JPS63227616A - Epoxy resin and production thereof - Google Patents

Epoxy resin and production thereof

Info

Publication number
JPS63227616A
JPS63227616A JP6317387A JP6317387A JPS63227616A JP S63227616 A JPS63227616 A JP S63227616A JP 6317387 A JP6317387 A JP 6317387A JP 6317387 A JP6317387 A JP 6317387A JP S63227616 A JPS63227616 A JP S63227616A
Authority
JP
Japan
Prior art keywords
epoxy resin
epihalohydrin
represented
general formula
polyamines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6317387A
Other languages
Japanese (ja)
Inventor
Yoshikuni Deguchi
出口 義国
Hiroshi Iwakiri
浩 岩切
Kazunari Iwamoto
和成 岩本
Kazuya Yonezawa
米沢 和弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP6317387A priority Critical patent/JPS63227616A/en
Publication of JPS63227616A publication Critical patent/JPS63227616A/en
Pending legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)

Abstract

PURPOSE:To obtain an epoxy resin useful as electrical or electronic casting materials, coating compound and adhesive, having both excellent heat resistance and mechanical characteristics, by adding an epihalohydrin to a specific polyamine and successively reacting with an aqueous solution of a caustic alkali. CONSTITUTION:An epihalohydrin (preferably epichlorohydrin) is added to a polyamine {e.g. 2,2-bis[4-(4-aminophenoxy)phenyl]propane} shown by formula I (Ar1 and Ar2 are aromatic hydrocarbon derived from 6-20C bihydric phenol residue; R1 and R2 are H, halogen or 1-3C alkyl) and successively reacted with an aqueous solution of a caustic alkali to give the aimed epoxy resin shown by formula II (G is glycidyl). The amount of the epihalohydrin used is preferably 2-5 equivalents based on sum of active hydrogen of the polyamine.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は熱的・機械的特性に優れた硬化物を与えるグリ
シジルアミン系エポキシ樹脂、中でも骨格として06〜
C211の2価フェノール残基に由来する芳香族炭化水
素基とN、N−ジグリシジルアミノアリール基をエーテ
ル結合でつないだ構造を有するエポキシ樹脂に関する。
Detailed Description of the Invention "Industrial Field of Application" The present invention relates to a glycidylamine-based epoxy resin that provides a cured product with excellent thermal and mechanical properties, especially a glycidylamine-based epoxy resin containing 06-
The present invention relates to an epoxy resin having a structure in which an aromatic hydrocarbon group derived from a C211 dihydric phenol residue and an N,N-diglycidylaminoaryl group are connected by an ether bond.

「従来技術と問題点」 エポキシ樹脂は塗料、電気・電子、接着、土木・建築、
FRP用のマトリックス樹脂等多くの分野で使用されて
いる。中でもテトラグリシジルジアミノジフェニルメタ
ン、トリグリシジル(m−9p−>アミノフェノール等
に代表されるグリシジルアミン系樹脂(以下、一般のグ
リシジルアミン系樹脂という)は、汎用のエピ−ビス型
樹脂に比べ高い架橋密度を有することから、特に高い耐
熱性を要求する分野に好んで使用されている。その反面
、これら一般のグリシジルアミン系樹脂と、通常用いら
れる酸無水物、ポリアミン等の硬化剤から得られる硬化
物は非常に脆く、十分に機械的特性を満足しているとは
言えない。
"Conventional technology and problems" Epoxy resin is used in paints, electricity/electronics, adhesives, civil engineering/architecture, etc.
It is used in many fields such as matrix resin for FRP. Among them, glycidylamine resins (hereinafter referred to as general glycidylamine resins), such as tetraglycidyldiaminodiphenylmethane and triglycidyl (m-9p->aminophenol), have a higher crosslinking density than general-purpose epi-bis type resins. Because it has a is extremely brittle and cannot be said to have sufficient mechanical properties.

これを改良するため、(I)硬化系にポリアルキレング
リコルジグリシジルエーテル(旭電化(株)ED−50
6等)、ウレタン変性エポキシ樹脂(旭電化(株)EP
U−6等)等の可撓性付与剤を与える方法、(2)硬化
剤の一部又は全部にアルキレンエーテルアミン(三井テ
キサコ(株)ジエファーミンシリーズ等)のようなソフ
トセグメントを有する化合物、あるいはCTBN。
In order to improve this, (I) polyalkylene glycol diglycidyl ether (Asahi Denka Co., Ltd. ED-50) was added to the curing system.
6 etc.), urethane modified epoxy resin (Asahi Denka Co., Ltd. EP)
(2) a compound having a soft segment such as an alkylene ether amine (Mitsui Texaco Co., Ltd. Diefermine series, etc.) in part or all of the curing agent; , or CTBN.

ATBN等のゴム成分を用いる方法等が知られている。A method using a rubber component such as ATBN is known.

しかし乍ら、これらの改良方法では機械的強度は増すも
のの、耐熱性は低下するという欠点があり、優れた機械
的特性と耐熱性を持ったエポキシ樹脂の開発が望まれて
いる。
However, although these improvement methods increase mechanical strength, they have the drawback of decreasing heat resistance, and there is a desire to develop epoxy resins with excellent mechanical properties and heat resistance.

「問題点を解決するための手段」 本発明者らはかかる実情に鑑み、一般のグリシジルアミ
ン系エポキシ樹脂の特徴である優れた耐熱性を損なうこ
となく機械的特性の向上について鋭意研究を重ねた結果
、本発明に到達したものである。
"Means for Solving the Problems" In view of the above circumstances, the inventors of the present invention have conducted extensive research into improving mechanical properties without sacrificing the excellent heat resistance that is characteristic of general glycidylamine-based epoxy resins. As a result, we have arrived at the present invention.

即ち、本発明の第1は、下記一般式N)(式中、Arl
 、A r 2はそれぞれ06〜C2゜の2価フェノー
ル残基に由来する芳香族炭化水素基を示し、R+ 、R
zは各々独立に水素原子、ハロゲン原子、01〜C3の
アルキル基を表し、Gはグリシジル基を示す。) で表されるエポキシ樹脂を、 本発明の第2は、下記一般式(ff> (式中、Ar、 、Ar2はそれぞれCb 〜C20の
2価フェノール残基に由来する芳香族炭化水素基を示し
、R+、Rzは各々独立に水素原子、ハロゲン原子、C
8〜C3のアルキル基を表し、Cはグリシジル基を示す
。) で表されるポリアミン類に、エビハロヒドリンを付加さ
せ、続いて苛性アルカリ水溶液と反応させることを特徴
とする一般式(I) (式中、Art 、Art 、R+ 、Rz 、Gはそ
れぞれ上記特許請求の範囲第1項記載の内容に同じ。
That is, the first aspect of the present invention is the following general formula N) (wherein, Arl
, A r 2 each represent an aromatic hydrocarbon group derived from a dihydric phenol residue of 06 to C2°, R + , R
z each independently represents a hydrogen atom, a halogen atom, or an 01-C3 alkyl group, and G represents a glycidyl group. ) The second aspect of the present invention is an epoxy resin represented by the following general formula (ff> (where Ar, , Ar2 each represent an aromatic hydrocarbon group derived from Cb to C20 dihydric phenol residues). and R+ and Rz each independently represent a hydrogen atom, a halogen atom, a C
It represents an 8-C3 alkyl group, and C represents a glycidyl group. General formula (I) characterized by adding shrimp halohydrin to polyamines represented by ) and then reacting with an aqueous caustic solution (wherein, Art , Art , R + , Rz , and G each represent the above-mentioned patent claims) Scope Same as the content described in paragraph 1.

で表されるエポキシ樹脂の製造方法をそれぞれ内容とす
るものである。
Each content is a method for producing an epoxy resin represented by the following.

本発明のエポキシ樹脂は上記構造式から明らかなように
、骨格として06〜C2゜の2価フェノール残基に由来
する芳香族炭化水素基とN、N−ジグリシジルアミノア
リール基をエーテル結合でつないだ構造を有する。本発
明のエポキシ樹脂は一般のグリシジルジアミン系エポキ
シ樹脂と比較すると、アリーレンエーテルによって主鎖
が延長され、結果としてエポキシ基の密度、即ち架橋密
度の低下に寄与している。またエーテル結合は屈曲性が
大きいので硬化物に可撓性を与え、芳香環が並ぶことに
よって耐熱性の低下は実用上殆ど影響しない僅かな程度
に抑えられるものである。
As is clear from the above structural formula, the epoxy resin of the present invention has an aromatic hydrocarbon group derived from a dihydric phenol residue of 06 to C2° as a skeleton and an N,N-diglycidylaminoaryl group connected through an ether bond. It has a structure. Compared to general glycidyldiamine-based epoxy resins, the epoxy resin of the present invention has a main chain extended by the arylene ether, which contributes to a reduction in the density of epoxy groups, that is, the crosslink density. Furthermore, since the ether bond has a large flexibility, it imparts flexibility to the cured product, and the alignment of the aromatic rings suppresses the decrease in heat resistance to a small degree that has almost no practical effect.

本発明で用いられるポリアミン類(以下、ポリアミン類
という)は、骨格として06〜C20の2価フェノール
残基に由来する芳香族炭化水素基とアミノアリール基を
エーテル結合でつないだ構造を有するものである。この
ようなポリアミン類であれば特に製造方法を問わずに使
用できるが、ビス(4−(4−アミノフェノキシ)フェ
ニル〕スルホンを例に取ってみると、(I)4.4’−
ジヒドロキシフェニルスルホンニナトリウム塩のような
2価フェノールのアルカリ金属塩と、ジニトロベンゼン
のようなニトロ化合物を反応させた後、還元する方法、
(2)4.4’−ジクロロジフェニルスルホンのような
シバライドとアミノフェノール類を塩基性触媒上反応さ
せる方法、等によって製造することができる。
The polyamines used in the present invention (hereinafter referred to as polyamines) have a structure in which an aromatic hydrocarbon group derived from a 06 to C20 dihydric phenol residue and an aminoaryl group are connected by an ether bond as a skeleton. be. Such polyamines can be used regardless of the production method, but taking bis(4-(4-aminophenoxy)phenyl)sulfone as an example, (I) 4.4'-
A method of reacting an alkali metal salt of a dihydric phenol such as dihydroxyphenylsulfone disodium salt with a nitro compound such as dinitrobenzene, and then reducing the reaction;
(2) It can be produced by a method of reacting a civalide such as 4.4'-dichlorodiphenylsulfone with an aminophenol over a basic catalyst.

このようなポリアミン類としては例えば、2゜2−ビス
(I(4−アミノフェノキシ)フェニル〕プロパン(和
歌山積化工業(株)製BAPP)、ビス(4−(4−ア
ミノフェノキシ)フェニル〕スルホン(同BAPS) 
、I、4−ビス(4−アミノフェノキシ)ベンゼン(同
TPE−Q)、1.3−ビス(4−アミノフェノキシ)
ベンゼン(同TPE−R) 、I、3〜ビス(3−アミ
ノフェノキシ)ベンゼン(同TPE−M) 、2゜2−
ビス(4−(3−アミノフェノキシ)フェニル〕プロパ
ン、ビス(4−(4−アミノフェノキシ)フェニルコメ
タン、ビス(4−(3−アミノフェノキシ)フェニルコ
メタン、ビス(4−(5−アミノナフトキシ)フェニル
〕スルホン、2゜2−ビス〔3,5−ジブロモ−4−(
4−アミノフェノキシ)フェニル〕プロパン、ビス〔3
,5−ジメチル−4−(4−アミノフェノキシ)フェニ
ルコメタン、2,2−ビスC4−C3−クロロ−5−ア
ミノフェノキシ)フェニル〕プロパン等が挙げられる。
Examples of such polyamines include 2゜2-bis(I(4-aminophenoxy)phenyl)propane (BAPP manufactured by Wakayama Seika Kogyo Co., Ltd.), bis(4-(4-aminophenoxy)phenyl)sulfone, (same BAPS)
, I, 4-bis(4-aminophenoxy)benzene (TPE-Q), 1,3-bis(4-aminophenoxy)
Benzene (TPE-R), I, 3-bis(3-aminophenoxy)benzene (TPE-M), 2゜2-
Bis(4-(3-aminophenoxy)phenyl)propane, bis(4-(4-aminophenoxy)phenylcomethane, bis(4-(3-aminophenoxy)phenylcomethane, bis(4-(5-amino) naphthoxy)phenyl]sulfone, 2゜2-bis[3,5-dibromo-4-(
4-aminophenoxy)phenyl]propane, bis[3
, 5-dimethyl-4-(4-aminophenoxy)phenylcomethane, 2,2-bisC4-C3-chloro-5-aminophenoxy)phenyl]propane, and the like.

又、これらのポリアミン類は必要に応じて任意の複数を
併用することも出来る。
Moreover, any plurality of these polyamines can be used in combination as necessary.

これらの化合物の中でも特に2,2−ビス〔4−(4−
アミノフェノキシ)フェニル〕プロパン、ビス(4−(
4−アミノフェノキシ)フェニル〕スルホン等が原料入
手の容易さ、性能のバランス等から使用が好ましく、そ
れぞれ一般式(I)において、Ar2が下記のエポキシ
樹脂が得られる; 以下、詳細に本発明のエポキシ樹脂の製造方法について
説明する。ポリアミン類のグリシジル化は、従来知られ
ている芳香族アミン類のグリシジル化方法が適用できる
。例えば、ポリアミン類をエピハロヒドリンに加熱・溶
解し、この溶液に苛性アルカリ水溶液を連続的に滴下し
て反応させる製造方法をとることもできる。しかし得ら
れる樹脂の純度を向上させるためには、まずポリアミン
類にエビハロヒドリンを付加させて活性水素を消滅させ
、続いて苛性アルカリ水溶液を反応させる2段法が好適
である。2段法によるとエポキシ基の開環反応が抑制さ
れるため、純度の高い樹脂が得られることがわかった。
Among these compounds, 2,2-bis[4-(4-
aminophenoxy)phenyl]propane, bis(4-(
It is preferable to use 4-aminophenoxy)phenyl]sulfone etc. from the viewpoint of ease of raw material availability, balance of performance, etc., and in each general formula (I), an epoxy resin in which Ar2 is as shown below can be obtained; A method for producing epoxy resin will be explained. For glycidylation of polyamines, conventionally known methods for glycidylation of aromatic amines can be applied. For example, it is also possible to adopt a manufacturing method in which polyamines are heated and dissolved in epihalohydrin, and an aqueous caustic alkali solution is continuously added dropwise to this solution to react. However, in order to improve the purity of the obtained resin, a two-step method is preferred, in which active hydrogen is first added to polyamines to eliminate active hydrogen, and then an aqueous caustic solution is reacted. It has been found that the two-step method suppresses the ring-opening reaction of the epoxy group, resulting in a highly pure resin.

又、ポリアミン類とエピハロヒドリンの付加反応には、
水を付加触媒として用いることが特に好適である。水の
使用量はポリアミン類に対し0.05〜5.0モル%、
好ましくは0.5〜2.0モル%の範囲で任意の量が選
択できる。
In addition, for the addition reaction of polyamines and epihalohydrin,
Particular preference is given to using water as addition catalyst. The amount of water used is 0.05 to 5.0 mol% based on polyamines,
Any amount can be selected preferably within the range of 0.5 to 2.0 mol%.

エピハロヒドリンとしてはエピクロルヒドリン、β−メ
チルエピクロルヒドリン、エビブロムヒドリン、エビヨ
ードヒドリン等が使用できるが、工業的な入手のし易さ
からエピクロルヒドリンの使用が好ましい。エピハロヒ
ドリンの使用量はポリアミン類の活性水素の合計に対し
当量以上であれば良いが、ポリアミンの溶解を助けるた
め2〜5当量の使用が好ましい。
As the epihalohydrin, epichlorohydrin, β-methylepichlorohydrin, shrimp bromohydrin, shrimp iodohydrin, etc. can be used, but epichlorohydrin is preferably used because of its industrial ease of availability. The amount of epihalohydrin used may be at least equivalent to the total active hydrogen of the polyamines, but it is preferably used in an amount of 2 to 5 equivalents to help dissolve the polyamine.

付加反応の温度及び時間は20〜110℃で005〜1
2時間、好ましくは70〜80゛cで1.0〜6.0時
間である。
The addition reaction temperature and time are 005 to 1 at 20 to 110°C.
2 hours, preferably 1.0 to 6.0 hours at 70 to 80°C.

第2段階で苛性アルカリを用いて脱ハロゲン化水素反応
を行う。苛性アルカリとしては水酸化ナトリウム、水酸
化カリウム、水酸化カルシウム、水酸化マグネシウム、
水酸化バリウム等が使用できるが工業的な入手のし易さ
から水酸化ナトリウムの使用が好ましい。苛性アルカリ
は固体のままでも水溶液としても使用できるが、取り扱
いの簡便さから水溶液が好ましい。苛性アルカリの使用
量はポリアミン類の活性水素の合計に対し1.0〜2.
0当量、好ましくは1.1〜1.5当量である。脱ハロ
ゲン化水素反応の温度及び時間は20〜70°Cで10
分〜3時間、好ましくは40〜60℃で0.5〜2.0
時間である。
In the second step, a dehydrohalogenation reaction is performed using caustic alkali. Caustic alkalis include sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide,
Although barium hydroxide and the like can be used, sodium hydroxide is preferably used because of its industrial availability. Although caustic alkali can be used as a solid or as an aqueous solution, an aqueous solution is preferred for ease of handling. The amount of caustic alkali to be used is 1.0 to 2.
0 equivalent, preferably 1.1 to 1.5 equivalent. The temperature and time of the dehydrohalogenation reaction are 20 to 70 °C and 10
minutes to 3 hours, preferably 0.5 to 2.0 at 40 to 60°C
It's time.

脱ハロゲン化水素反応の触媒としては、第4級アンモニ
ウム塩、第4級ホスホニウム塩、第4級アルソニウム塩
から選ばれる相間移動触媒を用いることが特に好適であ
る。相間移動触媒としては一般に良く知られているもの
、例えばテトラメチルアンモニウムクロライド、テトラ
エチルアンモニウムブロマイド、トリエチルメチルアン
モニウムクロライド“等の第4級アンモニウム塩;トリ
フェニルメチルホスホニウムクロライド、テトラフェニ
ルホスホニウムクロライド等の第4級ホスホニウム塩;
第4級アルソニウム塩等が使用できる。
As a catalyst for the dehydrohalogenation reaction, it is particularly suitable to use a phase transfer catalyst selected from quaternary ammonium salts, quaternary phosphonium salts, and quaternary arsonium salts. Generally well-known phase transfer catalysts include quaternary ammonium salts such as tetramethylammonium chloride, tetraethylammonium bromide, and triethylmethylammonium chloride; class phosphonium salt;
Quaternary arsonium salts and the like can be used.

相間移動触媒の使用量はポリアミン類に対し0.01〜
100モル%、好ましくは0.05〜5モル%の範囲で
任意の量が選択できる。
The amount of phase transfer catalyst used is from 0.01 to polyamines.
Any amount can be selected within the range of 100 mol%, preferably 0.05 to 5 mol%.

脱ハロゲン化水素反応は通常エビハロヒドリン中で行わ
れるが、反応前に過剰分のエピハロヒドリンを留去する
こともできる。この場合希釈剤としてメチルエチルケト
ン、メチルイソブチルケトン、シクロヘキサノン等のケ
トン類;ベンゼン、トルエン、キシレン等の芳香族炭化
水素類;クロロホルム、塩化メチレン等のハロゲン化炭
化水素類等の不活性溶剤を用いることが望ましい。
The dehydrohalogenation reaction is usually carried out in epihalohydrin, but excess epihalohydrin can also be distilled off before the reaction. In this case, inert solvents such as ketones such as methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; aromatic hydrocarbons such as benzene, toluene, and xylene; and halogenated hydrocarbons such as chloroform and methylene chloride may be used as diluents. desirable.

反応終了後生成する塩を濾過又は水洗により除去し、未
反応エビハロヒドリン又は不活性溶剤を留去すると、本
発明のエポキシ樹脂(I)が得られる。
After the reaction is completed, the salt produced is removed by filtration or washing with water, and unreacted shrimp halohydrin or inert solvent is distilled off to obtain the epoxy resin (I) of the present invention.

このようにして得られたエポキシ樹脂は黄〜黄褐色、常
温で液状〜固体を示す。尚、当該樹脂にグリシジル基が
導入されたことは赤外吸収スペクトルにおける905〜
920cm−’のエポキシ基の吸収、プロトン核磁気共
鳴スペクトルの2.5〜4゜Oppmの特有な吸収、塩
酸−ピリジン法によるエポキシ当量の測定から確認でき
る。
The epoxy resin thus obtained is yellow to tan and liquid to solid at room temperature. In addition, the introduction of glycidyl groups into the resin is indicated by the infrared absorption spectrum of 905 to 905.
This can be confirmed from the absorption of the epoxy group at 920 cm-', the characteristic absorption at 2.5-4° Oppm in the proton nuclear magnetic resonance spectrum, and the measurement of the epoxy equivalent by the hydrochloric acid-pyridine method.

以上の製造方法によって得られたエポキシ樹脂は、通常
のエポキシ樹脂と同様に硬化剤と組み合わせることによ
って硬化させることができる。使用される硬化剤は特に
種類を問わず、テトラヒドロ無水フタル酸、メチルテト
ラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メ
チルへキサヒドロ無水フタル酸、無水メチルナジック酸
、無水ピロメリット酸、無水トリメリット酸、ヘンシフ
エノンテトラカルボン酸無水物等の酸無水物類;ジエチ
レントリアミン、トリエチレンテトラミン等の鎖状脂肪
族ポリアミン類;メンセンジアミン、イソホロンジアミ
ン等の環状脂肪族アミン頚;(m−、p−)  キシリ
レンジアミン等の脂環式ポリアミン類;(m−、p−)
フェニレンジアミン、4.4′−ジアミノジフェニルメ
タン、4.4′−ジアミノジフェニルスルホン等の芳香
族ポリアミン類;ポリアミド類;2−メチルイミダゾー
ル、2−エチル−4−メチルイミダゾール等のイミダゾ
ール類;三フッ化ホウ素−アミン錯体に代表されるルイ
ス酸−アミン錯体;ジシアンジアミド及びその誘導体;
クレゾールノボラック、フェノールノボラック、ポリビ
ニルフェノール等のポリフェノール等を挙げることがで
きる。
The epoxy resin obtained by the above manufacturing method can be cured by combining it with a curing agent in the same way as normal epoxy resins. The curing agents used are of any type, including tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylnadic anhydride, pyromellitic anhydride, trimellitic anhydride, Acid anhydrides such as hensifhenonetetracarboxylic anhydride; chain aliphatic polyamines such as diethylenetriamine and triethylenetetramine; cycloaliphatic amine necks such as menthene diamine and isophorone diamine; (m-, p-) Alicyclic polyamines such as xylylene diamine; (m-, p-)
Aromatic polyamines such as phenylene diamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylsulfone;Polyamides; Imidazoles such as 2-methylimidazole, 2-ethyl-4-methylimidazole; trifluoride Lewis acid-amine complexes represented by boron-amine complexes; dicyandiamide and its derivatives;
Examples include polyphenols such as cresol novolak, phenol novolac, and polyvinylphenol.

又、本発明のエポキシ樹脂は他のエポキシ化合物に任意
に″混ぜて使用することもできる。混ぜて使用されるエ
ポキシ化合物は特に種類を問わず、配合割合も任意に選
択できる。
Furthermore, the epoxy resin of the present invention can also be used by optionally mixing it with other epoxy compounds.The epoxy compounds used in the mixture can be of any type and the blending ratio can be selected arbitrarily.

更に本発明のエポキシ樹脂には硬化剤の他に、必要に応
じて第3級アミン、イミダゾール等の硬化促進剤;シリ
カ、タルク等の充填剤;ガラス繊維、カーボン繊維等の
補強剤;カップリング剤;顔料;難燃化剤等々、種々の
添加剤を配合することができる。
Furthermore, in addition to the curing agent, the epoxy resin of the present invention may optionally contain a curing accelerator such as a tertiary amine or imidazole; a filler such as silica or talc; a reinforcing agent such as glass fiber or carbon fiber; Various additives such as additives, pigments, flame retardants, etc. can be blended.

「作用・効果」 本発明のエポキシ樹脂は、骨格として06〜C2゜の2
価フェノール残暴に由来する芳香族炭化水素基とN、N
−ジグリシジルアミノアリール基をエーテル結合でつな
いだ構造を有することから、一般のグリシジルアミン系
エポキシ樹脂に比べ可撓性を始めとする硬化物の機械特
性が向上している。その一方、熱的性質においては本発
明のエポキシ樹脂はグリシジルアミン型樹脂の特徴を受
は継ぎ、得られる硬化物の耐熱性の低下は実用上殆ど影
響しない僅かな程度に抑えられている。
"Action/Effect" The epoxy resin of the present invention has a skeleton of 06 to C2°.
Aromatic hydrocarbon groups derived from phenol residues and N,N
- Because it has a structure in which diglycidylaminoaryl groups are connected by ether bonds, the mechanical properties of the cured product, including flexibility, are improved compared to general glycidylamine-based epoxy resins. On the other hand, in terms of thermal properties, the epoxy resin of the present invention inherits the characteristics of glycidylamine type resins, and the decrease in heat resistance of the resulting cured product is suppressed to a slight degree that has almost no practical effect.

以上のごとく、本発明のエポキシ樹脂は優れた耐熱性と
機械的特性を兼ね備えているので、例えば電気・電子用
の注型材料、塗料、接着剤、積層材やFRP用のマトリ
ックス材料として有用である。
As described above, since the epoxy resin of the present invention has both excellent heat resistance and mechanical properties, it is useful as, for example, casting materials for electrical and electronic applications, paints, adhesives, laminated materials, and matrix materials for FRP. be.

「実施例」 以下に実施例を挙げて更に具体的な説明を行うが、本発
明は実施例によって何ら制限を受けるものではない。尚
、以下、「部」とあるのは「重量部」を意味する。
"Examples" A more specific explanation will be given below with reference to Examples, but the present invention is not limited in any way by the Examples. In addition, hereinafter, "parts" means "parts by weight."

実施例1 2.2−ビスC4−(4−アミノフェノキシ)フェニル
〕プロパン(和歌山積化工業(株)製BAPP)  4
1.05 g  (I00mM) 、−[:ピクロルヒ
ドリン1.11 g (I,20M) 、純水0.10
 gを四つ目フラスコに入れ、70℃まで徐々に昇温し
た。初期発熱が収まった後内温を75〜80℃に保ち、
更に5時間攪拌を続けた。
Example 1 2.2-bisC4-(4-aminophenoxy)phenyl]propane (BAPP manufactured by Wakayama Seika Kogyo Co., Ltd.) 4
1.05 g (I00mM), -[: Pichlorohydrin 1.11 g (I, 20M), pure water 0.10
g was placed in a fourth flask, and the temperature was gradually raised to 70°C. After the initial fever subsides, keep the internal temperature at 75-80℃,
Stirring was continued for an additional 5 hours.

次に内高を50℃まで下げ、強攪拌下48.6%苛性ソ
ーダ水溶液39.5g(苛性ソーダとして4へ    
  へプ・′          −凹反応を続けた。
Next, the inner height was lowered to 50℃, and with strong stirring, 39.5 g of a 48.6% caustic soda aqueous solution (as caustic soda was added to 4.
The hep ′ -concave reaction continued.

析出した食塩を濾過によって除き、デカンテーションに
よって塩類を含む水層を除去した。有機層を150m7
!の純水で4回洗浄し、更にボウ硝による脱水後未反応
エピクロルヒドリンを留去してテトラグリシジル〔2,
2−ビス(4−(4−7ミノフエノキシ)フェノール)
プロ を得た。エポキシ樹脂Aは淡黄色で、常温で粘稠な液状
を示した。エポキシ樹脂への赤外線吸収スペクトルを第
1図に示す。
The precipitated common salt was removed by filtration, and the aqueous layer containing salts was removed by decantation. 150m7 organic layer
! After washing 4 times with pure water and dehydrating with sulfur salt, unreacted epichlorohydrin was distilled off to obtain tetraglycidyl [2,
2-bis(4-(4-7minophenoxy)phenol)
I got a pro. Epoxy resin A was pale yellow in color and exhibited a viscous liquid state at room temperature. Figure 1 shows the infrared absorption spectrum of the epoxy resin.

JIS  K−7231に規定された塩酸−ピリジン法
によって測定したエポキシ当量は172であった。
The epoxy equivalent measured by the hydrochloric acid-pyridine method specified in JIS K-7231 was 172.

実施例2 2.2−ビス(4−(4−アミノフェノキシ)フェニル
〕プロパン41.05gの代わりにビス(4−(4−ア
ミノフェノキシ)フェニル〕スルホン(和歌山積化工業
(株)製BAPS)43.25gを用いた以外は実施例
1と全く同様にしてテーーー゛1パ゛ビx L−!−(
4−′?L″q・Jキシ)フェニル)スルホン〕 (以
下エポキシ樹脂Bとする)65.2gを得た。エポキシ
樹脂Bは常温で固形を示し、顕微鏡法で測定した融点は
48〜55°Cであった。エポキシ樹脂Bの赤外線吸収
スペクトルを第2図に示す。JIS  K−7231に
規定された塩酸−ピリジン法によって測定し応用例1 実施例1で得られたエポキシ樹脂A100部、無水メチ
ルナジック酸(日立化成(株)類88.00部、ベンジ
ルジメチルアミン0.70部を混合してフェスとし、こ
れを3111のスペーサをかませた2枚のガラス板中に
注型し、これをそのままオーブンに入れ、100℃/ 
2Hr+ 150℃/IHr+180℃15Hrの条件
で熱硬化させた。
Example 2 2. Bis(4-(4-aminophenoxy)phenyl)sulfone (BAPS manufactured by Wakayama Seikagaku Kogyo Co., Ltd.) instead of 41.05 g of 2-bis(4-(4-aminophenoxy)phenyl)propane T-1 pipe x L-!-(
4-′? 65.2 g of L″q・Jxy)phenyl)sulfone (hereinafter referred to as epoxy resin B) was obtained.Epoxy resin B was solid at room temperature, and its melting point measured by microscopy was 48 to 55°C. The infrared absorption spectrum of epoxy resin B is shown in Figure 2.It was measured by the hydrochloric acid-pyridine method specified in JIS K-7231.Application Example 1 100 parts of epoxy resin A obtained in Example 1, methylnadic anhydride Mix 88.00 parts of Hitachi Chemical Co., Ltd. and 0.70 parts of benzyldimethylamine to make a festival, pour it into two glass plates fitted with 3111 spacers, and place it in the oven as it is. 100℃/
It was thermally cured under the conditions of 2Hr+150°C/IHr+180°C for 15Hr.

得られた硬化物をダイアモンドカッターを用いて必要な
大きさに切り出してサンプルとし、JIS  K−69
11に規定された加熱変形温度(以下、HDTと表す)
、曲げ試験、常温吸水率を測定した。また、120℃、
2気圧の加熱水蒸気による加速試験(以下、PCTと表
す)後の吸水率も測定した。尚、サンプルの前処理条件
、物性測定はJIS  K−6911に規定された方法
に従った。
The obtained cured product was cut into a required size using a diamond cutter to make a sample, and the JIS K-69
Heating deformation temperature specified in 11 (hereinafter referred to as HDT)
, bending test, and room temperature water absorption were measured. Also, 120℃,
The water absorption rate after an accelerated test (hereinafter referred to as PCT) using heated steam at 2 atm was also measured. The sample pretreatment conditions and physical property measurements were conducted in accordance with the method specified in JIS K-6911.

応用例2 実施例2で得られエポキシ樹脂B100部、無水メチル
ナジック酸(日立化成(株)製83.59部、ヘンシル
ジメチルアミン0.70部を混合・加熱しフェスとした
以外は、応用例1と同様に注型、熱硬化を行ってサンプ
ルを作成し、物性を測定した。
Application Example 2 100 parts of the epoxy resin B obtained in Example 2, 83.59 parts of methylnadic anhydride (manufactured by Hitachi Chemical Co., Ltd.), and 0.70 parts of hensyl dimethylamine were mixed and heated to form a face. A sample was prepared by casting and thermosetting in the same manner as in Example 1, and its physical properties were measured.

比較例1 テトラグリシジルジアミノジフェニルメタン(エポキシ
当量120のもの)100部、日立化成(株)無水メチ
ルナジック酸126.1部、ベンジルジメチルアミン0
.70部を混合しフェスとした以外は、応用例1と同様
に注型、熱硬化を行って硬化物を作成し、物性を測定し
た。
Comparative Example 1 100 parts of tetraglycidyldiaminodiphenylmethane (epoxy equivalent of 120), 126.1 parts of methylnadic anhydride (Hitachi Chemical Co., Ltd.), 0 benzyldimethylamine
.. A cured product was prepared by casting and heat curing in the same manner as in Application Example 1, except that 70 parts were mixed to form a face, and the physical properties were measured.

比較例2 トリグリシジルp−アミノフェノール(エポキシ当量1
23のもの)100部、日立化成(株)無水メチルナジ
ック酸123.0部、ベンジルジメチルアミン0.70
部を混合しフェスとした以外は、応用例1と同様に注型
、熱硬化を行って硬化物を作成し、物性を測定した。
Comparative Example 2 Triglycidyl p-aminophenol (epoxy equivalent: 1
23) 100 parts, Hitachi Chemical Co., Ltd. methylnadic anhydride 123.0 parts, benzyldimethylamine 0.70
A cured product was prepared by casting and heat curing in the same manner as in Application Example 1, except that the parts were mixed to form a face, and the physical properties were measured.

以上応用例1.2の配合割合、硬化条件、得られた硬化
物の物性を表1にまとめて示した。同様にして比較例1
.2については表2に示した。
The blending ratio, curing conditions, and physical properties of the obtained cured product of Application Example 1.2 are summarized in Table 1. Similarly, Comparative Example 1
.. 2 is shown in Table 2.

表   1 1);日立化成(株)製無水メチルナジック酸2);N
、N−ベンジルジメチルアミン表   2 工);日立化成(株)製無水メチルナジック酸2)−;
N、N−ベンジルジメチルアミン3);テトラグリシジ
ルジアミノジフェニルメタン4);トリグリシジルp−
アミノフェノール
Table 1 1); Methylnadic anhydride manufactured by Hitachi Chemical Co., Ltd. 2); N
, N-benzyldimethylamine Table 2); Methylnadic anhydride manufactured by Hitachi Chemical Co., Ltd. 2)-;
N,N-benzyldimethylamine 3); Tetraglycidyldiaminodiphenylmethane 4); Triglycidyl p-
aminophenol

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はそれぞれ実施例1.2で得られたエポ
キシ樹脂A、Bの赤外線吸収スペクトルを示す。
FIGS. 1 and 2 show infrared absorption spectra of epoxy resins A and B obtained in Example 1.2, respectively.

Claims (1)

【特許請求の範囲】 1、下記一般式( I ) ▲数式、化学式、表等があります▼( I ) (式中、Ar_1Ar_2はそれぞれC_6〜C_2_
0の2価フェノール残基に由来する芳香族炭化水素基を
示し、R_1、R_2は各々独立に水素原子、ハロゲン
原子、C_1〜C_3のアルキル基を表し、Gはグリシ
ジル基を示す。) で表されるエポキシ樹脂。 2、一般式( I )において、Ar_2が ▲数式、化学式、表等があります▼ で表される芳香族炭化水素基である特許請求の範囲第1
項記載のエポキシ樹脂。 3、一般式( I )において、Ar_2が ▲数式、化学式、表等があります▼ で表される芳香族炭化水素基である特許請求の範囲第1
項記載のエポキシ樹脂。 4、下記一般式(II) ▲数式、化学式、表等があります▼(II) (式中、Ar_1、Ar_2はそれぞれC_6〜C_2
_0の2価フェノール残基に由来する芳香族炭化水素基
を示し、R_1、R_2は各々独立に水素原子、ハロゲ
ン原子、C_1〜C_3のアルキル基を表し、Gはグリ
シジル基を示す。) で表されるポリアミン類に、エピハロヒドリンを付加さ
せ、続いて苛性アルカリ水溶液と反応させることを特徴
とする一般式( I ) ▲数式、化学式、表等があります▼( I ) (式中、Ar_1、Ar_2、R_1、R_2、Gはそ
れぞれ上記特許請求の範囲第1項記載の内容に同じ。 で表されるエポキシ樹脂の製造方法。 5、エピハロヒドリンの使用量が、一般式(II)で表さ
れるポリアミン類の活性水素の合計に対し当量以上であ
る特許請求の範囲第4項記載の製造方法。 6、エピハロヒドリンの使用量が、一般式(II)で表さ
れるポリアミン類の活性水素の合計に対し2〜5当量で
ある特許請求の範囲第4項又は第5項記載の製造方法。 7、エピハロヒドリンがエピクロルヒドリンである特許
請求の範囲第4項又は第5項記載の製造方法。 8、一般式(II)で示されるポリアミン類とエピハロヒ
ドリンとの付加反応に触媒としてポリアミン類に対し0
.05〜5.0モル%の水を用いる特許請求の範囲第4
項、第5項又は第7項記載の製造方法。 9、一般式(II)で示されるポリアミン類とエピハロヒ
ドリンとの付加反応に触媒としてポリアミン類に対し0
.5〜2.0モル%の水を用いる特許請求の範囲第8項
記載の製造方法。 10、一般式(II)で表されるポリアミン類とエピハロ
ヒドリンの付加反応生成物に苛性アルカリを反応させる
特許請求の範囲第4項、第5項、第7項又は第8項記載
の製造方法。
[Claims] 1. The following general formula (I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) (In the formula, Ar_1Ar_2 are C_6 to C_2_, respectively)
R_1 and R_2 each independently represent a hydrogen atom, a halogen atom, and an alkyl group of C_1 to C_3, and G represents a glycidyl group. ) Epoxy resin represented by. 2. In the general formula (I), Ar_2 is an aromatic hydrocarbon group represented by ▲There are mathematical formulas, chemical formulas, tables, etc.▼ Claim 1
Epoxy resin as described in section. 3. In the general formula (I), Ar_2 is an aromatic hydrocarbon group represented by ▲There are mathematical formulas, chemical formulas, tables, etc.▼ Claim 1
Epoxy resin as described in section. 4. General formula (II) below ▲There are mathematical formulas, chemical formulas, tables, etc.▼(II) (In the formula, Ar_1 and Ar_2 are C_6 to C_2, respectively.
_0 represents an aromatic hydrocarbon group derived from a dihydric phenol residue, R_1 and R_2 each independently represent a hydrogen atom, a halogen atom, or an alkyl group of C_1 to C_3, and G represents a glycidyl group. ) The general formula (I) is characterized by adding epihalohydrin to polyamines represented by the formula and then reacting it with an aqueous caustic solution. ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) (In the formula, Ar_1 , Ar_2, R_1, R_2, and G are each the same as described in claim 1 above. 5. A method for producing an epoxy resin represented by: 5. The amount of epihalohydrin used is represented by general formula (II). The production method according to claim 4, wherein the amount of epihalohydrin used is equal to or more than the equivalent amount to the total active hydrogen of the polyamines represented by general formula (II). 7. The manufacturing method according to claim 4 or 5, wherein the epihalohydrin is epichlorohydrin. 8. General 0 to polyamines as a catalyst for the addition reaction between polyamines represented by formula (II) and epihalohydrin.
.. Claim 4 using 05 to 5.0 mol% water
5. The manufacturing method according to item 5 or 7. 9. 0 to polyamines as a catalyst for the addition reaction between polyamines represented by general formula (II) and epihalohydrin.
.. 9. The manufacturing method according to claim 8, wherein 5 to 2.0 mol% of water is used. 10. The production method according to claim 4, 5, 7, or 8, wherein the addition reaction product of the polyamine represented by the general formula (II) and epihalohydrin is reacted with caustic alkali.
JP6317387A 1987-03-17 1987-03-17 Epoxy resin and production thereof Pending JPS63227616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6317387A JPS63227616A (en) 1987-03-17 1987-03-17 Epoxy resin and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6317387A JPS63227616A (en) 1987-03-17 1987-03-17 Epoxy resin and production thereof

Publications (1)

Publication Number Publication Date
JPS63227616A true JPS63227616A (en) 1988-09-21

Family

ID=13221603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6317387A Pending JPS63227616A (en) 1987-03-17 1987-03-17 Epoxy resin and production thereof

Country Status (1)

Country Link
JP (1) JPS63227616A (en)

Similar Documents

Publication Publication Date Title
JPS59230017A (en) Novel polyglycidyl ether, its preparation and resin prepared therefrom
JPS6231731B2 (en)
JPH0212225B2 (en)
AU610667B2 (en) Epoxy resins comprising an aromatic diamine curing agent
US4656294A (en) Polyglycidyl ethers and a process for producing the same
JPH0377814B2 (en)
JPH0656961A (en) Epoxy resin composition
JPS6241223A (en) Epoxy resin
JPS63227616A (en) Epoxy resin and production thereof
JP2715512B2 (en) Epoxy resin composition and molded article obtained by curing the same
JPS6225116A (en) Resin obtained from novel polyglycidyl ether
JP3441020B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP2509673B2 (en) Epoxy compound and epoxy resin composition containing this as an essential component
JPS62477A (en) Novel epoxy resin and production thereof
US4975511A (en) Glycidyl sulfonamide compound
JPS63227615A (en) Epoxy resin and production thereof
JPS62114981A (en) Novel epoxy resin
JPH01275623A (en) Epoxy resin composition and its cured product
JPH01268715A (en) Novel epoxy resin composition
JPH11279173A (en) New episulfide compound and its production, thermosetting resin containing the same compound and thermosetting resin composition
JPS6396181A (en) Novel glycidyl compound and production thereof
JP3537561B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JPH03722A (en) Heat-resistant and flame-retardant epoxy resin composition
JPS6284071A (en) Novel glycidyl compound and its preparation
JPS63159424A (en) Epoxy resin composition