JPS62477A - Novel epoxy resin and production thereof - Google Patents
Novel epoxy resin and production thereofInfo
- Publication number
- JPS62477A JPS62477A JP13779685A JP13779685A JPS62477A JP S62477 A JPS62477 A JP S62477A JP 13779685 A JP13779685 A JP 13779685A JP 13779685 A JP13779685 A JP 13779685A JP S62477 A JPS62477 A JP S62477A
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- reaction
- resistance
- mol
- novel epoxy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Epoxy Compounds (AREA)
- Epoxy Resins (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は新規なエポキシ樹脂およびその製造方法に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a novel epoxy resin and a method for producing the same.
〈従来の技術〉
エポキシ樹脂は優れた機微的性質、耐熱性、接着性、電
気絶縁性を有することから、構造・オ、接着剤、封止剤
、塗料などの分野で広く用いられている。現在、一般に
用いられているエポキシ樹脂には、ビスフェノールA型
エポキシ樹脂、フェノールノボラック型エポキシ樹脂や
ジアミノジフェニルメタンのテトラグリシジル化合物な
どがある。(「エポキシ樹脂の高機能化と用途展開J
CMC社)
〈発明が解決しようとする問題点〉
しかしながら、近年、樹脂材料の性能に対する要求はま
すます高度になり、多様化しつつある。エポキシ樹脂に
ついても例外ではなく、前述のどの用途においても耐熱
性、#J衝撃性、耐熱衝撃性、耐水性、強度などの機械
的性質をさらに一段と向上させることが強(求められて
いる。ところが、ビスフェノールAQエポキシ樹脂は、
1分子中にグリシジル基を2個しか含有することができ
ないため、硬化時の架橋密度が比較的小さく、硬化物の
耐熱性、強度において満足されるものではなかった。ま
た、フェノールノボラック型エポキシ樹脂やジアミノジ
フェニルメタンのテトラグリシジル化合物は、1分子中
にグリシジル基を3個以上含有するため、硬化時の架橋
密度が大きく、硬化物の耐熱性にはすぐれるが、柔軟性
に乏しく耐衝撃性において満足されるものではなかった
。<Prior Art> Epoxy resins have excellent mechanical properties, heat resistance, adhesive properties, and electrical insulation properties, and are therefore widely used in fields such as structural materials, adhesives, sealants, and paints. Currently, commonly used epoxy resins include bisphenol A type epoxy resins, phenol novolak type epoxy resins, and tetraglycidyl compounds of diaminodiphenylmethane. (“High functionality and application development of epoxy resins J
CMC Corporation) <Problems to be Solved by the Invention> However, in recent years, requirements for the performance of resin materials have become increasingly sophisticated and diversified. Epoxy resins are no exception, and in all of the above-mentioned applications, there is a strong demand for further improvements in mechanical properties such as heat resistance, #J impact resistance, thermal shock resistance, water resistance, and strength. , bisphenol AQ epoxy resin,
Since only two glycidyl groups can be contained in one molecule, the crosslinking density during curing is relatively low, and the heat resistance and strength of the cured product are not satisfactory. In addition, phenol novolac type epoxy resins and diaminodiphenylmethane tetraglycidyl compounds contain three or more glycidyl groups in one molecule, so they have a high crosslinking density during curing, and the cured products have excellent heat resistance, but are flexible. However, the impact resistance was not satisfactory.
く問題点を解決するための手段および作朋〉そこで、本
発明者らは、エポキシ樹脂の一般的長所を具備し、しか
も、耐熱性、耐衝撃性、耐熱衝撃性、耐水性、強度など
の機械的性質にすぐれたエポキシ樹脂組成物を与えるエ
ポキシ樹脂を提供することを目的として、鋭意研究を重
ねた結果、新規なエポキシ樹脂およびその製造方法を見
出し、本発明を完成するに至った。Means and Works for Solving the Problems The inventors of the present invention have developed a method that has the general advantages of epoxy resins, but also has excellent properties such as heat resistance, impact resistance, thermal shock resistance, water resistance, and strength. With the aim of providing an epoxy resin that provides an epoxy resin composition with excellent mechanical properties, as a result of intensive research, a new epoxy resin and a method for producing the same were discovered, and the present invention was completed.
すなわち、本発明は下記式(1)で表わされる新規エポ
キシ樹脂であり、さらに下記式〔…〕で表わされるジア
ミン(以下、「ジアミン」と称する)にエビハロヒドリ
ンを付加させた後、アルカリにより脱ハロゲン化水素反
応を行わせることを特徴とする下記式(1)で表わされ
る新規エポキシ樹脂の製造方法である。That is, the present invention is a novel epoxy resin represented by the following formula (1), which is further dehalogenated with an alkali after adding shrimp halohydrin to a diamine represented by the following formula [...] (hereinafter referred to as "diamine"). This is a method for producing a novel epoxy resin represented by the following formula (1), which is characterized by carrying out a hydrogenation reaction.
以下、本発明を具体的に説明する。The present invention will be explained in detail below.
本発明のエポキシ樹脂は任意の方法で製造することがで
きるが、好ましくは、ジアミンを原料としてエピハロヒ
ドリンと付加反応を行なった後、アルカリを用いて脱ハ
ロゲン化水素反応を行う2段法によって製造できる。The epoxy resin of the present invention can be produced by any method, but preferably, it can be produced by a two-step method in which a diamine is used as a raw material and an addition reaction is performed with epihalohydrin, followed by a dehydrohalogenation reaction using an alkali. .
付加反応は、通常、エピハロヒドリンを反応剤兼溶媒と
して、ジアミン1モルに対して4〜40モル、好ましく
は8〜20モル使用シ、30℃〜エピハロヒドリン還へ
温度下、好ましくは40〜90℃の温度で攪拌すること
によってなすことができる。反応時間は反応温度によっ
て異なるが、通常1〜50時間である。The addition reaction is usually carried out using epihalohydrin as a reactant and solvent, using 4 to 40 mol, preferably 8 to 20 mol, per 1 mol of diamine, at a temperature of 30°C to epihalohydrin reduction, preferably 40 to 90°C. This can be done by stirring at a temperature. The reaction time varies depending on the reaction temperature, but is usually 1 to 50 hours.
エピハロヒドリンとしては、例えばエビクロルヒドリ/
、エビブロムヒドリン、エビヨードヒドリン、β−メチ
ルエピクロルヒドリン、β−メチルエビブロムヒドリン
、β−メチルエビヨードヒドリンなどが使用できる。Examples of epihalohydrin include shrimp chlorhydrin/
, shrimp bromohydrin, shrimp iodohydrin, β-methylepichlorohydrin, β-methyl shrimp bromohydrin, β-methyl shrimp iodohydrin, and the like can be used.
脱ハロゲン化水素反応は、付加反応を行なっり後、通常
、アルカリを原料のジアミン1モルに対して4〜8モル
加えて、20〜80’C1好ましくは30〜60℃の温
度で攪拌することによってなすことができる。反応時間
は反応温度によって異なるが、通常、0.5〜10時間
である。In the dehydrohalogenation reaction, after the addition reaction, 4 to 8 mol of alkali is usually added to 1 mol of the raw material diamine, and the mixture is stirred at a temperature of 20 to 80°C, preferably 30 to 60°C. This can be done by The reaction time varies depending on the reaction temperature, but is usually 0.5 to 10 hours.
脱ハロゲン化水素反応においては、溶媒にメチルエチル
ケトン、メチルイソブチルケトンなどのケトン類を用い
てもよく、アルカリとしては、通常、水酸化リチウム、
水酸化ナトリウム、水酸化カリウムなどが固体状または
水溶液として使用される。In the dehydrohalogenation reaction, ketones such as methyl ethyl ketone and methyl isobutyl ketone may be used as the solvent, and as the alkali, lithium hydroxide,
Sodium hydroxide, potassium hydroxide, etc. are used in solid form or as an aqueous solution.
また、付加反応、脱ハロゲン化水素反応とも、反応促進
のために、第4級アンモニウム塩、第4級ホスホニウム
塩、第4級アルソニウム塩、およびクラウンエーテル類
などを触媒として用いることができる。これらの触媒は
、ジアミン1モルに対して0.001〜LOモルの任意
の1を使用できるが、好ましくは0.01−0.1モル
の量を使用するとよい。Further, in both the addition reaction and the dehydrohalogenation reaction, a quaternary ammonium salt, a quaternary phosphonium salt, a quaternary arsonium salt, a crown ether, or the like can be used as a catalyst to promote the reaction. These catalysts can be used in any amount of 0.001 to LO mole per mole of diamine, preferably in an amount of 0.01 to 0.1 mole.
脱ハロゲン化水素反応の終了後、反応混合物中の塩、触
媒などをろ別し、溶媒を減圧下50〜170℃の温度で
留去することにより、目的とするエポキシ樹脂が得られ
る。After the dehydrohalogenation reaction is completed, the salt, catalyst, etc. in the reaction mixture are filtered off, and the solvent is distilled off under reduced pressure at a temperature of 50 to 170°C, thereby obtaining the desired epoxy resin.
このようにして得られた本発明のエポキシ樹脂は、単独
で、または他のエポキシ樹脂と併用して、エポキシ樹脂
としての用途に使用することができる。併用されるエポ
キシ樹脂には特に制限はなく、用途等に応じて、種々の
エポキシ樹脂が1種または2種以上併用される。The epoxy resin of the present invention thus obtained can be used as an epoxy resin alone or in combination with other epoxy resins. There are no particular restrictions on the epoxy resins used in combination, and one or more of various epoxy resins may be used in combination depending on the application.
また、本エポキシ樹脂を硬化させる硬化剤としては、既
知のエポキシ樹脂におけると同様な種々の硬化剤が使用
できる。Further, as a curing agent for curing the present epoxy resin, various curing agents similar to those used in known epoxy resins can be used.
さらに、本エポキシ樹脂には、他のエポキシ樹脂や硬化
剤のほかに、必要に応じて、可塑剤、有機溶剤、反応性
希釈剤、増量剤、充填剤、補強剤、顔料、彊燃化剤、増
粘剤および可撓性付与剤などの種々の添加剤を配合する
ことができる。Furthermore, in addition to other epoxy resins and curing agents, this epoxy resin also contains plasticizers, organic solvents, reactive diluents, extenders, fillers, reinforcing agents, pigments, and flame retardants. Various additives such as , thickeners and flexibility imparting agents can be blended.
また、本発明のエポキシ樹脂から得られるエポキシ樹脂
硬化物は、耐熱性、耐衝撃性、耐熱衝撃性、耐水性およ
び強度などの機械的性質にすぐれるので、従来からエポ
キシ樹脂が使用されているすべての分野において有用で
あるが、特に接着剤、ICなどの封圧剤、FRPなどの
マトリックス衛脂として有用である。In addition, the epoxy resin cured product obtained from the epoxy resin of the present invention has excellent mechanical properties such as heat resistance, impact resistance, thermal shock resistance, water resistance, and strength, so epoxy resins have been used conventionally. Although it is useful in all fields, it is particularly useful as adhesives, sealants for ICs, etc., and matrix sanitizing agents for FRP, etc.
〈実施例〉
以下に実施例を示し、本発明を具体的に説明するが、本
発明を限定するものではない。<Examples> Examples are shown below to specifically explain the present invention, but they do not limit the present invention.
実施例1
撹拌1、還流冷却器、温度計を備えた313日ガラスフ
ラスコに、2.2′−ビス(4−アミノフェノキシフェ
ニル)プロパン513f(125モル)およびエピクロ
ルヒドリン21 (25,5モル)を仕込み、55℃で
30時間攪拌し、付加反応を行なった。Example 1 2,2'-bis(4-aminophenoxyphenyl)propane 513f (125 mol) and epichlorohydrin 21 (25.5 mol) were added to a 313-day glass flask equipped with stirring, reflux condenser, and thermometer. The mixture was charged and stirred at 55°C for 30 hours to carry out an addition reaction.
次いで、反応系内を減圧(15〜25ffHg)にして
、70℃で未反応のエピクロルヒドリン141を回収し
た。Next, the pressure inside the reaction system was reduced (15 to 25 ffHg), and unreacted epichlorohydrin 141 was recovered at 70°C.
この蒸留残金をメチルエチルケトン161に溶解させ、
水酸化ナトリウム(純度9696)2191 (5,2
5モル)、テトラメチルアンモニウムプロミド8.11
ノ(0,0525モル)を添加した後、50℃で3時間
攪拌して、脱ハロゲン化水素反応を終了した。This distillation residue was dissolved in methyl ethyl ketone 161,
Sodium hydroxide (purity 9696) 2191 (5,2
5 mol), tetramethylammonium bromide 8.11
After adding (0,0525 mol), the mixture was stirred at 50° C. for 3 hours to complete the dehydrohalogenation reaction.
生成した塩、過剰のアルカリ、触媒をろ別し、ろ液から
溶媒を70℃、2 ffHgで減圧下に留去し、さらに
温度を160℃に上げて溶媒を完全に留去して、次式で
示されるエポキシ樹脂772fを得た。The formed salt, excess alkali, and catalyst were filtered off, and the solvent was distilled off from the filtrate under reduced pressure at 70°C and 2 ffHg, and the temperature was further raised to 160°C to completely distill off the solvent. Epoxy resin 772f represented by the formula was obtained.
得られたエポキシ樹脂は、赤褐色透明の非常に粘稠な液
体であり、エポキシ当量が163、塩素含量がO,17
wt%であった。マススペクトル分析では、基準ピーク
(All−1) = 634が観測された。The obtained epoxy resin is a reddish-brown transparent and very viscous liquid with an epoxy equivalent of 163 and a chlorine content of O.17.
It was wt%. In the mass spectrometry analysis, a reference peak (All-1) = 634 was observed.
この物の元素分析結果を表1に、I H−NMRおよび
13C−NMRのスペクトログラムをそれぞれ第1図お
よび第2図に示す。なお、表1中の計算値は、次式で示
される化学構造に対応するも表 1
実施例2
攪拌機、還流冷却器、温度計を備えた1630ガラスフ
ラスコに、2.2’−ビス(4−アミノフェノキシフェ
ニル)プロパン205F(0,5モル) お、l’エピ
クロルヒドリン620ml (8,0モル)を仕込み、
70℃で12時間攪拌し、付加反応を行なった。The elemental analysis results of this product are shown in Table 1, and the I H-NMR and 13C-NMR spectrograms are shown in FIGS. 1 and 2, respectively. The calculated values in Table 1 correspond to the chemical structure shown by the following formula. -aminophenoxyphenyl)propane 205F (0.5 mol), and 620 ml (8.0 mol) of l'epichlorohydrin.
The mixture was stirred at 70°C for 12 hours to carry out an addition reaction.
次いで、反応液を50℃まで冷却し、水酸化ナトリウム
(純度96%)100f(2,4モル)、テトラメチル
アンモニウムプロミド3.71 (0,024モル)を
添加した後、50℃で2時間攪拌して、脱ハロゲン化水
素反応を終了した。Next, the reaction solution was cooled to 50°C, and 100f (2.4 mol) of sodium hydroxide (purity 96%) and 3.71 (0,024 mol) of tetramethylammonium bromide were added. The dehydrohalogenation reaction was completed by stirring for an hour.
生成した塩、過剰のアルカリ、触媒をろ別し、ろ液から
溶媒を70℃、2HHgで減圧下に留去し、さらに温度
を160℃に上げて溶媒を完全に留去して、エポキシ樹
脂301Fを得た。The formed salt, excess alkali, and catalyst were filtered off, and the solvent was distilled off from the filtrate under reduced pressure at 70°C and 2HHg.The temperature was then raised to 160°C to completely distill off the solvent, and the epoxy resin was removed. 301F was obtained.
得られたエポキシ樹脂は、赤褐色透明の非常に粘稠な液
体であり、エポキシ当量が164、塩素含量が0.13
Wj96であった。The obtained epoxy resin is a reddish-brown transparent and very viscous liquid with an epoxy equivalent of 164 and a chlorine content of 0.13.
It was Wj96.
参考例1
実施例Iで得られたエポキシ樹脂をエポキシ硬化剤(4
,4′−ジアミノジフェニルスルホン)と当量混合し、
180℃で2時間、硬化させた。Reference Example 1 The epoxy resin obtained in Example I was mixed with an epoxy curing agent (4
, 4'-diaminodiphenylsulfone),
It was cured at 180°C for 2 hours.
得られた硬化板から試験片を切り出し、JIS規格に7
113に準じて引張り試験を行なった。A test piece was cut out from the obtained cured plate and rated according to JIS standard 7.
A tensile test was conducted according to 113.
その結果を表2に示す。なお、表2において、TI(ガ
ラス転移温度)の測定は、硬化板から試料1511Fを
採取し、デュポン社製990 DSCを用いて毎分40
℃の昇温速度で行なったものであり、吸水率は試験片を
100℃の熱水中に20時間浸漬し、その前後の重量差
から求めたものである。The results are shown in Table 2. In addition, in Table 2, the TI (glass transition temperature) was measured by taking sample 1511F from the cured plate and using a DuPont 990 DSC.
The test piece was immersed in hot water at 100°C for 20 hours, and the water absorption rate was determined from the difference in weight between before and after.
また、表2には、本発明のエポキシ樹脂のかわりにエビ
コー)828(油化7工ル社製)、ELM434(住友
化学工業社製)を用いて、同様の試験を行なった結果も
比較のためにのせておいた。In addition, Table 2 also shows the results of similar tests using Ebiko) 828 (manufactured by Yuka 7koru Co., Ltd.) and ELM434 (manufactured by Sumitomo Chemical Industries, Ltd.) instead of the epoxy resin of the present invention. I put it on there just for the sake of it.
表 2
本発明のエポキシ樹脂を用いたエポキシ樹脂硬化物は、
エピコート828の硬化物と同程度の破断伸度を持ちな
がら、強度、弾性率、Ty、吸水率のいずれにおいても
エピコート828よりもすぐれた性能を示す。また、E
LM434と比較しても、強度、破断伸度、吸水率にま
さり、特に破断伸度は大幅にすぐれている。Table 2 Epoxy resin cured products using the epoxy resin of the present invention are as follows:
While having a breaking elongation comparable to that of the cured product of Epikote 828, it exhibits superior performance than Epicoat 828 in terms of strength, elastic modulus, Ty, and water absorption. Also, E
Even when compared to LM434, it has significantly better strength, elongation at break, and water absorption, especially elongation at break.
〈発明の効果〉
本発明によれば、エポキシ樹脂の一般的長所を具備し、
しかも、耐熱性、耐衝撃性、耐熱衝撃性、耐水性、強度
などの機械的性質にすぐれたエポキシ樹脂硬化物を与え
る新規エポキシ樹脂、およびその製造方法が提供された
。<Effects of the Invention> According to the present invention, it has the general advantages of epoxy resins,
Moreover, a new epoxy resin and a method for producing the same have been provided which provide a cured epoxy resin with excellent mechanical properties such as heat resistance, impact resistance, thermal shock resistance, water resistance, and strength.
第1図および第2図は、それぞれ本発明の新規エホキシ
樹BHノ’ H−NMR(60MH,) オよヒ13c
mNIVIR(67,8Mh)のスペクトログラムであ
る。
特許出願大東し株式会社
第1図
第2図FIG. 1 and FIG. 2 respectively show the novel epoxy tree BH-NMR (60MH,) 13c of the present invention.
This is a spectrogram of mNIVIR (67,8Mh). Patent application Daitoshi Co., Ltd. Figure 1 Figure 2
Claims (2)
学式、表等があります▼・・・・・〔II〕 エピハロヒドリンを付加させた後、アルカリによつて脱
ハロゲン化水素反応を行わせることを特徴とする下記式
〔 I 〕で表わされる新規エポキシ樹脂の製造方法。 ▲数式、化学式、表等があります▼・・・・・〔 I 〕(2) There are mathematical formulas, chemical formulas, tables, etc. for the diamine represented by the following formula [II] ▼... [II] After adding epihalohydrin, perform a dehydrohalogenation reaction with an alkali. A method for producing a novel epoxy resin represented by the following formula [I], which is characterized by: ▲There are mathematical formulas, chemical formulas, tables, etc.▼・・・・・・〔I〕
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13779685A JPS62477A (en) | 1985-06-26 | 1985-06-26 | Novel epoxy resin and production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13779685A JPS62477A (en) | 1985-06-26 | 1985-06-26 | Novel epoxy resin and production thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62477A true JPS62477A (en) | 1987-01-06 |
Family
ID=15207049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13779685A Pending JPS62477A (en) | 1985-06-26 | 1985-06-26 | Novel epoxy resin and production thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62477A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6232112A (en) * | 1985-08-05 | 1987-02-12 | Sumitomo Chem Co Ltd | Epoxy resin |
JPS62265277A (en) * | 1986-03-03 | 1987-11-18 | アモコ・コーポレイション | Epoxy resin based on tetraglycidylamine |
US4916202A (en) * | 1987-09-17 | 1990-04-10 | University Of Dayton | Epoxy resin |
US5189082A (en) * | 1991-09-26 | 1993-02-23 | Cheil Industries, Inc. | Imide epoxy resins for sealing semiconductor elements |
US5254605A (en) * | 1991-11-30 | 1993-10-19 | Cheil Industries, Inc. | Imide epoxy resin composition for sealing semiconductor elements |
US5266612A (en) * | 1992-01-18 | 1993-11-30 | Cheil Industries, Inc. | Imide epoxy resin composition for sealing semiconductor elements |
-
1985
- 1985-06-26 JP JP13779685A patent/JPS62477A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6232112A (en) * | 1985-08-05 | 1987-02-12 | Sumitomo Chem Co Ltd | Epoxy resin |
JPS62265277A (en) * | 1986-03-03 | 1987-11-18 | アモコ・コーポレイション | Epoxy resin based on tetraglycidylamine |
US4916202A (en) * | 1987-09-17 | 1990-04-10 | University Of Dayton | Epoxy resin |
US5189082A (en) * | 1991-09-26 | 1993-02-23 | Cheil Industries, Inc. | Imide epoxy resins for sealing semiconductor elements |
US5254605A (en) * | 1991-11-30 | 1993-10-19 | Cheil Industries, Inc. | Imide epoxy resin composition for sealing semiconductor elements |
US5266612A (en) * | 1992-01-18 | 1993-11-30 | Cheil Industries, Inc. | Imide epoxy resin composition for sealing semiconductor elements |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2528473B2 (en) | Diglycidyl compound and method for producing the same | |
JPH0578573B2 (en) | ||
JPS6296484A (en) | Polyepoxy compound | |
JPS62477A (en) | Novel epoxy resin and production thereof | |
JP2000178344A (en) | Epoxy resin composition | |
JPS6165876A (en) | Trifunctional epoxy compound | |
JP3983935B2 (en) | Method for producing episulfide resin | |
JPH0311073A (en) | Glycidyl compound, production thereof and glycidyl compound-containing composition | |
JPH04142326A (en) | Epoxy resin and its production | |
JPS6213351B2 (en) | ||
JP2774345B2 (en) | Novel epoxy resin and its production method | |
EP0053365B1 (en) | Novel polyglycidyl compounds and method for production thereof | |
JPH02202512A (en) | Epoxy resin composition and molded article produced by curing the same | |
JPS61186375A (en) | Novel polyepoxy compound | |
JP2879860B2 (en) | Epoxy resin, epoxy resin composition and cured product thereof | |
JPS6396181A (en) | Novel glycidyl compound and production thereof | |
JPS63159424A (en) | Epoxy resin composition | |
JPS61186377A (en) | Novel polyepoxy compound | |
JP3537561B2 (en) | Epoxy resin, epoxy resin composition and cured product thereof | |
JP3104930B2 (en) | New epoxy resin, resin composition and cured product | |
JPS62124110A (en) | Epoxy resin composition | |
JPS63159419A (en) | Production of epoxy resin | |
JPH01268715A (en) | Novel epoxy resin composition | |
JPH08311154A (en) | Epoxy resin, epoxy resin composition and its cured product | |
JPS58162584A (en) | Preparation of polyglycidylamino compound |