JPS63226348A - Composite implant member - Google Patents

Composite implant member

Info

Publication number
JPS63226348A
JPS63226348A JP61313671A JP31367186A JPS63226348A JP S63226348 A JPS63226348 A JP S63226348A JP 61313671 A JP61313671 A JP 61313671A JP 31367186 A JP31367186 A JP 31367186A JP S63226348 A JPS63226348 A JP S63226348A
Authority
JP
Japan
Prior art keywords
thin metal
metal wire
layer
winding
wound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61313671A
Other languages
Japanese (ja)
Inventor
康夫 真鍋
年樹 大中
佐藤 義智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Publication of JPS63226348A publication Critical patent/JPS63226348A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30907Nets or sleeves applied to surface of prostheses or in cement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof

Landscapes

  • Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)
  • Dental Prosthetics (AREA)
  • Materials For Medical Uses (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は複合インプラント部材に関し、詳細には新生骨
組織の侵入・成長を促して骨との一体性を高めるうえで
重要な多孔質構造を有すると共に優れた強度を有し、且
つ簡単に製造することのできる複合インプラント部材に
関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a composite implant member, and more specifically, the present invention relates to a composite implant member that has a porous structure that is important for promoting the invasion and growth of new bone tissue and improving the integration with the bone. The present invention relates to a composite implant member that has excellent strength and is easy to manufacture.

[従来の技術] 複雑骨折あるいは骨腫瘍やリエウマチ等の疾患等によ“
り損傷乃至欠損した骨や関節或は歯等を修復乃至補綴、
あるいは代替するものとして、人工骨、人工関節、人工
歯根等のインプラント部材が実用化されている。
[Conventional technology] “Conventional technology”
Repair or prosthetics for damaged or missing bones, joints, teeth, etc.
Alternatively, as an alternative, implant members such as artificial bones, artificial joints, and artificial tooth roots have been put into practical use.

これらのインプラント部材は、生体との適合性及び強度
という2・大要求を満たすばかりでなく、埋設部におけ
る骨組織の侵入・成長を促して生体との一体性を高め得
る様な材料が必要である。
These implant components must not only meet the two major requirements of compatibility with the living body and strength, but also be made of materials that can enhance the integration with the living body by promoting the invasion and growth of bone tissue at the implanted site. be.

従って新生骨の侵入・成長を促進させる上で特に有効な
多孔質構造を表層部に形成した材料が使用されている。
Therefore, materials are used in which a porous structure is formed in the surface layer, which is particularly effective in promoting the invasion and growth of new bone.

中でもチタン、チタン合金、ジルコニウム、ジルコニウ
ム合金、コバルト−クロム−モリブデン合金、コバルト
−クロム−タングステン−ニッケル合金、316ステン
レス鋼などの金属素材で作製した表層部多孔質構造体は
生体との適合性、耐食性、強度等が優れたものであると
ころから広く実用化研究が進められている「たとえば「
金属」第51巻(1981)、第11号、第8〜14頁
参照]。
Among them, surface porous structures made of metal materials such as titanium, titanium alloy, zirconium, zirconium alloy, cobalt-chromium-molybdenum alloy, cobalt-chromium-tungsten-nickel alloy, and 316 stainless steel are compatible with living organisms. For example, practical research is progressing widely due to its excellent corrosion resistance and strength.
Metals, Vol. 51 (1981), No. 11, pp. 8-14].

骨組織との一体性を高めるための多孔質化法としては、
粉末焼結法と短繊維焼結法が主流となっている。即ち粉
末焼結法とは適当な粒径の金属粉末を、骨組織の侵入・
成長に適した無数の小孔を残す様に加圧成形した後焼結
させる方法であり、また短繊維焼結法とは金属細線を短
繊維状に切断した後、骨組織の侵入・成長に通した無数
の小孔を残す様に加圧成形した後焼結させる方法であり
、この様にして得られるインプラント部材は、金属粉末
の粒径や細線径を調整しあるいは圧縮力を調整すること
によって小孔の寸法を任意にコントロールすることがで
き、しかも多孔質化によって弾性率を骨のそれに近づけ
ることができ接合界面の応力集中を緩和し得るといった
特徴もあり、臨床的実用化研究も急速に進められている
Porous methods to improve integration with bone tissue include:
Powder sintering method and short fiber sintering method are the mainstream. In other words, the powder sintering method uses metal powder of an appropriate particle size to penetrate bone tissue.
This method involves pressure forming and sintering to leave countless small pores suitable for bone tissue growth.The short fiber sintering method involves cutting thin metal wires into short fibers, which are then used to create holes that are suitable for bone tissue invasion and growth. This is a method of pressure forming and sintering so as to leave countless small holes through which the implant is formed.The implant member obtained in this way can be produced by adjusting the particle size and fine wire diameter of the metal powder or by adjusting the compression force. The size of the small pores can be controlled arbitrarily, and the modulus of elasticity can be brought closer to that of bone by making it porous, which can alleviate stress concentration at the joint interface.Research into clinical practical application is also progressing rapidly. is being advanced.

[発明が解決しようとする問題点] ところが上記粉末焼結法及び短繊維焼結法のいずれの方
法にしても、0粒径あるいは短縁径の調整、■成形用カ
プセルや金型を用いた加圧成形、■焼結、の各工程を経
なければならないので製作が意外に面倒であり、しかも
多孔質層は粉末または短繊維同士が点接触の状態で焼結
接合したものであるから、強度的に見て十分なものとは
言えず、たとえば人工歯根材料として用いた場合におけ
る装着時の噛合力(大臼歯部で41〜91に8程度、小
臼歯部で23〜46Kg程度、犬歯で14〜34にg程
度、前歯部で9〜25Kg程度といわれている)によっ
て多孔質層が破壊され骨との一体性を失うということも
しばしば経験されている。
[Problems to be solved by the invention] However, in both the powder sintering method and the short fiber sintering method, it is difficult to adjust the zero particle diameter or the short edge diameter, and to use a molding capsule or mold. Manufacturing is surprisingly troublesome as it requires pressure forming and sintering, and the porous layer is made by sintering and bonding powder or short fibers in point contact with each other. In terms of strength, it cannot be said to be sufficient, and for example, when used as an artificial tooth root material, the biting force during installation (approximately 41 to 91 kg for molars, approximately 23 to 46 kg for premolars, approximately 23 to 46 kg for canines) It is often experienced that the porous layer is destroyed and loses its integrity with the bone due to the impact of 14 to 34 kg (approximately 9 to 25 kg in the front teeth).

本発明はこの様な事情に鑑みてなされたものであって、
その目的は、骨組織の侵入・成長に適した小孔を無数に
有するという特性を備えたうえで、噛合力や体重その他
の外力にも耐える十分な強度を有し、しかも簡単且つ安
価に作製することのできる複合インプラント部材を提供
しようとするものである。
The present invention was made in view of these circumstances, and
Its purpose is to have numerous small holes suitable for bone tissue invasion and growth, to have sufficient strength to withstand biting force, body weight, and other external forces, and to be easy and inexpensive to manufacture. The present invention aims to provide a composite implant member that can

[問題点を解決するための手段] 本発明に係る複合インプラント部材の構成は、インプラ
ント母材の外周に、金属製細線が、該細線の相互間及び
当該細線による巻回層の最外表面側にアンダーカットを
有する溝または互いに連通し合う空孔を残す様に巻回さ
れたうえ、焼結されたものであるところに要旨を有する
ものである。
[Means for Solving the Problems] The structure of the composite implant member according to the present invention is such that thin metal wires are arranged on the outer periphery of the implant base material between the thin wires and on the outermost surface side of the layer wound with the thin wires. The gist is that it is wound so as to leave grooves with undercuts or holes that communicate with each other, and then sintered.

[作用及び実施例] 本発明の複合インプラント部材は、たとえば第1図(斜
視説明図、図中1はインプラント母材、2は金属細線、
3はボビンを夫々示す)に示す如く、前述の如き棒状の
インプラント母材1の外周に金属細線2をボビン3から
繰り出して巻回し、インプラント母材1の外周面に金属
細線2の巻回層を形成する。該巻回層の形成に当たって
は、相隣り合って巻回される金属細線2同士の間に適当
な隙間が形成され、且つ該隙間は当該巻回層の外周面側
へ連通する様に巻回を行なう。たとえば第2図は、金属
細線2をインプラント母材1の軸心と略直交する方向に
巻回した状態を示す一部拡大断面図であり、この例では
金属細線2を適当な隙間Sをあけて一層だけ巻回してい
る。しかして金属細線2を同一方向に複数層巻口した場
合、たとえば第3図に示す如く下部の巻回層に形成され
る空1sは、その上に巻回される金属細線2によって封
鎖されるため、骨組織が空隙S内へ侵入することができ
ず、最外周層の空Ill S以外は骨との一体性向上に
全く寄与し得なくなるからである。また第4図に示す如
く、インプラント母材1に対し金属細線2を隙間なく密
に巻回すると、埋設後複合インプラント部材の外面側(
即ち巻回された金属細線2の外面側)で成長する骨組織
Bが、アンダーカットのない外面の凹部に侵入するだけ
であり、アンカー効果が得られない為十分な接合強度を
得ることができないが、第2図に示した様に金属細線2
同士の間に適当な隙間Sを設けて巻回しておけば、第5
図に示す如く複合インプラント部材の外周面で成長する
骨組織Bが隙間Sを通して深部のアンダーカット部位ま
で侵入することになり、噛合い効果及びアンカー効果に
よって強力な接合力が発揮される。
[Operations and Examples] The composite implant member of the present invention is illustrated in FIG. 1 (perspective explanatory view, in which 1 is an implant base material, 2 is a thin metal wire,
3 indicates bobbins), a thin metal wire 2 is fed out from the bobbin 3 and wound around the outer circumference of the rod-shaped implant base material 1 as described above, and a wound layer of the thin metal wire 2 is formed on the outer circumferential surface of the implant base material 1. form. In forming the wound layer, an appropriate gap is formed between the thin metal wires 2 that are wound next to each other, and the metal wires are wound so that the gap communicates with the outer peripheral surface of the layer. Do the following. For example, FIG. 2 is a partially enlarged sectional view showing a state in which the thin metal wire 2 is wound in a direction substantially perpendicular to the axis of the implant base material 1. In this example, the thin metal wire 2 is wound with an appropriate gap S. It is wrapped in only one layer. When a plurality of thin metal wires 2 are wound in the same direction, for example, as shown in FIG. Therefore, bone tissue cannot invade into the cavity S, and anything other than the cavity IllS in the outermost peripheral layer cannot contribute to improving the integrity with the bone at all. Furthermore, as shown in FIG. 4, when the thin metal wire 2 is tightly wound around the implant base material 1 without any gaps, the outer surface of the composite implant member (
In other words, the bone tissue B growing on the outer surface of the wound thin metal wire 2 only invades the recesses on the outer surface without undercuts, and an anchor effect cannot be obtained, making it impossible to obtain sufficient joint strength. However, as shown in Fig. 2, the thin metal wire 2
If you wind it with an appropriate gap S between them, the fifth
As shown in the figure, the bone tissue B growing on the outer peripheral surface of the composite implant member penetrates through the gap S to the deep undercut site, and a strong bonding force is exerted due to the interlocking effect and the anchoring effect.

尚生体内における新生骨の成長と侵入には適度の空隙と
血液の循環が不可欠で・あり、そのためには前記隙間S
として少なくとも50μm以上、より好ましくは150
〜250μmの空孔径が必要であるので、前記隙間Sが
この長さ範囲となる様に巻回間隔を調整すべきである。
Appropriate voids and blood circulation are essential for the growth and invasion of new bone in the living body, and for this purpose, the above-mentioned gap S
at least 50 μm or more, preferably 150 μm or more
Since a pore diameter of ~250 μm is required, the winding interval should be adjusted so that the gap S falls within this length range.

また使用する金属細線2の寸法は特に限定されないが、
強力な接合力を得るうえで好ましいのは0.1〜3mm
φ、より好ましくは0.2〜1.0 amφの範囲であ
る。
Further, the dimensions of the thin metal wire 2 used are not particularly limited, but
The preferred thickness is 0.1 to 3 mm to obtain strong bonding force.
φ, more preferably in the range of 0.2 to 1.0 amφ.

上記では金属細線2を略平行方向に一層巻きする例を示
したが、第1層、第2層、・・・・・・第n層に巻回さ
れる金属細線2を相互に交差させて巻回する方法を採用
すれば、以下に詳述する如く各巻回層に形成される隙間
Sを相互に連通せしめつつ最外面側とも連通させること
ができる。即ち第6図(概略平面説明図)及び第7図(
一部縦断面説明図)はその様な巻回例を示したものであ
り、インプラント母材1に対し金属細線2を一定の間隔
αで略平行に巻回すると共に、第1層目の金属細線2a
と第2層目の金属細線2b、第2層目の金属−細線2b
と第3層目の金属細線2c、・・・・・・の各巻回方向
が交差する様に巻回する。この様な巻回法を採用すれば
、第1層に形成される隙間Saと第2層に形成される隙
間sb、第2層に形成される隙間sbと第3層に形成さ
れる隙間Sc、・・・・・・第(n−1)層に形成され
る隙間5(n−1)と第n層に形成される隙間Snが全
て相互に連通することとなり、金属細線2a、2b、・
・−2nの巻回層中に3次元的に連通した空隙を形成す
ることができる。そしてこれらの隙間Sa、Sb、・・
・Snを構成する間隔αが夫々50μm以上、好ましく
は150〜250μmとなる様に巻回することによって
、隙間Sa、Sb、 ・・・Sn内への骨組織の侵入・
成長を円滑に進行せしめ、埋設部における骨基盤と複合
インプラント部材とを強固に接合一体化することが可能
となる。
In the above example, the thin metal wire 2 is wound in one layer in a substantially parallel direction, but the thin metal wire 2 wound in the first layer, second layer, ... nth layer may be made to cross each other. If the winding method is adopted, the gaps S formed in each winding layer can be made to communicate with each other and also with the outermost surface side, as will be described in detail below. That is, Fig. 6 (schematic plan view) and Fig. 7 (
(partial longitudinal cross-sectional explanatory view) shows such a winding example, in which the thin metal wire 2 is wound approximately parallel to the implant base material 1 at a constant interval α, and the first layer of metal Thin wire 2a
and second layer metal thin wire 2b, second layer metal thin wire 2b
and the third layer of thin metal wire 2c, . . . are wound so that their respective winding directions intersect. If such a winding method is adopted, the gap Sa formed in the first layer, the gap sb formed in the second layer, the gap sb formed in the second layer, and the gap Sc formed in the third layer. . . . The gap 5 (n-1) formed in the (n-1)th layer and the gap Sn formed in the n-th layer all communicate with each other, and the thin metal wires 2a, 2b,・
- Three-dimensionally communicating voids can be formed in the -2n wound layer. And these gaps Sa, Sb,...
・By winding Sn so that the intervals α are each 50 μm or more, preferably 150 to 250 μm, the penetration of bone tissue into the gaps Sa, Sb, ...Sn
It is possible to allow the growth to proceed smoothly and to firmly connect and integrate the bone base and the composite implant member in the buried part.

尚一般にインプラント部材として使用される多孔質材料
の好ましい空隙率は、骨組織の侵入・成長による接合力
と多孔質層自体の機械的強度の兼ね合いから15〜65
%程度が好ましく、機械的強度が保証される限り空隙率
は高い方が好ましいとされているが、上記の方法であれ
ば金属細線2の直径及び巻回間隔αを変えることによっ
て空隙率を任意に調整することができ、必要に応じた最
適の空隙率を有する多孔質層をインプラント部材の表面
に形成することができる。
In general, the preferred porosity of porous materials used as implant members is 15 to 65, considering the balance between bonding force due to invasion and growth of bone tissue and mechanical strength of the porous layer itself.
%, and as long as mechanical strength is guaranteed, it is said that a higher porosity is preferable, but with the above method, the porosity can be adjusted arbitrarily by changing the diameter of the thin metal wire 2 and the winding interval α. It is possible to form a porous layer on the surface of the implant member having the optimum porosity according to needs.

たとえば第8図に示す如く金属細線2の直径をd1各細
線間の間隔をαとした場合、空隙率は次式によって求め
ることができる。
For example, as shown in FIG. 8, when the diameter of the thin metal wire 2 is d1 and the interval between each thin wire is α, the porosity can be determined by the following equation.

空隙率=1− π(1/2d)2 /d(d+α) =1− πd2 /4d(d+α) =1−πd /4(d+α) そしてα=0であるときの空隙率 (=1−πd/4d =21.5%)を最小値として、αを大きくすることに
より空隙率を自由に調整することができる。
Porosity = 1- π (1/2d)2 /d (d + α) = 1- πd2 /4d (d + α) = 1-πd /4 (d + α) And when α = 0, the porosity (=1-πd /4d = 21.5%) as the minimum value, and the porosity can be freely adjusted by increasing α.

骨組織の侵入・成長を進めるうえで好ましい金属細線の
間隔αは前述の如く150〜250μmであるから、上
記式より、金属細線の直径を0.15〜2■、間隔αを
150〜250μmの範囲で夫々変えた場合における多
孔質層の空隙率は下記第1表に示す通りとなり、空隙率
を広い範囲で任意に変更し得ることが分かる。
The preferred spacing α between the thin metal wires to advance the invasion and growth of bone tissue is 150 to 250 μm as described above, so from the above formula, the diameter of the thin metal wires is 0.15 to 2 cm, and the spacing α is 150 to 250 μm. The porosity of the porous layer when the porosity is changed within a range is as shown in Table 1 below, which shows that the porosity can be arbitrarily changed within a wide range.

(以下余白) 第   1   表 (%) 第6.7図に示す如く相互に交差させて複層に巻回する
場合の巻数は特に制限されず、金属細線の寸法やインプ
ラント部材としての目標寸法等に応じて任意に決めれば
よいが、骨組織の侵入・成長による接合力自体は通常4
〜6層程度の巻回で飽和するので、それ以上の巻回はあ
まり意味がない。
(Margins below) Table 1 (%) As shown in Figure 6.7, the number of turns is not particularly limited in the case of mutually intersecting multi-layer winding, and may vary depending on the dimensions of the thin metal wire, the target dimensions for the implant component, etc. Although it can be determined arbitrarily depending on the
It reaches saturation after winding ~6 layers, so there is little point in winding more than that.

上記の様にして巻回した後は、巻回状態のままで焼結処
理を行なってインプラント母材1と巻回された金属細線
2を一体に接合せしめ、次いで第9図に示す如く切断し
た後、更に第10図に示す様に頭部加工を施すと複合イ
ンプラント部材(本例は人工歯根)が得られる。
After winding as described above, a sintering process was performed in the wound state to bond the implant base material 1 and the wound thin metal wire 2 together, and then the wire was cut as shown in FIG. Thereafter, the head is further processed as shown in FIG. 10 to obtain a composite implant member (in this example, an artificial tooth root).

焼結は金属材の酸化を防ぐ意味で真空あるいは不活性ガ
ス雰囲気で行なうのがよく、また温度はインプラント母
材や金属細線の種類に応じて適当に設定すればよいが、
通常は900〜1500℃程度で行なわれ、焼鈍時間は
1〜5時間程度が適当である。
Sintering is preferably performed in a vacuum or inert gas atmosphere to prevent oxidation of the metal material, and the temperature can be set appropriately depending on the implant base material and the type of thin metal wire.
The annealing is usually carried out at a temperature of about 900 to 1,500°C, and the appropriate annealing time is about 1 to 5 hours.

第11.12図は本発明に係る複合インプラント部材の
他の製法を略伝するものであり、適用対象となる骨の形
状に合わせてやや小さめに成形加工されたインプラント
母材1の外周に前記と同様にして金属細線2を巻回し、
その後焼結処理することによって人工骨とする。尚イン
プラント母材1に対する金属細線2の巻回は、第11図
の如くインプラント母材1を回転させながら、ボビン3
から金属細線2を繰り出して巻回する方法、あるいは第
12図に示す如くインプラント母材1のまわりにボビン
3を旋回させることにより金属細線2を巻回する方法の
いずれを採用してもよい。
Figures 11 and 12 briefly describe another manufacturing method of the composite implant member according to the present invention, in which the above-mentioned method is applied to the outer periphery of the implant base material 1, which is formed into a slightly smaller size according to the shape of the bone to which it is applied. In the same manner, wind the thin metal wire 2,
After that, it is made into an artificial bone by sintering. The thin metal wire 2 is wound around the implant base material 1 while rotating the implant base material 1 as shown in FIG.
Either a method of winding the thin metal wire 2 by drawing it out from the implant, or a method of winding the thin metal wire 2 by rotating the bobbin 3 around the implant base material 1 as shown in FIG. 12 may be adopted.

また金属細線2は、第13図に示す如くインプラント母
材1の全面に巻回し得るほか、場合によっては第14図
に示す如くインプラント母材1の一部にのみ巻回し、表
面を部分的に多孔質化したものとすることも可能である
Further, the thin metal wire 2 can be wound over the entire surface of the implant base material 1 as shown in FIG. It is also possible to make it porous.

本発明で使用されるインプラント母材の材質は、生体に
悪影響を及ぼすことがなく、且つ埋設後の複合インプラ
ント部材にかかる外力に耐え得る強度を有するものであ
ればすべて使用することがで診るが、最も一般的なのは
チタン、チタン合金、ジルコニウム、ジルコニウム合金
、コバルト−クロム−モリブデン合金、コバルト−クロ
ム−タングステン合金、ステンレス鋼等の金属、および
アルミナ等の鉱物質焼結体である。またその形状は円柱
が最も一般的であるが、このほか矩形柱、楕円柱等の異
形物であってもよく、また人工関節等として使用するも
のについてはそれに応じた形状に成形するなど、用途に
応じて任意に変更することができる。
Any material can be used for the implant base material used in the present invention, as long as it does not have a negative effect on the living body and has enough strength to withstand external forces applied to the composite implant member after implantation. The most common are metals such as titanium, titanium alloys, zirconium, zirconium alloys, cobalt-chromium-molybdenum alloys, cobalt-chromium-tungsten alloys, stainless steel, and mineral sintered bodies such as alumina. In addition, although the most common shape is a cylinder, it may also be of irregular shapes such as a rectangular cylinder or an elliptical cylinder, and if it is used as an artificial joint, it may be molded into a suitable shape, etc. It can be changed arbitrarily depending on the situation.

金属細線も生体に悪影響を及ぼすことがなく、且つ使用
時の外力に耐える強度を有するものであれば種類の如何
を問うものではないが、最も一般的なのは前記インプラ
ント母材用として例示した様な金属である。金属細線の
寸法は目標とする空隙率等を考慮して決められるが、通
常は径換算で0.1〜3mmの範囲のものが使用され、
その断面形状も円形に限らず、異形断面とすることによ
り新生骨組織の侵入・成長を一段と促進させることもで
きる。
The type of thin metal wire does not matter as long as it does not have a negative effect on the living body and has the strength to withstand external forces during use, but the most common type is the one exemplified above for the implant base material. It is metal. The dimensions of the thin metal wire are determined by taking into consideration the target porosity, etc., but usually those with diameters in the range of 0.1 to 3 mm are used.
The cross-sectional shape is not limited to a circular shape, but a modified cross-section can further promote the invasion and growth of new bone tissue.

またインプラント母材と金R細線の選定にあたっては、
巻回後の温度変化(焼結処理時を含めて)による膨張・
収縮によりインプラント母材と金属細線との間に隙間が
できて一体性が低下することのない様、インプラント母
材と同等もしくはそれより熱膨張係数の小さな金属細線
を選択するのがよい。
In addition, when selecting the implant base material and gold R fine wire,
Expansion due to temperature changes after winding (including during sintering)
In order to prevent a gap from being created between the implant base material and the thin metal wire due to shrinkage, thereby reducing the integrity, it is preferable to select a thin metal wire with a coefficient of thermal expansion equal to or smaller than that of the implant base material.

[発明の効果] 本発明は以上の様に構成されており、その効果を要約す
ると下記の通りである。
[Effects of the Invention] The present invention is configured as described above, and its effects are summarized as follows.

■多孔質層の形成は金属細線の巻回のみによって行なう
ことができ、従来の粉末焼結体や短繊維焼結体に比べて
製造工程が著しく簡略化できる。
(2) The porous layer can be formed only by winding a thin metal wire, and the manufacturing process can be significantly simplified compared to conventional powder sintered bodies or short fiber sintered bodies.

■第1図や第9図に示した様に、棒状基材に所定間隔で
金属細線を多数位置に巻回することにより、以後の焼結
を同時に行なうことができ、生産性及び品質の安定性を
高めることができる。
■As shown in Figures 1 and 9, by winding thin metal wires around a rod-shaped base material in multiple positions at predetermined intervals, subsequent sintering can be performed simultaneously, resulting in stable productivity and quality. You can increase your sexuality.

■金属細線の寸法や巻回間隔等を変えることによって多
孔質層の空隙率を自由に調整し得るばかりでなく、骨組
織の侵入・成長に最適の孔径を確保することがで籾、骨
組織と強固に接合一体化させることができる。
■Not only can the porosity of the porous layer be freely adjusted by changing the dimensions and winding interval of the thin metal wires, but also the pore size that is optimal for the penetration and growth of bone tissue can be ensured. It can be firmly bonded and integrated.

■多孔質層は相互に交差して巻回された線材により形成
されているので、個々の粒子や短繊維が焼結により接合
しただけの粉末焼結体や短繊維焼結体に比べて多孔質層
の機械的強度が高く、外力を受けた場合でも多孔質層が
損傷を受ける恐れがない。
■Since the porous layer is formed by wire rods wound intersectingly, it is more porous than powder sintered bodies or short fiber sintered bodies, in which individual particles or short fibers are simply joined by sintering. The porous layer has high mechanical strength, and there is no fear that the porous layer will be damaged even when subjected to external force.

■従って本発明の複合インプラント部材は歯科用人工歯
根や外科用の人工骨や人工関節等あるいは整形外科用の
補綴材料として幅広く活用することができる。
(2) Therefore, the composite implant member of the present invention can be widely used as dental artificial tooth roots, surgical artificial bones and joints, and orthopedic prosthetic materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る複合インプラント部材の製法を例
示する概略斜視説明図、第2図は金属細線を1層だけ巻
回して構成した複合インプラント部材を示す一部縦断面
図、第3図は金属細線を複数層巻回して構成した複合イ
ンプラント部材を示す一部縦断面図、第4.5図は金属
細線巻回層への骨組織の侵入状況を示す断面説明図、第
6〜8図は金属細線を1層毎に交差させて巻回すること
により多孔質化する場合を例示する説明図で、第6図は
側面図、第7.8図は一部断面図を示す。 第9図及び第10図は金属細線巻回後の焼結、切断、最
終加工の状況を示す斜視説明図、第11.12図は金属
細線の他の巻回例を示す説明図、第13.14図は本発
明に係る他の複合インプラント部材を示す見取り図であ
る。 1・・・インプラント母材 2 、2 a 、 2 b 、 2 c ・・・金属細
線S、Sa、Sb・・・隙間 3・・・ボビン d・・・金属細線の直径 α・・・金属細線の巻回間隔 第9! 第11図 第13図   第14図 第12図
Fig. 1 is a schematic perspective explanatory view illustrating the manufacturing method of a composite implant member according to the present invention, Fig. 2 is a partial vertical sectional view showing a composite implant member constructed by winding only one layer of thin metal wire, and Fig. 3 4.5 is a partial longitudinal cross-sectional view showing a composite implant member constructed by winding multiple layers of thin metal wire; FIG. The figures are explanatory diagrams illustrating a case in which the metal wire is made porous by crossing and winding each layer, and FIG. 6 shows a side view and FIG. 7.8 shows a partial cross-sectional view. 9 and 10 are perspective explanatory diagrams showing the sintering, cutting, and final processing conditions after winding the thin metal wire, FIGS. 11 and 12 are explanatory diagrams showing other examples of winding the thin metal wire, and FIG. Figure 14 is a sketch showing another composite implant member according to the present invention. 1... Implant base material 2, 2 a, 2 b, 2 c... Thin metal wire S, Sa, Sb... Gap 3... Bobbin d... Diameter of the thin metal wire α... Thin metal wire Winding interval 9th! Figure 11 Figure 13 Figure 14 Figure 12

Claims (2)

【特許請求の範囲】[Claims] (1)インプラント母材の外周に、金属製細線が、該細
線の相互間及び当該細線による巻回層の最外表面側にア
ンダーカットを有する溝または互いに連通し合う空孔を
残す様に巻回されたうえ、焼結されたものであることを
特徴とする複合インプラント部材。
(1) A thin metal wire is wound around the outer periphery of the implant base material so as to leave grooves with undercuts or holes communicating with each other between the thin wires and on the outermost surface side of the layer wound with the thin wires. A composite implant member characterized in that it is spun and sintered.
(2)金属製細線が、チタン、チタン合金、ジルコニウ
ム、ジルコニウム合金、コバルト−クロム−モリブデン
合金、コバルト−クロム−タングステン−ニッケル合金
、ステンレス鋼よりなる群から選択されるものである特
許請求の範囲第1項に記載の複合インプラント部材。
(2) Claims in which the thin metal wire is selected from the group consisting of titanium, titanium alloy, zirconium, zirconium alloy, cobalt-chromium-molybdenum alloy, cobalt-chromium-tungsten-nickel alloy, and stainless steel. Composite implant member according to paragraph 1.
JP61313671A 1986-09-18 1986-12-26 Composite implant member Pending JPS63226348A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP22013386 1986-09-18
JP61-220133 1986-09-18

Publications (1)

Publication Number Publication Date
JPS63226348A true JPS63226348A (en) 1988-09-21

Family

ID=16746418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61313671A Pending JPS63226348A (en) 1986-09-18 1986-12-26 Composite implant member

Country Status (1)

Country Link
JP (1) JPS63226348A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005296450A (en) * 2004-04-14 2005-10-27 Masahiko Chiba Manufacturing method of porous member for living body
JP2011135932A (en) * 2009-12-25 2011-07-14 Hi-Lex Corporation Implant material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005296450A (en) * 2004-04-14 2005-10-27 Masahiko Chiba Manufacturing method of porous member for living body
JP4524776B2 (en) * 2004-04-14 2010-08-18 晶彦 千葉 Method for producing porous body for living body
JP2011135932A (en) * 2009-12-25 2011-07-14 Hi-Lex Corporation Implant material

Similar Documents

Publication Publication Date Title
US4293302A (en) Tooth implants
US4492577A (en) Surgical implants with solid interiors and porous surfaces
JP5469341B2 (en) Two-part dental implant made from biocompatible ceramic
US8297974B1 (en) Dental implant with porous body
CA2817860C (en) Dental implant system and method for producing a dental implant system
JP5340150B2 (en) Implant having porous outer layer and method for producing the same
JP2009506812A (en) Immediate load dental implant
CN106859792B (en) Multi-section type through hole porous dental implant
CN102715961A (en) Individualized anatomical type tooth root implant
EP2226034A1 (en) Wax model base for abutment of dental implant
JPH05505316A (en) Physiological dental fixation dowel made of composite material and its manufacturing method
US20190290402A1 (en) Dental implant and self-locking fastening element with heterogeneousporous structures, and method for its production
KR101450190B1 (en) Zirconia prosthesis for dental using lithium disilicate and manufacturing method
CN105662623A (en) Dental implant and preparation method thereof
JPS63226348A (en) Composite implant member
CN202027741U (en) Tooth root structure of tooth implantation
JPH0323856A (en) Artificial root of tooth
JP2004141234A (en) Artificial dental root
CN107638223B (en) Dental implant
JP5356859B2 (en) Implant fixture
JPH04364858A (en) Porous implant material
WO2009004069A1 (en) Porous dental implant
US20240225790A1 (en) Dental implant and self-locking fastening element with heterogeneous porous structures, and method for its production
JP2673515B2 (en) Porous coat implant manufacturing method
JP2006187447A (en) Implant, and its manufacturing method