltage varies depending on the temperature of the element, but if the element is deteriorated, the current that flows even at the same temperature. For example, if the temperature of the element is 08, the current I□ that flows when the element is in a normal state is ! ,
changes greatly. Therefore, by measuring the resistance current that is constantly flowing and comparing it with the current of the element in a normal state, which corresponds to the temperature at the time of measurement, it is possible to accurately determine the presence or absence of deterioration. In addition, in the figure, the magnitude relationship of temperature θ is θ, >θ.
ところで、避雷器と直列に接続された電流検出器で避雷
器を通過する電流を測定すると、避雷器に印加されてい
る電圧が運転周波数の交流であるため、抵抗分電流のほ
かに容量分電流が合まれる。By the way, if you measure the current passing through the arrester with a current detector connected in series with the arrester, the voltage applied to the arrester is alternating current at the operating frequency, so the capacitance current will be added to the resistance current. It will be done.
第16図に上端と下端とがそれぞれ線路と大地とに接続
された避雷器2を示す、この避雷器2は素子を収容する
容器が碍子である場合には、碍子と素子とを含むものと
し、容器が接地された金属である場合には素子のみを示
すものとする。第17図は第16図に示す避雷器の電気
的等価回路を示す、素子は通常円板状に形成され、その
両端面の間に比較的大きい静電容量Cを形成するから、
避雷器を通過する電流は、素子の温度上昇をもたらす抵
抗分電流■えと前記静電容量を通過する容量分電流!、
とのベクトル和となり、素子の劣化の判別には、このベ
クトル和の中から抵抗分電流■、のみを抽出する必要が
ある8図中、Lは避雷器の接地導体のインダクタンスを
示す、なお、避雷器の容器が碍子である場合には、前記
容量分電流l、の中には碍子を静電容量とする容量分電
流も合まれる。FIG. 16 shows a surge arrester 2 whose upper and lower ends are connected to the line and the ground, respectively. If the container housing the element is an insulator, this arrester 2 shall include the insulator and the element. If it is a grounded metal, only the element is shown. FIG. 17 shows an electrical equivalent circuit of the lightning arrester shown in FIG. 16. Since the element is usually formed into a disk shape and forms a relatively large capacitance C between its two end faces,
The current that passes through the lightning arrester is the resistance current that causes the temperature of the element to rise ■Well, the capacitance current that passes through the capacitance! ,
In order to determine the deterioration of the element, it is necessary to extract only the resistance component current ■ from this vector sum. When the container is an insulator, the capacitance current l includes the capacitance current l, which has the capacitance of the insulator.
第18図に従来の抵抗分電流の測定方法を示し、第19
図に第18図の方法で測定された電圧、電流の波形を示
す、母線または送電tIA1に接続された避雷器2は電
流検出器4を介して接地されるとともに、前記母線また
は送電線にはさらに電圧検出器3が接続されて他端が接
地されている。電流検出器4.電圧検出器3からの出力
はそれぞれ増幅器6.7を介して演算器8に入力され、
抵抗分電流の算出を行う、この抵抗分電流の算出は、第
19図に示すように、電流検出器4で計測された全電流
!、から電圧検出器3で計測された電圧Vの微分波形を
波高値が第17図の■、波高値と一致するように増幅し
て差し引くことにより行われる。このようにして得られ
た抵抗分電流Imを、この測定と並行して測定された素
子温度における正常な抵抗分電流と比較して劣化の有無
を判定する。Figure 18 shows the conventional resistance current measurement method, and Figure 19 shows the conventional method for measuring resistance component current.
The figure shows voltage and current waveforms measured by the method shown in Figure 18. The lightning arrester 2 connected to the bus or power transmission line tIA1 is grounded via a current detector 4, and the bus or power transmission line is further connected to A voltage detector 3 is connected and the other end is grounded. Current detector 4. The outputs from the voltage detectors 3 are input to the arithmetic unit 8 via amplifiers 6 and 7, respectively.
The calculation of the resistance current is calculated based on the total current measured by the current detector 4, as shown in FIG. This is done by amplifying and subtracting the differential waveform of the voltage V measured by the voltage detector 3 from , so that the peak value matches the peak value shown in FIG. The resistance current Im thus obtained is compared with a normal resistance current at the element temperature measured in parallel with this measurement to determine whether there is any deterioration.
ところが、この方法を用いて三相送電線に接続された3
相の避雷器の劣化診断のための自動監視を行おうとする
と、第20図に示すように、増幅器687および演算器
8は共用するとしても三相分の電流検出器41.42.
43と電圧検出器31.32.33とを必要とするとと
もに、同じ相の電流検出値と電圧検出値とをそれぞれ増
幅器6.7へ入力することができるよう、多くの切換え
接点を持った切換え器5を必要とする。なお、素子の劣
化の進行は、速くても時間のオーダであるから、各相を
順次切り換えながら判定して行く方法により十分目的を
果たすことができる。However, using this method, three
When attempting to perform automatic monitoring for diagnosing deterioration of lightning arresters for each phase, as shown in FIG. 20, current detectors 41, 42, .
43 and voltage detectors 31, 32, and 33, and has many switching contacts so that the current detection value and voltage detection value of the same phase can be respectively input to the amplifier 6.7. Requires container 5. It should be noted that since the progress of deterioration of an element is on the order of time at the fastest, the purpose can be sufficiently achieved by a method of making a determination while sequentially switching each phase.
このように、従来方法による劣化の診断は、送電回線が
増加するとともに電流検出器ならびに配線を数多く必要
としく電圧検出器は共用できる)、かつ切換え器が大形
化して診断のための制御が複雑化する欠点があり、簡単
な診断方法が望まれていた。As described above, diagnosing deterioration using the conventional method requires an increase in the number of power transmission lines, a large number of current detectors and wiring (although voltage detectors can be shared), and a large switching device that requires control for diagnosis. However, there was a need for a simple diagnostic method because of the drawback of increased complexity.
この発明の目的は、避雷器が接続される送電回線数の増
加とともに電流検出器や配線の増加などが著しい前記従
来の方法に代わる、簡略な診断方法を提供することであ
る。An object of the present invention is to provide a simple diagnostic method as an alternative to the conventional method, in which the number of current detectors and wiring increases as the number of power transmission lines to which lightning arresters are connected increases.
上記目的を達成するために、この発明によれば、1個の
、または複数個直列に接続された、酸化亜鉛を主成分と
する非直線抵抗素子を容器内に収容して、なり三相避雷
器の各相を構成する避雷器を通過している、避雷器端子
電圧と同相の抵抗分電流を用いて前記非直線抵抗素子の
劣化の有無を診断する劣化診断の方法として、前記三相
避雷器の各相を通過している電流を三相ベクトル合成す
ることにより、各相電流中に合まれる容量分電流を消去
して抵抗分電流のみの合成波形を求め、この合成波形か
ら三相避雷器中に非直線抵抗素子が劣化した避雷器が存
在しているか否かを診断するようにするものとする。In order to achieve the above object, according to the present invention, one or more non-linear resistance elements connected in series and containing zinc oxide as a main component are housed in a container to form a three-phase lightning arrester. As a deterioration diagnosis method of diagnosing the presence or absence of deterioration of the non-linear resistance element using the resistance current in phase with the surge arrester terminal voltage passing through the surge arrester constituting each phase of the three-phase surge arrester, By performing three-phase vector synthesis of the currents passing through the three-phase surge arrester, the capacitance current that is added to each phase current is erased to obtain a composite waveform of only the resistance current, and from this composite waveform, the It is assumed that a diagnosis is made as to whether or not there is a lightning arrester whose linear resistance element has deteriorated.
まず、本発明による劣化診断方法の原理につき説明する
。First, the principle of the deterioration diagnosis method according to the present invention will be explained.
三相避雷器の各相を通過している電流を三相ベクトル合
成するための測定回路を第1図のように構成し、各相電
流中に合まれる容量分電流を消去して抵抗分電流のみの
合成波形を第2図のように求める。ここで第4図の電流
検出器44にはたとえば零相変流器を用い、避雷器21
.22.23の各接地側導体は一括して変流器鉄心を貫
通して接地し、変流器2次側出力を増幅器6へ入力して
増幅することにより前記合成波形を求めるようにしてい
る。A measuring circuit for composing three-phase vectors of the currents passing through each phase of a three-phase lightning arrester is configured as shown in Figure 1, and the capacitance current that is combined with each phase current is erased to calculate the resistance current. The synthesized waveform of only 1 is obtained as shown in Fig. 2. Here, for example, a zero-phase current transformer is used as the current detector 44 in FIG.
.. 22. Each grounding conductor of 23 is collectively grounded through the current transformer iron core, and the secondary output of the current transformer is input to the amplifier 6 and amplified to obtain the composite waveform. .
なお、第2図には、合成電流波形420のほか各相の避
雷器端子電圧波形も追加記載されている。In addition to the composite current waveform 420, FIG. 2 also additionally shows the arrester terminal voltage waveforms of each phase.
第2図の電流波形からみられるように、この合成電流の
波形は、素子の電圧−電流特性すなわち印加電圧が高く
なると電流が急激に増大し、印加電圧が小さくなると急
激に減少する性質から、電流波形は図のように第3高調
波を多く含んだ波形をとるとともに、そのピーク値の位
置は電圧波形の波高値の位置と一致する。従って三相避
雷器中いずれかの相の避雷器の素子に劣化が生じておれ
ば、その相の電流ピーク値は、このピーク値につづいて
電気角60°ごとに現われる残りの相の電流ピーク値よ
りも大きくなり、その相の素子が劣化していると診断さ
れる。しかし、第1図の測定回路で測定されるものは合
成電流波形だけであるから、この波形からだけでは素子
が劣化している相を特定することができない、しかし、
共通の容器内に避雷器3相分が収容された三相避雷器で
は、いずれの相に素子の劣化があっても、新品との交換
は金相について行われ、短時間内の更新が図られるから
、このような三相避雷器の場合には本発明は従来に比し
極めて簡易な劣化診断方法を提供する。また、各相の素
子がそれぞれ独立した碍管内に収容され屋外に設置され
た三相避雷器などでは、素子が劣化した相のみ交換が行
われるが、この場合にも、以下の実施例において詳細に
説明するように、避雷器を通過する電流を三相ベクトル
合成した。抵抗分電流のみの合成波形を用いることによ
り、劣化相の特定を安価に行うことが可能になる。As can be seen from the current waveform in Figure 2, the waveform of this composite current is based on the voltage-current characteristics of the element, that is, the current increases rapidly when the applied voltage increases, and decreases rapidly when the applied voltage decreases. As shown in the figure, the waveform is a waveform containing many third harmonics, and the position of its peak value coincides with the position of the peak value of the voltage waveform. Therefore, if deterioration occurs in the elements of any phase of the three-phase lightning arrester, the current peak value of that phase will be greater than the current peak value of the remaining phases that appears every 60 degrees of electrical angle following this peak value. becomes large, and it is diagnosed that the element of that phase has deteriorated. However, since what is measured by the measurement circuit in Figure 1 is only the composite current waveform, it is not possible to identify the phase in which the element is deteriorating from this waveform alone.
In a three-phase surge arrester, where three phases of the surge arrester are housed in a common container, even if the element in any phase deteriorates, the metal phase will be replaced with a new one, and the upgrade will be completed within a short period of time. In the case of such a three-phase lightning arrester, the present invention provides a method of diagnosing deterioration that is much simpler than the conventional method. In addition, in a three-phase lightning arrester where the elements of each phase are housed in independent insulator tubes and installed outdoors, only the phase in which the element has deteriorated is replaced, but in this case as well, this will be explained in detail in the following example. As explained, the current passing through the arrester was combined into three-phase vectors. By using a composite waveform of only the resistance current, it becomes possible to identify the deteriorated phase at low cost.
第1図に本発明の劣化診断方法を可能ならしめる回路構
成の一実施例を示す、母線または送電線の各相11.1
2.13には避雷器21.22.23のみが接続され、
その大地側は共通に1個の電流検出器を介して接地され
ている。この電流検出器には本実施例では零相変流器が
用いられ、前記避雷器各相の接地側導体は一括して変流
器鉄心を貫通して接地され、変流器の2次側出力は増幅
器6へ入力されて増幅される。この零相変流器は1次側
の特定相の微電流を精度よく2次側に出力する特性が付
与されるとともに、大電流時には鉄心が飽和して2次側
に過大な電圧が出力されないという、避雷器の劣化診断
に対して好適な特性を持っている。FIG. 1 shows an example of a circuit configuration that enables the deterioration diagnosis method of the present invention, and shows each phase 11.1 of a bus bar or power transmission line.
Only lightning arresters 21, 22, and 23 are connected to 2.13,
The ground side thereof is commonly grounded via one current detector. In this embodiment, a zero-phase current transformer is used for this current detector, and the grounding side conductors of each phase of the lightning arrester are collectively grounded through the current transformer iron core, and the secondary side output of the current transformer is grounded. is input to the amplifier 6 and amplified. This zero-phase current transformer has the characteristic of accurately outputting a small current of a specific phase on the primary side to the secondary side, and also prevents the iron core from saturating when the current is large and excessive voltage is not output to the secondary side. It has characteristics suitable for diagnosing deterioration of lightning arresters.
なお、破線80は素子3相分を収容する共通の金属容器
を表わしている。Note that a broken line 80 represents a common metal container that accommodates elements for three phases.
第2図は第1図の回路構成によって増幅器6の出力側か
ら得られた電流波形と、この電流波形を生ずる三相電圧
波形とを重ねて示すものである。FIG. 2 shows a current waveform obtained from the output side of the amplifier 6 using the circuit configuration shown in FIG. 1, and a three-phase voltage waveform that generates this current waveform, superimposed on each other.
ここで、111,112,113はそれぞれ母線もしく
は送電線の各相の対地電圧を示し、421.422,4
23はそれぞれ各相避雷器を流れる電流をベクトル合成
した合成電流波形420において、電気角60@ごとに
現われるピーク値を示す。また、この合成を流の波形は
、素子の電圧−電流特性すなわち印加電圧が高くなると
電流が急激に増大し、印加電圧が小さくなると急激に減
少する性質から、電流波形は図のように第3高調波を多
く含んだ波形をとるとともに、そのピーク値の位置は電
圧波形の波高値の位置と一敗する。従って三相避雷器中
いずれかの相の避雷器の素子に劣化が生じておれば、そ
の相の電流ピーク値は、このピーク値につづいて電気角
60@ごとに現われる残りの相の電流ピーク値よりも大
きくなり、その相の素子が劣化していると診断される。Here, 111, 112, 113 respectively indicate the ground voltage of each phase of the bus or transmission line, and 421, 422, 4
23 indicates a peak value that appears every 60 electrical angles in a composite current waveform 420 obtained by vector-synthesizing the currents flowing through each phase arrester. In addition, the waveform of this composite current is the voltage-current characteristic of the element, that is, the current increases rapidly when the applied voltage increases, and decreases rapidly when the applied voltage decreases. It takes a waveform that contains many harmonics, and the position of its peak value is completely different from the position of the peak value of the voltage waveform. Therefore, if deterioration occurs in the elements of any phase of the three-phase lightning arrester, the current peak value of that phase will be greater than the current peak value of the remaining phases that appears every 60 electrical degrees following this peak value. becomes large, and it is diagnosed that the element of that phase has deteriorated.
なお、本発明の劣化診断方法では各相の電圧波形を計測
していないから、劣化がいずれの相に生じているかを特
定することはできないが、これは前述のように、特に三
相避雷器が共通の金属容器内に収容されている場合には
、いずれの相に劣化が生じていても三相とも新品と交換
して早急に更新を完了する保守作業の実務にかんがみ、
従来のような電圧検出器は省略して診断のための回路構
成を簡略化している。Note that the deterioration diagnosis method of the present invention does not measure the voltage waveform of each phase, so it is not possible to specify which phase deterioration occurs in. However, as mentioned above, this is especially true for three-phase lightning arresters. In consideration of the practice of maintenance work, where all three phases are housed in a common metal container, even if any phase has deteriorated, all three phases are replaced with new ones and the renewal is completed as soon as possible.
The conventional voltage detector is omitted to simplify the circuit configuration for diagnosis.
第3図に本発明の第2の実施例による劣化診断のための
回路構成を示す、この実施例は、たとえば、素子がそれ
ぞれ独立した碍管内に収容され屋外に設置された三相避
雷器などの場合のように、素子が劣化した相の避雷器の
みを更新することができるよう、劣化相の特定を可能な
らしめた回路構成の一例を示す、もちろん、この劣化相
の特定は、第2図に示すように、母線や送電線の各相対
地竜圧を同時に記録することによっても容易に可能であ
り、また、この記録のための電圧検出器は、すべての三
相゛避雷器に共通に3相分1組として使用することがで
き、電流検出器のように多数組を必要としない、しかし
、高圧線路に接続される電圧検出器は高価であるから、
その個数はできるだけ少な(て済ませることのできる特
定方法が望ましい。Fig. 3 shows a circuit configuration for deterioration diagnosis according to a second embodiment of the present invention. Figure 2 shows an example of a circuit configuration that makes it possible to identify the deteriorated phase so that only the surge arrester of the phase in which the element has deteriorated can be updated. As shown in the figure, this is easily possible by simultaneously recording the relative ground pressure of each bus bar and transmission line, and the voltage detector for this recording is a three-phase surge arrester common to all three-phase lightning arresters. It can be used as one set per minute and does not require multiple sets like current detectors. However, voltage detectors connected to high voltage lines are expensive.
It is desirable to have an identification method that can minimize the number of items.
母線または送電線の各相11.12.13には避雷器2
1、22.23が接続され、その大地側が共通に1個の
電流検出器44を介して設置されるとともに、前記母線
または送電線のいずれか1相、ここでは相11に電圧検
出器3が接続されている。なお、電流検出器44には、
第1図のものと同様、避雷器の劣化診断に対して好適な
特性を有する零相変流器が用いられている。Lightning arresters 2 are installed on each phase 11, 12, 13 of the bus or transmission line.
1, 22, and 23 are connected, and their ground sides are installed in common through one current detector 44, and a voltage detector 3 is connected to one phase of the bus or power transmission line, phase 11 in this case. It is connected. Note that the current detector 44 includes:
Similar to the one in FIG. 1, a zero-phase current transformer is used that has characteristics suitable for diagnosing deterioration of a lightning arrester.
電流検出器44で検出され増幅器46で増幅された電流
は演算器47に入力され、この入力された電流値があら
かじめ設定された基準レベル相当値すなわち避雷器素子
の初期劣化を証するに十分な大きさとして設定されたレ
ベルに相当した値(第4図に示す基準レベル)を超過し
た時点でパルス電圧を発生させ、このパルス電圧を演算
器49に入力する。一方、電圧検出器3により計測され
た母線または相電圧の波形は演算器48に入力され、こ
こで入力された電圧波形のピーク位置でパルス電圧を発
生させ、このパルス電圧を演算器49に入力する。The current detected by the current detector 44 and amplified by the amplifier 46 is input to the calculator 47, and the input current value is a value equivalent to a preset reference level, that is, a value large enough to prove initial deterioration of the lightning arrester element. A pulse voltage is generated when the value corresponding to the level set as (the reference level shown in FIG. 4) is exceeded, and this pulse voltage is input to the calculator 49. On the other hand, the waveform of the bus line or phase voltage measured by the voltage detector 3 is input to the calculator 48, which generates a pulse voltage at the peak position of the input voltage waveform, and inputs this pulse voltage to the calculator 49. do.
演算器49ではこの電圧波形のピーク位置で発生したパ
ルス電圧と前記合成電流の大きさが基準レベルを超過し
たときに発生したパルス電圧との時間差を算出し、第5
図により劣化槽を特定する。すなわち、第5図に示すよ
うに、電圧検出器が接続された母線もしくは送tiの相
をR相とし、R相の対地電圧ピーク位置において発生し
たパルス電圧を時間測定の原点をなす基準パルスとして
前記合成電流の大きさが基準レベルを超えた時点で発生
したパルス電圧までの時間を測定し、この時間がほぼ零
のときには劣化槽は基準相と同一相、電気角1200相
当であれば相順に従って次の相、電気角240″相当で
あればさらに次の相として劣化槽を安価にかつ簡易に特
定することができる。The arithmetic unit 49 calculates the time difference between the pulse voltage generated at the peak position of this voltage waveform and the pulse voltage generated when the magnitude of the composite current exceeds the reference level.
Identify the deterioration tank using the diagram. That is, as shown in Fig. 5, the busbar or transmission ti phase to which the voltage detector is connected is set as the R phase, and the pulse voltage generated at the ground voltage peak position of the R phase is used as the reference pulse that forms the origin of time measurement. Measure the time until the pulse voltage generated when the magnitude of the composite current exceeds the reference level. If this time is almost zero, the deterioration tank is in the same phase as the reference phase, and if it is equivalent to 1200 electrical angles, the phase is in sequence. Accordingly, if the next phase corresponds to an electrical angle of 240'', the deterioration tank can be identified as the next phase at low cost and easily.
第6図に本発明の第3の実施例による劣化診断のための
回路構成を示す。この実施例は、第2の実施例と同様J
劣化槽を特定するための回路構成を示すものであり、避
雷器が設置されている電気所構内にすでに配されている
電圧変成器いわゆるP T (Potential T
ransformer)または分圧Vt置いわゆるP
D (Potential Device)50の2次
側にスイッチ54を介して以下に詳細を説明する重畳電
流発生器55が接続され、またこの発生器の出力側には
電流検出器である零相変流器44の鉄心を貫通する出力
導体55aが接続されている。FIG. 6 shows a circuit configuration for deterioration diagnosis according to a third embodiment of the present invention. This embodiment is similar to the second embodiment.
This shows the circuit configuration for identifying the deterioration tank, and it shows the circuit configuration for identifying the deterioration tank.
transformer) or partial pressure Vt, so-called P
A superimposed current generator 55, which will be described in detail below, is connected to the secondary side of the D (potential device) 50 via a switch 54, and a zero-phase current transformer, which is a current detector, is connected to the output side of this generator. An output conductor 55a passing through the 44 iron cores is connected.
重畳電流発生器55は、母線または送電線の対地電圧の
もとで避雷器を通過する電流が避雷器素子の初期劣化を
証するに十分な大きさとして設定された電流レベルとな
るまで劣化させた非直線抵抗素子に対して前記対地電圧
を印加したとしたときに得られる電流波形を、PTまた
はPD50の2次側電圧がスイッチ54を介して導入さ
れたときに2次側電圧に同期して逆極性に出力するよう
に回路構成がなされているものであり、スイッチ54の
回路状態において零相変流器44の2次側に得られてい
る三相ベクトル合成電流の波形が、スイッチ54の各相
を交互に閉路することによりどのように変化するかによ
り、素子が劣化した相の避雷器を特定しようとするもの
である。すなわち、第7図に示すように、スイッチ54
の開路状態において避雷器素子が3相とも健全なときに
得られている。抵抗分電流のみの合成波形(alが波形
山)のように変形し、その最大波高値があらかじめ設定
された劣化レベルを超えると、第6図に図示されていな
い警報回路を介して警報が発せられ、避雷器の少なくと
も1相が劣化したことが知らされる。これにより手動ま
たは自動でスイッチ54を閉じると、PTまたはPD5
0の2次側に得られている各相の相電圧は重畳電流発生
器55内へそれぞれ逆極性となるように取り込まれ、波
形(′b)中の劣化レベルの電流と同一波形を有する電
流が逆極性に出力される。The superimposed current generator 55 generates a non-linear current that degrades the current passing through the arrester under the ground voltage of the busbar or transmission line until it reaches a current level set as being large enough to demonstrate initial degradation of the arrester element. When the secondary voltage of the PT or PD 50 is introduced via the switch 54, the current waveform obtained when the ground voltage is applied to the resistive element is reversed in synchronization with the secondary voltage. The circuit configuration is such that the waveform of the three-phase vector composite current obtained on the secondary side of the zero-phase current transformer 44 in the circuit state of the switch 54 is output to each phase of the switch 54. The aim is to identify the phase surge arrester in which the element has deteriorated based on how it changes when the elements are alternately closed. That is, as shown in FIG.
This is obtained when all three phases of the arrester element are healthy in the open circuit state. If the waveform deforms into a composite waveform of only the resistance current (al is the peak of the waveform) and its maximum peak value exceeds a preset deterioration level, an alarm will be issued via an alarm circuit not shown in Figure 6. It is notified that at least one phase of the lightning arrester has deteriorated. When the switch 54 is closed manually or automatically, the PT or PD5
The phase voltages of each phase obtained on the secondary side of 0 are taken into the superimposed current generator 55 so as to have opposite polarities, and a current having the same waveform as the current at the deterioration level in waveform ('b) is generated. is output with reverse polarity.
従って、スイッチ54のR相を閉じたとき、零相変流器
44の2次側に(clに示すような、劣化レベルの電流
波形が消滅した波形が得られたとすれば、避雷器の劣化
は少なくともR相に生じていたことが判明する。つぎに
スイッチ54のR相を開いてT相を閉じたときfd+の
ような波形が得られたとすると、この場合には劣化レベ
ルの電流波形は消滅していないから、T相避雷器の素子
は劣化を生じていないことがわかる。同様にスイッチ5
4のS相のみを閉じた場合にも波形fa+のように劣化
レベルの電流波形は消滅しないから、結局、以上のスイ
ッチ操作により劣化槽をR相と特定することができる。Therefore, when the R phase of the switch 54 is closed, if a waveform is obtained on the secondary side of the zero-phase current transformer 44 (as shown in cl) in which the current waveform at the deterioration level disappears, the deterioration of the lightning arrester is It turns out that this has occurred at least in the R phase.Next, if a waveform like fd+ is obtained when the R phase of the switch 54 is opened and the T phase is closed, in this case, the current waveform at the deterioration level disappears. This shows that the T-phase lightning arrester element has not deteriorated.Similarly, switch 5
Even when only the S phase of No. 4 is closed, the current waveform at a degraded level like the waveform fa+ does not disappear, so the degraded tank can be identified as the R phase by the above switch operation.
第3図は避雷器の2相に素子の劣化が生じた場合の診断
過程における合成電流波形の変化の状況を示す0図示さ
れない警報装置の作動により、たとえばスイッチ54の
R相とS相とを閉じたとき、合成電流の波形が同図(b
lのように変化して2相の劣化レベルの電流波形が消滅
したとする。つぎにスイッチのS相とT相とを閉じたと
き、同図(c)のように、1相の劣化レベルの電流は変
化せず、この相と隣り合った相には劣化レベルの電流と
健全な抵抗分電流との差の電流波形が現われ、残りl相
の電流波形が消滅したとする。さらに、スイッチのT相
とR相とを閉じたとき、1相の電流波形が消滅し、これ
と隣り合った相には劣化レベルの電流と健全な抵抗分電
流との差の電流波形が現われ、残り1相の劣化レベルの
電流波形は変化しなかったものとする。スイッチの操作
の仕方は任意であるが、このように2相づつ操作したと
きの合成電流の波形の変化から、劣化相はR相とS相と
であると特定することができる。FIG. 3 shows how the composite current waveform changes during the diagnosis process when element deterioration occurs in two phases of a lightning arrester. For example, the R and S phases of the switch 54 are closed due to the activation of an alarm device (not shown). When the waveform of the composite current is shown in the same figure (b
Suppose that the current waveform changes as shown in FIG. 1 and the two-phase current waveform at the deterioration level disappears. Next, when the S phase and T phase of the switch are closed, as shown in the same figure (c), the current at the deterioration level in one phase does not change, and the current at the deterioration level in the phase adjacent to this phase does not change. It is assumed that a current waveform with a difference from a healthy resistance current appears, and the current waveforms of the remaining l phases disappear. Furthermore, when the T and R phases of the switch are closed, the current waveform of one phase disappears, and the current waveform of the difference between the deterioration level current and the healthy resistance current appears in the adjacent phase. , it is assumed that the current waveform of the remaining one phase at the deterioration level remains unchanged. Although the switch may be operated in any manner, it is possible to identify the degraded phases as the R phase and the S phase from the change in the waveform of the combined current when two phases are operated in this manner.
第9図に本発明の第4の実施例による劣化診断のための
回路構成を示す、三相避雷器の各相を構成する避雷器2
1.22.23をそれぞれ通過する電流の三相ベクトル
合成波形を得るための電流検出器、ここでは零相変流器
4の環状鉄心を貫く避雷器各相の接地側導体には、スイ
ッチ61a、62a、63aを介して零相変流器4を跨
ぐバイパス回路61.62.63が接続され、これらの
スイッチを閉じることにより、避雷器を通過する電流の
一部が零相変流器を貫通することな(バイパス回路に分
流するように配慮されている。このバイパス回路への分
流の割合は、零相変流器の変流比がtooo+を程度の
大きいものであり、1次側からみた変流器のインピーダ
ンスがほとんど無視できることから、バイパス回路の導
体として変流器1次側導体と同等の断面積のものを用い
た場合約50%程度になるものと考えられる。第10図
にスイッチ61a+ 62a、 63aがすべて開かれ
ている場合の避雷器各相の通過電流波形例を示し、第1
1図に第10図に示す各相通過電流の三相ベクトル合成
波形すなわち抵抗分電流のみの合成波形を示す。この波
形例にみられるように、素子の劣化がR相の避雷器に生
じている場合、バイパス回路のスイッチ61a、 62
a、 63aを交互に閉じたときに変流器の2次側に得
られる電流波形を第12図に示す9図において、たとえ
ば符号R/2+S+Tは、避雷器21をR相の避雷器と
し、スイッチ61aを閉じたときに変流器2次側に得ら
れる電流波形を示す、同様にして符号R+S/2+Tは
スイッチ62aを閉じたとき、また符号R+S+T/2
はスイッチ63aを閉じたときの電流波形を示している
。FIG. 9 shows a circuit configuration for deterioration diagnosis according to a fourth embodiment of the present invention, a lightning arrester 2 constituting each phase of a three-phase lightning arrester.
A current detector for obtaining a three-phase vector composite waveform of the current passing through 1.22.23, in this case a lightning arrester that passes through the annular core of the zero-phase current transformer 4. The grounding side conductor of each phase of the lightning arrester is equipped with a switch 61a, Bypass circuits 61, 62, and 63 spanning the zero-phase current transformer 4 are connected via 62a and 63a, and by closing these switches, a portion of the current passing through the arrester passes through the zero-phase current transformer. (The current is shunted to the bypass circuit.The ratio of the current to the bypass circuit is such that the current transformation ratio of the zero-phase current transformer is too +, and the current is shunted to the bypass circuit. Since the impedance of the current transformer is almost negligible, it is thought that the impedance will be about 50% if the conductor of the bypass circuit has the same cross-sectional area as the primary conductor of the current transformer. An example of the passing current waveform of each phase of the lightning arrester when all 62a and 63a are open is shown.
FIG. 1 shows a three-phase vector composite waveform of the passing currents of each phase shown in FIG. 10, that is, a composite waveform of only the resistance current. As seen in this waveform example, when element deterioration occurs in the R-phase lightning arrester, the bypass circuit switches 61a and 62
9 which shows the current waveform obtained on the secondary side of the current transformer when the switches 63a and 63a are alternately closed. Similarly, the symbol R+S/2+T indicates the current waveform obtained on the secondary side of the current transformer when the switch 62a is closed, and the symbol R+S+T/2
shows the current waveform when the switch 63a is closed.
第12図にみられるように、スイッチ61aを閉じたと
きの合成電流最大波高値は、素子の初期劣化を証するに
十分な大きさとしてあらかじめ設定された劣化レベルす
なわち設定レベル以下に低減され、スイッチ62aを閉
じたときには変化せず、スイッチ63aを閉じたときに
再び設定レベル以下に低減される。As seen in FIG. 12, the maximum peak value of the combined current when the switch 61a is closed is reduced below the deterioration level, that is, the set level, which is set in advance to be large enough to prove the initial deterioration of the element, and the switch 61a is When the switch 62a is closed, it does not change, and when the switch 63a is closed, it is reduced to below the set level again.
このようなスイッチ操作に伴う電流波形の変化から素子
が劣化した相の避雷器をどのようにして特定するかの方
法については、以下に述べる1本実施例の変形例のあと
でまとめて説明する。A method for identifying the phase surge arrester whose element has deteriorated based on changes in the current waveform caused by such switch operations will be described in detail after a modification of the first embodiment described below.
第13図に前記第4図の実施例の変形例を示す。FIG. 13 shows a modification of the embodiment shown in FIG. 4.
この変形例は、スイッチ61a、 62a、 63aを
閉じたときのバイパス回路61゜62.63への分流の
割合を、第4の実施例における約50%から実1i10
0%とするための回路構成としたものであり、避雷器各
相の接地側導体には低インピーダンス71.72.73
がそれぞれ直列に挿入され、スイッチ61a、 62a
、 63aは零相変流器44と低インピーダンス71.
72.73とを跨ぐバイパス回路6L 62.63に直
列に挿入されている。ここで、低インピーダンス71.
72.73のインピーダンスの大きさは、避雷器が雷撃
を受けて動作したときに母線または送電線側端子に現れ
る対地電圧を母線または送電線の絶縁を脅かすような値
にまで上昇させない程度の小さいものとするものとする
。In this modification, when the switches 61a, 62a, and 63a are closed, the proportion of the current diverted to the bypass circuits 61, 62, and 63 is reduced from about 50% in the fourth embodiment to the actual 1i10%.
The circuit configuration is designed to make it 0%, and the grounding side conductor of each phase of the lightning arrester has a low impedance 71.72.73.
are inserted in series, respectively, and the switches 61a and 62a
, 63a are the zero-phase current transformer 44 and the low impedance 71.
A bypass circuit 6L straddling 62 and 73 is inserted in series with 62 and 63. Here, low impedance 71.
72. The impedance of 73 shall be small enough not to increase the ground voltage appearing at the bus bar or transmission line side terminal to a value that threatens the insulation of the bus bar or transmission line when the arrester operates in response to a lightning strike. shall be.
このような回路構成において、素子の劣化がR相の避雷
器21に生じたとし、零相変流器44の2次側に得られ
る合成電流波形の最大波高値が設定レベルを超過したと
すると、演算器45がこの超過を判別して制御信号をス
イッチ制御装置75へ発信し、スイッチ61a、 62
a、 63aを適当な時間間隔で交互に繰返し開閉させ
る。このときの合成電流波形の変化の状況を第14図に
示す0図において、たとえば符号SATは、変流器1次
側の電流がS相避雷器とT相避雷器の通過電流のみの場
合すなわちスイッチ61aを閉じることによりR相避雷
器の通過電流全部がバイパス回路61へ転流したときに
変流器2次側に得られる電流波形を示す、同様にして符
号T十Rはスイッチ62aを閉じたとき、また符号R+
Sはスイッチ63aを閉じたときの1を流波形を示して
いる。In such a circuit configuration, if element deterioration occurs in the R-phase lightning arrester 21, and if the maximum peak value of the composite current waveform obtained on the secondary side of the zero-phase current transformer 44 exceeds the set level, The computing unit 45 determines this excess and sends a control signal to the switch control device 75, and switches 61a, 62
a and 63a are alternately and repeatedly opened and closed at appropriate time intervals. In Figure 14, which shows the state of change in the composite current waveform at this time, for example, the symbol SAT indicates the case where the current on the primary side of the current transformer is only the passing current of the S-phase lightning arrester and the T-phase lightning arrester, that is, the switch 61a. When the switch 62a is closed, the current waveform obtained on the secondary side of the current transformer is shown when the entire passing current of the R-phase lightning arrester is commutated to the bypass circuit 61.Similarly, when the switch 62a is closed, Also, the sign R+
S indicates a waveform of 1 when the switch 63a is closed.
第14図にみられるように、スイッチ61a、63aを
閉じたときには合成電流最大波高値はあらかじめ設定さ
れた劣化レベルすなわち設定レベル以下に低減され、ス
イッチ62aを閉じたときには変化しない。As shown in FIG. 14, when the switches 61a and 63a are closed, the combined current maximum peak value is reduced to a preset deterioration level, that is, below the set level, and when the switch 62a is closed, it does not change.
以上、第12図、第14図から、スイッチの操作と合成
電流最大波高値の変化状況との関係を表に示すとつぎの
ようになる。From the above, from FIGS. 12 and 14, the relationship between the switch operation and the state of change in the maximum peak value of the combined current is shown in the table below.
すなわち、素子が劣化した相のつぎの相に属するスイッ
チを閉じたときのみ合成電流最大波高値が変化しないこ
とがわかる。従ってスイッチを交互に閉路操作し、ある
相のスイッチ操作時に合成電流最大波高値の変化が生じ
なかった場合、そのスイッチの属する相より1つ先行す
る相の避雷器を劣化相として特定することができる。That is, it can be seen that the combined current maximum peak value does not change only when the switch belonging to the phase next to the phase in which the element has deteriorated is closed. Therefore, if the switches are alternately closed and no change in the maximum peak value of the combined current occurs when the switch of a certain phase is operated, the lightning arrester of the phase that precedes the phase to which that switch belongs can be identified as a degraded phase. .
以上に述べたように、本発明によれば、1個の、または
複数個直列に接続された、酸化亜鉛を主成分とする非直
線抵抗素子を容器内に収容してなり三相避雷器の各相を
構成する避雷器を通過している、避雷器端子電圧と同相
の抵抗分電流を用いて前記非直線抵抗素子の劣化の有無
を診断する劣化診断の方法として、前記三相避雷器の各
相を通過している電流を三相ベクトル合成することによ
り、各相電流中に合まれる容量分電流を消去して抵抗分
電流のみの合成波形を求め、この合成波形から三相避雷
器中に非直線抵抗素子が劣化した避雷器が存在している
か否かを診断するようにしたので、劣化診断の対象とな
る避雷器の数が多くても、劣化診断時に必要となる電流
検出器や配線数が従来に比して著しく少なくてすみ、劣
化相の特定を必要としない三相避雷器の場合はもちろん
、劣化相の特定を必要とする三相避雷器の場合にも、本
発明の方法によって得られた三相ベクトル合成電流波形
を利用することにより、安価かつ簡易に劣化相の特定が
可能になるという効果が得られる。As described above, according to the present invention, each of the three-phase lightning arresters includes one or more non-linear resistance elements connected in series and containing zinc oxide as a main component in a container. As a deterioration diagnosis method of diagnosing the presence or absence of deterioration of the non-linear resistance element using a resistor current having the same phase as the terminal voltage of the surge arrester, which passes through the surge arrester constituting the phase, By performing three-phase vector synthesis of the currents, the capacitance current that is combined in each phase current is erased, and a composite waveform of only the resistance current is obtained. From this composite waveform, the nonlinear resistance in the three-phase arrester is calculated. Since it is now possible to diagnose whether or not there is a surge arrester with deteriorated elements, the number of current detectors and wiring required for deterioration diagnosis is reduced compared to conventional methods, even if there are many surge arresters that are subject to deterioration diagnosis. The three-phase vector obtained by the method of the present invention can be used not only in the case of three-phase lightning arresters that do not require identification of degraded phases, but also in the case of three-phase lightning arresters that require identification of degraded phases. By using the composite current waveform, it is possible to easily specify the degraded phase at low cost.
第1図は本発明の第1の実施例による避雷器素子劣化診
断のための回路構成図、第2図は第1図の回路構成によ
って得られる三相避雷器の合成電流波形と、この波形を
生ぜしめる母線または送電線の各相対地竜圧波形をこの
合成電流波形に重ねて示す波形図、第3図は本発明の第
2の実施例による避雷器素子劣化診断のための回路構成
図、第4図は第3図の回路構成において得られる電圧。
電流ならびにこれらの電圧、電流から得られるパルス電
圧の相互の時間関係を示す波形図、第5図は劣化相を特
定するためのパルス電圧波形図、第6図は本発明の第3
の実施例による避雷器素子劣化診断のための回路構成図
、第7図は避雷器1相の素子が劣化したときこの相を特
定するための診断過程における三相ベクトル合成電流波
形の変化状況を示す波形図、第8図は避雷器2相の素子
が劣化したときこの2相を特定するための診断過程にお
ける三相ベクトル合成電流波形の変化状況を示す波形図
、第9図は本発明の第4の実施例による避雷器素子劣化
診断のための回路構成図、第10図は避雷器1相の素子
が劣化したときの避雷器各相の通過電流波形を示す波形
図、第11図は第1θ図に示す避雷器各相通過1i流の
三相ベクトル合成電流波形を示す波形図、第12図はい
ずれか1相の避雷器通過電流の一部を除く三相ベクトル
合成電流波形を示す波形図、第13図は第9図に示す第
4の実施例の変形例による避雷器素子劣化診断のための
回路構成図、第14図はいずれか1相の避雷器通過電流
の全部を除く二相ベクトル合成電流波形を示す波形図、
第15図は避雷器素子の正常な特性と劣化したときの特
性との差異を示す線図、第16図は避雷器の外部回路と
の接続状態を示す単線図、第17図は避雷器を通過する
電流中の電流成分を示す、避雷器の等価回路図、第18
図は避雷器を遭遇する電流のうち抵抗分電流のみを抽出
するために避雷器の1相に対して構成される従来の測定
回路図の一例、第19図は避雷器を通過ずる全電流の波
形と全電流中の電流成分の波形とを示す電流波形図、第
20図は避雷器を通過する電流のうち抵抗分電流のみを
抽出するための、王権避雷器に対する従来の測定回路図
の一例である。
2)21.22.23:避雷器、3 、31.32.3
3 :電圧検出器、4.41.42.43.44:電流
検出器、50:電圧変成器(P T)または分圧装置(
PD)、54:スイッチ、55:重畳電流発生器、61
.62.63:バイパス回路、61a、 62a、 6
3a :スイッチ、420:三相ベクトル合成電流波
形。
第1図
第3図
第13図
第16図 第17図
塔18 図FIG. 1 is a circuit configuration diagram for diagnosing deterioration of a lightning arrester element according to the first embodiment of the present invention, and FIG. 2 is a composite current waveform of a three-phase lightning arrester obtained by the circuit configuration of FIG. FIG. 3 is a waveform diagram showing the respective relative ground torturous pressure waveforms of the connecting bus or power transmission line superimposed on this composite current waveform. FIG. 3 is a circuit configuration diagram for diagnosing deterioration of a lightning arrester element according to the second embodiment of the present invention. The figure shows the voltage obtained with the circuit configuration shown in Figure 3. A waveform diagram showing the mutual time relationship of the current, these voltages, and the pulse voltage obtained from the current. Figure 5 is a pulse voltage waveform diagram for identifying the deterioration phase. Figure 6 is the third waveform diagram of the present invention.
A circuit configuration diagram for diagnosing deterioration of a lightning arrester element according to an embodiment of the present invention, and FIG. 7 is a waveform showing changes in the three-phase vector composite current waveform during the diagnosis process to identify the phase when an element of one phase of the arrester has deteriorated. Figure 8 is a waveform diagram showing how the three-phase vector composite current waveform changes during the diagnostic process to identify the two phases when the elements of the two phases of the lightning arrester have deteriorated. A circuit configuration diagram for diagnosing deterioration of a lightning arrester element according to an embodiment. FIG. 10 is a waveform diagram showing the passing current waveform of each phase of the arrester when the element of one phase of the arrester has deteriorated. FIG. Figure 12 is a waveform diagram showing the three-phase vector composite current waveform of the 1i current passing through each phase. FIG. 9 is a circuit configuration diagram for diagnosing deterioration of a lightning arrester element according to a modification of the fourth embodiment, and FIG. 14 is a waveform diagram showing a two-phase vector composite current waveform excluding all of the surge arrester passing current of any one phase. ,
Figure 15 is a line diagram showing the difference between the normal characteristics of a lightning arrester element and its deteriorated characteristics, Figure 16 is a single line diagram showing the connection status of the arrester with an external circuit, and Figure 17 is the current passing through the arrester. Equivalent circuit diagram of a lightning arrester, showing the current components in the 18th
The figure shows an example of a conventional measurement circuit diagram configured for one phase of a surge arrester in order to extract only the resistance current of the current that encounters the arrester. FIG. 20 is a current waveform diagram showing the waveforms of current components in the current, and is an example of a conventional measurement circuit diagram for a royal power surge arrester for extracting only the resistance current of the current passing through the surge arrester. 2) 21.22.23: Lightning arrester, 3, 31.32.3
3: Voltage detector, 4.41.42.43.44: Current detector, 50: Voltage transformer (PT) or voltage divider (
PD), 54: Switch, 55: Superimposed current generator, 61
.. 62.63: Bypass circuit, 61a, 62a, 6
3a: Switch, 420: Three-phase vector composite current waveform. Figure 1 Figure 3 Figure 13 Figure 16 Figure 17 Tower 18 Figure
Claims (1)
を主成分とする非直線抵抗素子を容器内に収容してなり
三相避雷器の各相を構成する避雷器を通過している、避
雷器端子電圧と同相の抵抗分電流を用いて前記非直線抵
抗素子の劣化の有無を診断する劣化診断方法において、
前記三相避雷器の各相を通過している電流を三相ベクト
ル合成することにより、各相電流中に合まれる容量分電
流を消去して抵抗分電流のみの合成波形を求め、この合
成波形から三相避雷器中に非直線抵抗素子が劣化した避
雷器が存在しているか否かを診断することを特徴とする
酸化亜鉛形避雷器の劣化診断方法。 2)特許請求の範囲第1項記載の方法において、三相避
雷器の各相を通過している電流の三相ベクトル合成は、
1次側の三相導体を一括して貫通せしめる環状鉄心を有
する貫通形変流器により行われることを特徴とする酸化
亜鉛形避雷器の劣化診断方法。 3)特許請求の範囲第1項記載の方法において、抵抗分
電流のみの合成波形の最大波高値が所定値を超過した時
点でパルス電圧を発生させるとともに三相中いずれか1
相の避雷器端子電圧波形の所定位置でパルス電圧を発生
させ、前記両パルス電圧発生時点の時間差から劣化した
非直線抵抗素子を有する相の避雷器を特定することを特
徴とする酸化亜鉛形避雷器の劣化診断方法。 4)特許請求の範囲第1項記載の方法において、抵抗分
電流のみの合成波形の最大波高値が所定値を超過したと
きに、この所定値まであらかじめ劣化を進行させた非直
線抵抗素子と各相の避雷器端子電圧とを組み合わせて得
られる、前記所定値と同一波高値を有する電流波形を相
ごとに順次前記合成波形に逆極性に重畳し、前記所定値
を超過する部分近傍の波形を消去することにより、劣化
した非直線抵抗素子を有する相の避雷器を特定すること
を特徴とする酸化亜鉛形避雷器の劣化診断方法。 5)特許請求の範囲第1項記載の方法において、抵抗分
電流のみの合成波形の最大波高値が所定値を超過したと
きに、順次いずれか1相の避雷器を通過する電流の一部
または全部を除いて3相または2相の電流をベクトル合
成し、この合成された波形相互の比較から、劣化した非
直線抵抗素子を有する相の避雷器を特定することを特徴
とする酸化亜鉛形避雷器の劣化診断方法。[Claims] 1) A lightning arrester that constitutes each phase of a three-phase lightning arrester, in which one or a plurality of non-linear resistance elements mainly composed of zinc oxide are housed in a container and are connected in series. In a deterioration diagnosis method for diagnosing the presence or absence of deterioration of the non-linear resistance element using a resistor current that is in phase with the lightning arrester terminal voltage,
By performing three-phase vector synthesis of the currents passing through each phase of the three-phase lightning arrester, the capacitance current that is combined in each phase current is eliminated to obtain a composite waveform of only the resistance current, and this composite waveform is A method for diagnosing deterioration of a zinc oxide type lightning arrester, comprising diagnosing whether or not there is a three-phase lightning arrester in which a nonlinear resistance element has deteriorated. 2) In the method described in claim 1, the three-phase vector composition of the currents passing through each phase of the three-phase lightning arrester is:
1. A method for diagnosing deterioration of a zinc oxide lightning arrester, characterized in that the method is carried out using a through-type current transformer having an annular core through which three-phase conductors on the primary side are passed all at once. 3) In the method described in claim 1, when the maximum peak value of the composite waveform of only the resistance current exceeds a predetermined value, a pulse voltage is generated and one of the three phases is generated.
Deterioration of a zinc oxide type surge arrester, characterized in that a pulse voltage is generated at a predetermined position of a phase surge arrester terminal voltage waveform, and a phase surge arrester having a deteriorated non-linear resistance element is identified from the time difference between the two pulse voltage generation points. Diagnostic method. 4) In the method described in claim 1, when the maximum peak value of the composite waveform of only the resistance current exceeds a predetermined value, the nonlinear resistance element that has been degraded in advance to this predetermined value and each A current waveform having the same peak value as the predetermined value obtained by combining the surge arrester terminal voltage of the phase is sequentially superimposed on the composite waveform with opposite polarity for each phase, and waveforms near the portion exceeding the predetermined value are erased. 1. A method for diagnosing deterioration of a zinc oxide type lightning arrester, the method comprising identifying a phase arrester having a deteriorated non-linear resistance element. 5) In the method set forth in claim 1, when the maximum peak value of the composite waveform of only the resistance current exceeds a predetermined value, part or all of the current that sequentially passes through any one phase lightning arrester. The deterioration of a zinc oxide type lightning arrester is characterized by vector-synthesizing the three-phase or two-phase currents excluding the above, and identifying the phase arrester having a deteriorated nonlinear resistance element from a comparison of the combined waveforms. Diagnostic method.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3733404A DE3733404C3 (en) | 1986-10-03 | 1987-10-02 | Method for monitoring a three-phase lightning protection system |
SE8703817A SE464375B (en) | 1986-10-03 | 1987-10-02 | SETTING TO DIGITALIZE A FOOT DIFFERENCE IN A ZINO-OXIDE TYPE EXERCISOR USING VECTOR SYNTHESIS |
US07/103,817 US4866393A (en) | 1986-10-03 | 1987-10-02 | Method of diagnosing the deterioration of a zinc oxide type lightning arrester utilizing vector synthesis |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61-235524 | 1986-10-03 | ||
JP23552486 | 1986-10-03 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22407393A Division JPH0782061B2 (en) | 1993-09-09 | 1993-09-09 | Deterioration diagnosis method for zinc oxide type arrester |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63228082A true JPS63228082A (en) | 1988-09-22 |
JPH0650330B2 JPH0650330B2 (en) | 1994-06-29 |
Family
ID=16987251
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62184751A Expired - Fee Related JPH0650330B2 (en) | 1986-10-03 | 1987-07-24 | Deterioration diagnosis method for zinc oxide type arrester |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0650330B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102830319A (en) * | 2012-09-18 | 2012-12-19 | 辽宁省电力有限公司电力科学研究院 | Device and method for on-line inspection on insulation state of zinc oxide arrester |
CN108982988A (en) * | 2016-05-25 | 2018-12-11 | 李爱夏 | A kind of power failure early warning diagnostic method |
CN114325176A (en) * | 2021-12-09 | 2022-04-12 | 国网河南省电力公司电力科学研究院 | Performance evaluation method for resistance valve plate of zinc oxide arrester to be affected with damp and aged |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5434043A (en) * | 1977-08-19 | 1979-03-13 | Mitsubishi Electric Corp | Degradation detecting system for lighting arrester |
-
1987
- 1987-07-24 JP JP62184751A patent/JPH0650330B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5434043A (en) * | 1977-08-19 | 1979-03-13 | Mitsubishi Electric Corp | Degradation detecting system for lighting arrester |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102830319A (en) * | 2012-09-18 | 2012-12-19 | 辽宁省电力有限公司电力科学研究院 | Device and method for on-line inspection on insulation state of zinc oxide arrester |
CN108982988A (en) * | 2016-05-25 | 2018-12-11 | 李爱夏 | A kind of power failure early warning diagnostic method |
CN108982988B (en) * | 2016-05-25 | 2020-10-30 | 深圳格数电力设计院有限公司 | Power failure early warning diagnosis method |
CN114325176A (en) * | 2021-12-09 | 2022-04-12 | 国网河南省电力公司电力科学研究院 | Performance evaluation method for resistance valve plate of zinc oxide arrester to be affected with damp and aged |
CN114325176B (en) * | 2021-12-09 | 2023-08-08 | 国网河南省电力公司电力科学研究院 | Performance evaluation method for damp aging of zinc oxide arrester resistance valve plate |
Also Published As
Publication number | Publication date |
---|---|
JPH0650330B2 (en) | 1994-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4148087A (en) | Distance relay for electric power transmission lines | |
KR101515478B1 (en) | Method for detecting arc by magnetic sensor and arc protection switching board using the same method | |
CN107561393A (en) | A kind of arrester early defect live testing system and method based on total current harmonic wave vector | |
US4866393A (en) | Method of diagnosing the deterioration of a zinc oxide type lightning arrester utilizing vector synthesis | |
JP3430627B2 (en) | Insulation monitoring method and apparatus for monitoring the insulation state of a power cable under a live line | |
CN113671315A (en) | ITn power supply insulation fault positioning method based on proportional differential principle | |
JP2002311061A (en) | Processor for electric power | |
JPS63228082A (en) | Method for diagnosing deterioration of zinc oxide type lightning arrester | |
KR101984950B1 (en) | Apparatus for monitoring earth fault in non-grounded dc power line and method for the same | |
RU2654511C1 (en) | Method of the three-phase transformer and auto-transformer differential current protection | |
CN207408505U (en) | A kind of arrester early defect live testing system based on total current harmonic wave vector | |
KR102419753B1 (en) | Facility health monitoring method by measuring the electric circuit constant inside the power facility in operation | |
Kane et al. | Practical experiences of on-line partial discharge measurements on a variety of medium voltage electrical equipment | |
JPS63265516A (en) | Ground-fault detector for three-phase ac circuit | |
JPH0782061B2 (en) | Deterioration diagnosis method for zinc oxide type arrester | |
CN109557400B (en) | Online detection method for electric energy quality and insulation performance of three-phase IT system of microgrid | |
CN111856115A (en) | Intervention type measuring method for true leakage current of zinc oxide lightning arrester | |
JPH06209518A (en) | Insulation-degradation diagnostic apparatus | |
JPH0643196A (en) | Insulation monitor device in low voltage electric circuit | |
Shaha et al. | Various Methods for Measurement of Resistive Leakage Current of Metal Oxide Surge Arrester | |
KR200318656Y1 (en) | Power Condensor Diagnostic System Using Neutral Current | |
KR102673944B1 (en) | Vibration isolation switchboard havng a function of leakage current detection and monitoring | |
JPH08265957A (en) | Matrix operation type system protector | |
Kumar et al. | Key Insights on Methods for Estimation of Decaying DC Component in Fault Currents | |
Valdes et al. | Ground fault location in low-voltage high-resistance grounded systems via the single-processor concept for circuit protection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |