JPS63225606A - Hydrophobic crosslinked copolymer - Google Patents

Hydrophobic crosslinked copolymer

Info

Publication number
JPS63225606A
JPS63225606A JP62039018A JP3901887A JPS63225606A JP S63225606 A JPS63225606 A JP S63225606A JP 62039018 A JP62039018 A JP 62039018A JP 3901887 A JP3901887 A JP 3901887A JP S63225606 A JPS63225606 A JP S63225606A
Authority
JP
Japan
Prior art keywords
monomer
hydrophobic
weight
crosslinked copolymer
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62039018A
Other languages
Japanese (ja)
Other versions
JPH0746098B2 (en
Inventor
Takateru Uchida
内田 高照
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to DE8787201905T priority Critical patent/DE3778113D1/en
Priority to EP87201905A priority patent/EP0264997B1/en
Priority to US07/106,356 priority patent/US4988786A/en
Priority to CA000549895A priority patent/CA1334119C/en
Publication of JPS63225606A publication Critical patent/JPS63225606A/en
Publication of JPH0746098B2 publication Critical patent/JPH0746098B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To provide the title polymer having specific physical properties, excellent in mechanical strength and chemical stability, and suitable for a packing for liquid chromatography or a membrane for separation, which polymer consists of specific monomer units having a hydrophobic group and specific crosslinking units. CONSTITUTION:A hydrophobic crosslinked polymer having such physical properties that the specific surface (SA) is: 30<=SA<=1,000ml/g and the solvent retention volume (SR) is: 0.2<=SR<=3.0ml/g consists of 100pts.wt. monomer unit derived from a monomer of the formula I wherein X is a group of the formula II, and Y is H or CH3 or a monomer of the formula I wherein X is a group of the formula III, and Y is the same as above or a monomer of the formula I wherein X is a group of formula IV, and Y is the same as above (R1 is a hydrophobic group having a hydrophobic fragmental constant of 1.5 or above) or 100pts.wt. constituent monomer unit derived from a mixture of other monomer unit and one of the above monomer units and 50pts.wt. or more crosslinking unit derived from a crosslinking agent having 2 or more ethylenic double bonds and/or acethylenic triple bonds.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は機械的強度と化学的安定性にすぐれ、たとえば
液体クロマトグラフィー用充填剤や分離用膜として用い
るのに適した疎水性架橋共重合体に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention provides a hydrophobic crosslinked copolymer which has excellent mechanical strength and chemical stability and is suitable for use as a packing material for liquid chromatography or a separation membrane. Regarding merging.

[従来の技術] 液体クロマトグラフィーは試料を温和な条件で分離、分
析できるため、特に生体関連物質の分離、分析に適して
おり、生化学、医学、薬学等の分野で広く用いられてい
る。液体クロマトグラフィーの分離様式としては、吸着
、分配、ゲル濾過、イオン交換等があるがその中でも試
料と充填剤の疎水的分配相互作用を利用する逆相クロマ
トグラフィーは分離性能が優れており、汎用されている
[Prior Art] Since liquid chromatography can separate and analyze samples under mild conditions, it is particularly suitable for separating and analyzing biological substances, and is widely used in fields such as biochemistry, medicine, and pharmacy. Separation methods for liquid chromatography include adsorption, distribution, gel filtration, and ion exchange, among which reversed-phase chromatography, which utilizes hydrophobic distribution interactions between the sample and packing material, has excellent separation performance and is widely used. has been done.

逆相クロマトグラフィー用充填剤としてはオクタデシル
シリル基がシリカゲル表面に固定化されたいわゆるOD
S等、°シリカゲルを骨格とするゲルが挙げられる。し
かしながらシリカゲルを母体とするゲルは、シリカゲル
がたとえばアルカリ条件下で溶解する等の性質があるの
で、化学的(不安定である欠点を有する。又、シリカゲ
ルを母体とする逆相系充填剤は塩基性物質、例えばアミ
ン類や塩基性ペプチド等を強く吸着する場合がある。こ
れはシリカゲルの表面に存在するシラノールが吸着の原
因と考えられている。
So-called OD, which has an octadecylsilyl group immobilized on the surface of silica gel, is used as a packing material for reversed phase chromatography.
Examples include gels having a skeleton of silica gel, such as S. However, gels based on silica gel have the disadvantage of being chemically unstable, as silica gel has the property of dissolving under alkaline conditions.In addition, reverse-phase packing materials based on silica gel have the disadvantage of being chemically unstable. It may strongly adsorb chemical substances such as amines and basic peptides.This is thought to be caused by silanol present on the surface of silica gel.

一方、たとえばエチレングリコールジメタクリレート等
メタクリレート系架橋剤より成るゲル、あるいは該架橋
剤とその他のメタクリレート系単量体の共重合体より成
るゲル等の合成ポリマー系ゲルも、試料とゲルの間の疎
水的相互作用を利用するクロマトグラフィーに用いられ
る。これらのゲルの場合、疎水性相互作用は主としてポ
リマーの骨格を形成しているいわゆるマトリックス部分
により引き起こされると考えられる。この場合、ODS
等シ等力リカゲル体とするゲルに比べると化学的安定性
が優れているが逆に、ODSに比べて分離性能が劣る場
合が多い。特に強く分配される疎水性の大きな成分をカ
ラムに充填された該ゲルを用いて分析した場合に、その
成分の溶出バンド幅が著るしく広くなる欠点を有する場
合が多い。
On the other hand, synthetic polymer gels such as gels made of a methacrylate crosslinking agent such as ethylene glycol dimethacrylate, or gels made of a copolymer of the crosslinking agent and other methacrylate monomers are also used to create hydrophobic bonds between the sample and the gel. Used in chromatography that utilizes chemical interactions. In the case of these gels, hydrophobic interactions are thought to be mainly caused by the so-called matrix part forming the polymer backbone. In this case, ODS
It has superior chemical stability compared to gels that are isostatic liquefied gels, but conversely, its separation performance is often inferior to ODS. In many cases, when a highly hydrophobic component that is particularly strongly distributed is analyzed using the gel packed in a column, the elution band width of that component becomes significantly broad.

又、長鎖アルキル基を有するビニルエステル、又はメタ
クリル酸エステルと架橋剤の共重合によって得られるゲ
ルも公知である(特開昭58−61463号公報)。該
ゲルにおいては疎水性相互作用は主としてゲルの骨格を
形成するマトリックス部分の側鎖である長鎖アルキル基
に起因していると思われるが、前述の合成ポリマー系ゲ
ルと同様に分配成分においては溶出バンド幅が広く、分
離性能が低い欠点を有する。
Furthermore, gels obtained by copolymerizing a vinyl ester having a long-chain alkyl group or a methacrylic ester with a crosslinking agent are also known (Japanese Patent Application Laid-open No. 58-61463). In this gel, hydrophobic interactions are thought to be mainly caused by long-chain alkyl groups, which are side chains of the matrix part that forms the gel skeleton, but as with the synthetic polymer gel described above, the hydrophobic interactions in the distributing components It has the drawbacks of wide elution band width and low separation performance.

[発明が解決しようとする問題点] 前述の如く、逆相クロマトグラフィー用充填剤としては
、ODS等シ等力リカゲル面にアルキル基を結合したゲ
ルが多く用いられているが、これらは化学的に不安定で
耐久性に乏しく又、塩基性化合物を吸着し易い欠点を有
する。又、合成ポリマー系のゲルも用いら° れている
が、これらは強く分配される疎水性の強い成分の溶出バ
ンドが著るしく広がり、分離能が低い場合が多い。又、
ゲルの強度が小さいため、高流速で溶離液を流せない欠
点を有する場合がある。そこで本発明者は上述の如き欠
点を克服すべく鋭意検討の結果、化学的安定性に優れ、
分離能が高くかつ強度が大きい疎水性架橋共重合体を開
発し、本発明をなすに至った。
[Problems to be Solved by the Invention] As mentioned above, gels in which alkyl groups are bonded to the isostatic silica gel surface, such as ODS, are often used as packing materials for reversed-phase chromatography; It is unstable and has poor durability, and also has the disadvantage of easily adsorbing basic compounds. Synthetic polymer-based gels have also been used, but the elution bands of highly hydrophobic components that are strongly distributed in these gels are significantly broadened, and their separation ability is often low. or,
Since the strength of the gel is low, it may have the disadvantage that the eluent cannot be flowed at a high flow rate. Therefore, as a result of intensive studies to overcome the above-mentioned drawbacks, the present inventors found that
A hydrophobic crosslinked copolymer with high separation ability and high strength was developed, and the present invention was accomplished.

E問題点を解決するための手段] すなわち、本発明は一般式CH2=CXYで表わされ、
Xが0CR1、Yが水素原子である単量体・−(I>、 XがC0R1、Yが水素原子又はメチル基である単量体
・・・(II> II Xが0CNHR1、Yが水素原子である単量体・−(I
I) (但し、R1はハイドロフオービツクフラグメンタルコ
ンスタントが1.5以上の疎水基)のいずれかの単量体
より誘導される単量体単位またはこの単量体単位とこれ
以外の単量体単位の混合物とから誘導される構成単量体
単位、たとえば(I>、(II)、(I[I)のいずれ
かの単量体から誘導される単量体単位10〜100重量
%とこれ以外の単量体単位0〜90重量%とからなる構
成単量体単位100重量部と、50重量部以上、600
0重旧部以下のエチレン性二重結合および/又はアセチ
レン性三重結合を二つ以上有する架橋剤より誘導される
架橋単位とからなり、下記(^)及び(B)の物性を有
する疎水性架橋共重合体(以下架橋共重合体と称する)
である。
Means for Solving Problem E] That is, the present invention is represented by the general formula CH2=CXY,
Monomers where X is 0CR1 and Y is a hydrogen atom・-(I>, X is C0R1, and Y is a hydrogen atom or a methyl group...(II> II X is 0CNHR1 and Y is a hydrogen atom The monomer ・-(I
I) A monomer unit derived from any of the monomers (wherein R1 is a hydrophobic group with a hydrophobic fragmental constant of 1.5 or more), or this monomer unit and other monomers Constituent monomer units derived from a mixture of units, for example, 10 to 100% by weight of monomer units derived from any of the monomers (I>, (II), (I[I) and this 100 parts by weight of constituent monomer units consisting of 0 to 90% by weight of monomer units other than 50 parts by weight or more, 600 parts by weight
A hydrophobic crosslinking unit consisting of a crosslinking unit derived from a crosslinking agent having two or more ethylenic double bonds and/or acetylenic triple bonds of 0 or less double bonds and having the physical properties of (^) and (B) below. Polymer (hereinafter referred to as crosslinked copolymer)
It is.

(A)比表面積(SA)30≦SA≦1000yd10
r(B)溶媒保持! (SR>  0.2≦SR≦3.
0d10r(I)、(II)、(III)で表わされる
単量体より誘導される単量体単位とは、(I>、(IF
>又は(nl)で表わされる単量体が重合または共重合
によって形成する構造を表わす。
(A) Specific surface area (SA) 30≦SA≦1000yd10
r(B) Solvent retention! (SR> 0.2≦SR≦3.
The monomer units derived from the monomers represented by 0d10r(I), (II), and (III) are (I>, (IF
> or (nl) represents a structure formed by polymerization or copolymerization.

あるいは(I>、(II>、(III)においてYの部
分が前述の構造と異なる単量体が重合又は共重合によっ
て形成する単量体単位のYの部分が、前述の如き構造と
置換されることによって形成する構造を表わす。
Alternatively, in (I>, (II>, and represents the structure formed by

一般式(I>、(II>および(III)で表わされる
単量体は、 ハイドロフォーピックフラグメンタル コ
ンスタントが1.5以上の疎水基を有する。ハイドロフ
ォーピックフラグメンタルコンスタントは、アール・エ
フ・レッカー(R,F、 Rekker )著[ザ ハ
イドロフォーピック フラグメンタル コンスタント(
The Hydrophobic FraOntent
al constant)Jエルゼビエ サイエンティ
フィック パブリッシング ] −(Elsevier
 5cientificPublishina Co、
>  (1977発行)に述べられている。
The monomers represented by general formulas (I>, (II> and (III)) have a hydrophobic group with a hydrophoric fragmental constant of 1.5 or more. Written by Rekker (R, F, Rekker) [The Hydroforpic Fragmental Constant (
The Hydrophobic FraOntent
al constant) J Elsevier Scientific Publishing ] -(Elsevier
5CcientificPublishina Co.
> (published in 1977).

ハイドロフォーピック フラグメンタルコンスタントが
1.5以上の疎水基としては、たとえば炭素数3〜30
のアルキル基を挙げることができる。アルキル基の炭素
数は好ましくは4〜30である。ハイドロフォーピック
フラグメンタル コンスタントが1.5以上の疎水基の
他の例としては、下記式(IV)で表わされる基を挙げ
ることができる。
Hydrophobic groups with a fragmental constant of 1.5 or more include, for example, carbon atoms of 3 to 30
The following alkyl groups can be mentioned. The alkyl group preferably has 4 to 30 carbon atoms. Other examples of the hydrophobic group having a hydrophoric fragmental constant of 1.5 or more include a group represented by the following formula (IV).

[但し−R2−は−Cn H2O−(n= 0〜30)
であり、X1〜X5は水素原子、塩素原子、臭素原子、
ヨウ素原子、又は炭素数1〜30のアルキル基の一種以
上五種までである。]これらの疎水基は一種が単独で存
在してもよく、二種以上が同時に存在してもよい。
[However, -R2- is -Cn H2O- (n = 0 to 30)
and X1 to X5 are hydrogen atoms, chlorine atoms, bromine atoms,
One to five types of iodine atoms or alkyl groups having 1 to 30 carbon atoms. ] These hydrophobic groups may be present alone or in combination of two or more.

構成単量体単位に対する架橋単位の割合は、架橋共重合
体の強度や、該架橋共重合体を用いたクロマトグラフィ
ーにおいて分配特性を大きく左右するため重要である。
The ratio of crosslinked units to constituent monomer units is important because it greatly influences the strength of the crosslinked copolymer and the distribution characteristics in chromatography using the crosslinked copolymer.

本発明においては架橋単位は構成単量体単位100重量
部当り、50重量部以上6000重量部以下である。
In the present invention, the crosslinking unit is present in an amount of 50 parts by weight or more and 6000 parts by weight or less per 100 parts by weight of the constituent monomer units.

架橋単位が50重量部以下であると、強度が不十分にな
り、使用上不都合を生ずる場合がある。
If the crosslinking unit is less than 50 parts by weight, the strength will be insufficient, which may cause problems in use.

たとえば高速液体クロマトグラフィーに用いる場合には
10μm以下の小粒径粒子の形でカラムに充填して用い
るのが好ましい。その場合高流速で溶離液を流せなかっ
たり、時には溶離液が流れない等の不都合を生ずる場合
があるが、構成単量体単位100重量部当りの架橋単位
が50重量部を越える本発明の架橋共重合体は硬質であ
り、たとえばカラムに充填して液体クロマトグラフィー
用充填剤として用いた場合、溶離液を高流速で流すこと
ができ、迅速分析が可能である。
For example, when used in high-performance liquid chromatography, it is preferable to fill a column in the form of small particles of 10 μm or less. In that case, inconveniences may occur, such as the eluent not being able to flow at a high flow rate or sometimes not flowing. The copolymer is hard, and when used as a packing material for liquid chromatography, for example, when packed in a column, the eluent can be passed at a high flow rate and rapid analysis is possible.

又、構成単量体単位に対する架橋単位の割合が6000
重量部を越える場合は、本発明の架橋共重合体の疎水基
の量が少なすぎるため、たとえば該架橋共重合体を液体
クロマトグラフィー用充填剤として用いた場合、試料と
該架橋共重合体の相互作用が十分性なわれず、分離が不
十分である可能性がある。
In addition, the ratio of crosslinking units to the constituent monomer units is 6000
If the amount exceeds 1 part by weight, the amount of hydrophobic groups in the crosslinked copolymer of the present invention is too small. For example, when the crosslinked copolymer is used as a packing material for liquid chromatography, There is a possibility that the interaction is not sufficient and the separation is insufficient.

架橋単位の割合は好ましくは構成単量体1000重量部
当り、80重量部以上6000重量部以下であり、更に
好ましくは90重量部以上6000重量部以下である。
The proportion of the crosslinking unit is preferably 80 parts by weight or more and 6000 parts by weight or less, more preferably 90 parts by weight or more and 6000 parts by weight or less, per 1000 parts by weight of the constituent monomers.

本発明において架橋単位はエチレン性二重結合および/
またはアセチレン性三重結合を二つ以上有する架橋剤よ
り誘導される架橋単位を挙げることができる。エチレン
性二重結合および/またはアセチレン性三重結合を二つ
以上有する架橋剤より誘導される架橋単位とは、該架橋
剤が重合または共重合によって形成する構造を表わす。
In the present invention, the crosslinking unit is an ethylenic double bond and/or
Alternatively, a crosslinking unit derived from a crosslinking agent having two or more acetylenic triple bonds can be mentioned. A crosslinking unit derived from a crosslinking agent having two or more ethylenic double bonds and/or acetylenic triple bonds refers to a structure formed by the crosslinking agent through polymerization or copolymerization.

架橋剤の例としてはモノ及びポリエチレングリコールジ
メタクリレート、トリメチロールプロパントリメタクリ
レート等のポリメタクリレート類、ジビニルアジペート
、ジビニルフタレート等のポリ不飽和アルコールエステ
ル類、ジビニルエーテル等のポリ不飽和エーテル、トリ
アリルシアヌレート、トリアリルイソシアヌレート等ト
リアジン環を有する架橋剤を挙げることができるが、好
ましい例として、トリアリルシアヌレート、トリアリル
インシアヌレートを挙げることができる。
Examples of crosslinking agents include polymethacrylates such as mono- and polyethylene glycol dimethacrylate and trimethylolpropane trimethacrylate, polyunsaturated alcohol esters such as divinyl adipate and divinyl phthalate, polyunsaturated ethers such as divinyl ether, and triallyl cyanide. Examples include crosslinking agents having a triazine ring such as nurate and triallyl isocyanurate, and preferred examples include triallyl cyanurate and triallyl in cyanurate.

(I>、(II)および(III)以外の単量体単位と
しては、たとえば酢酸ビニルより誘導される単位、メタ
クリル酸メチルより誘導される単位等を挙げることがで
きる。
Examples of monomer units other than (I>, (II) and (III) include units derived from vinyl acetate, units derived from methyl methacrylate, and the like.

架橋共重合体中のそれぞれの単位の量を知る方法として
は、たとえば次の方法を挙げることができる。たとえば
架橋共重合体が単量体(I>より誘導される単位と架橋
単位より構成されている場合、該架橋共重合体を加水分
解処理して遊離するカルボン酸の量、加水分解して得ら
れた共重合体の水酸基の量及び疎水性架橋共重合体の加
水分解前後の重量変化よりそれぞ、れの量を求めること
ができ・る。
Examples of methods for determining the amount of each unit in the crosslinked copolymer include the following method. For example, when a crosslinked copolymer is composed of a unit derived from a monomer (I>) and a crosslinked unit, the amount of carboxylic acid liberated by hydrolysis of the crosslinked copolymer, The amount can be determined from the amount of hydroxyl groups in the copolymer obtained and the change in weight of the hydrophobic crosslinked copolymer before and after hydrolysis.

又他の方法としては、架橋共重合体のNMRスペクトル
より算出する方法を挙げることができる。
Another method is a method of calculating from the NMR spectrum of the crosslinked copolymer.

本発明の架橋共重合体の溶媒保持量(SR)は0.2〜
3.0d10rの範囲にある。SRとは架橋共重合体を
アセトニトリルと平衡にした時に、該架橋共重合体の孔
の中に含みうるアセトニトリルの量を架橋共重合体乾燥
重量あたりの値として表示したものである。つまりSR
は架橋共重合体内の重量の目安になる。
The solvent retention amount (SR) of the crosslinked copolymer of the present invention is 0.2 to
It is in the range of 3.0d10r. SR is the amount of acetonitrile that can be contained in the pores of a crosslinked copolymer when the crosslinked copolymer is brought into equilibrium with acetonitrile, expressed as a value per dry weight of the crosslinked copolymer. In other words, S.R.
is a guideline for the weight within the crosslinked copolymer.

SRが大きくなると有機溶媒中または有機溶媒と水の混
合溶媒中において、架橋共重合体単位体積あたりの骨格
を形成する部分、つまり架橋共重合体そのものの重量が
相対的に低下する。そのためSRが大きすぎると有機溶
媒中または有機溶媒と水との混合溶媒中において架橋共
重合体の機械的強度が低下する。
As the SR increases, the weight of the portion forming the skeleton per unit volume of the crosslinked copolymer, that is, the weight of the crosslinked copolymer itself, decreases relatively in an organic solvent or a mixed solvent of an organic solvent and water. Therefore, if the SR is too large, the mechanical strength of the crosslinked copolymer will decrease in an organic solvent or a mixed solvent of an organic solvent and water.

SRが小さすぎると該架橋共重合体を液体クロマトグラ
フィー用の充填剤として用いた場合、分離に有効な重量
が少なくなるので分離能力が低下する。したってSRが
適当な範囲にあるのが好ましい。SRはアセトニトリル
と十分平衡にした架橋共重合体を遠心分離機にかけて該
架橋共重合体表面に付着しているアセトニトリルを除去
した後、その重量(Wl)を測定し、ざらにその架橋共
重合体を乾燥して乾燥後の重量(W2)を求め次式によ
って求めることができる。
If the SR is too small, when the crosslinked copolymer is used as a packing material for liquid chromatography, the effective weight for separation will decrease, resulting in a decrease in separation ability. Therefore, it is preferable that the SR be within an appropriate range. SR is a crosslinked copolymer that has been sufficiently equilibrated with acetonitrile, is centrifuged to remove acetonitrile adhering to the surface of the crosslinked copolymer, and its weight (Wl) is measured. The weight after drying (W2) can be determined using the following formula.

Wl−W2 1 WR−yy 2X− (但しSはアセトニトリルの比重である。本発明におい
ては15℃における比重を用いて算出した) 重合によって架橋共重合体を得るに際して単量体及び架
橋剤の混合物を溶解する有機溶媒の一種以上を加えるこ
とにより、重量を調節することができる。一般辷有機溶
媒の量を増すほど重量は増加する。本発明では有機溶媒
の量は単量体及び架橋剤の混合物100重量部当り20
重量部以上300重量部以下用いられる。又、単量体と
架橋剤の混合物に溶解する線状重合体やゴムを加えるこ
とによっても重量を調節できる。本発明においては単量
体と架橋剤の混合物100重量部当り20重量部以下が
用いられる。
Wl-W2 1 WR-yy 2X- (However, S is the specific gravity of acetonitrile. In the present invention, it was calculated using the specific gravity at 15 ° C.) When obtaining a crosslinked copolymer by polymerization, a mixture of monomers and crosslinking agent The weight can be adjusted by adding one or more organic solvents that dissolve. Generally speaking, the weight increases as the amount of organic solvent increases. In the present invention, the amount of organic solvent is 20 parts by weight per 100 parts by weight of the mixture of monomers and crosslinking agent.
More than 300 parts by weight is used. The weight can also be adjusted by adding soluble linear polymers or rubbers to the monomer and crosslinking agent mixture. In the present invention, 20 parts by weight or less is used per 100 parts by weight of the mixture of monomer and crosslinking agent.

本発明の架橋共重合体は乾燥状態で架橋共重合体単位重
量当り30〜1000TIt/grの比表面積を有する
。本発明の架橋共重合体は高い比表面積を有するため、
たとえばカラムに充填して試料を分析した場合、架橋共
重合体と試料の接触効率が良く、吸着、脱離が迅速に行
なわれる。従って溶出のバンド幅が狭く試料相互の分離
が十分性なわれる。比表面積(SA)は好ましくは50
〜1000尻10rである。
The crosslinked copolymer of the present invention has a specific surface area of 30 to 1000 TIt/gr per unit weight of the crosslinked copolymer in a dry state. Since the crosslinked copolymer of the present invention has a high specific surface area,
For example, when a column is packed and a sample is analyzed, the crosslinked copolymer and the sample contact each other with high efficiency, and adsorption and desorption occur quickly. Therefore, the elution band width is narrow and samples can be separated sufficiently. Specific surface area (SA) is preferably 50
~1000 butts 10r.

比表面積の測定方法はいろいろあるが、本発明では最も
一般的な窒素ガスによるBET方で求めた。また比表面
積測定′に用いる試料は十分乾燥しておかねばならない
。本発明においては、架橋共重合体をアセトンと平衡に
した後、60℃で減圧乾燥したのち比表面積を測定した
There are various methods for measuring the specific surface area, but in the present invention, it was determined by the most common BET method using nitrogen gas. In addition, the sample used for specific surface area measurement must be sufficiently dry. In the present invention, after equilibrating the crosslinked copolymer with acetone, the specific surface area was measured after drying under reduced pressure at 60°C.

比表面積は単量体と架橋剤の比率及び単量体と架橋剤の
混合物に対する有機溶媒の比率を変えることによりコン
トロール出来る。
The specific surface area can be controlled by varying the ratio of monomer to crosslinker and the ratio of organic solvent to the mixture of monomer and crosslinker.

一般的に単量体に対する架橋剤の比率が増加すると表面
は増加する。本発明では単量体100重量部当り架橋剤
は50重量部以上用いられる。又、有機溶媒の使用量は
前述の通りである。
Generally, the surface increases as the ratio of crosslinker to monomer increases. In the present invention, 50 parts by weight or more of the crosslinking agent is used per 100 parts by weight of the monomer. Further, the amount of the organic solvent used is as described above.

本発明の架橋共重合体の形状は特に限定されることはな
く、使用方法に応じて粒状、膜状、糸状、塊状等任意の
形状を取り得る。液体クロマトグラフィー用充填剤とし
て用いる場合は、粒状又は球状が好ましい。その場合の
粒径は特に限定されないが通常は重量平均粒径で1〜5
00μmの範囲にある。高速液体クロマトグラフィー用
充填剤として用いる場合は1〜20μm1更に実用的に
は1〜15μmの範囲にあるのが好ましい。
The shape of the crosslinked copolymer of the present invention is not particularly limited, and can take any shape such as granules, membranes, threads, and lumps depending on the method of use. When used as a packing material for liquid chromatography, it is preferably granular or spherical. In that case, the particle size is not particularly limited, but the weight average particle size is usually 1 to 5.
It is in the range of 00 μm. When used as a packing material for high performance liquid chromatography, it is preferably in the range of 1 to 20 μm, and more preferably in the range of 1 to 15 μm for practical purposes.

次に本発明の架橋共重合体の製造方法の例を示す。本発
明の疎水性架橋共重合体はたとえば(I>又は(II)
で表わされる単量体10〜100重量%と、(I>及び
(I[>と共重合可能な単量体0〜90重量%とから成
る構成単量体100重量部と50重量部以上の6000
重量部以下の構成単量体と共重合可能なエチレン性二重
結合および/またはアセチレン性二重結合を二つ以上有
する架橋剤とを共重合さることによって得ることができ
る。
Next, an example of a method for producing the crosslinked copolymer of the present invention will be shown. The hydrophobic crosslinked copolymer of the present invention is, for example, (I> or (II)
and 100 to 100 parts by weight of a monomer copolymerizable with (I> and (I[>) and 50 parts by weight or more. 6000
It can be obtained by copolymerizing part by weight or less of the constituent monomers and a crosslinking agent having two or more copolymerizable ethylenic double bonds and/or acetylenic double bonds.

(I)で表わされる単量体としてはたとえばオクタン酸
ビニル、ミリスチン酸ビニル、バルミチン酸ビニル、ス
テアリン酸ビニル等を挙げることができる。(I[>で
表わされる単量体としてはたとえばメタクリル酸オクチ
ル、メタクリル酸ラウロイル、メタクリル酸ステアリル
等を挙げることができる。架橋剤としては前述の如き架
橋剤を挙げることができる。
Examples of the monomer represented by (I) include vinyl octoate, vinyl myristate, vinyl valmitate, and vinyl stearate. (Examples of the monomer represented by I[> include octyl methacrylate, lauroyl methacrylate, stearyl methacrylate, etc.) Examples of the crosslinking agent include the aforementioned crosslinking agents.

上記共重合においては懸濁重合、塊状重合等の方法を用
いることができるが、液体クロマトグラフィー用充填剤
を得る場合は懸濁重合が好ましい。又上記共重合におい
て、単量体及び架橋剤の混合物(以下単量体混合物と言
う)を溶解する有機溶媒の一種以上を加えることにより
、得られる共重合体の表面積、重量、孔径等を調節する
ことができる。
In the above copolymerization, methods such as suspension polymerization and bulk polymerization can be used, but suspension polymerization is preferred when obtaining a filler for liquid chromatography. In addition, in the above copolymerization, the surface area, weight, pore diameter, etc. of the resulting copolymer can be adjusted by adding one or more organic solvents that dissolve the mixture of monomers and crosslinking agent (hereinafter referred to as monomer mixture). can do.

単量体混合物を溶解する有機溶媒としては具体的には、
トルエン、キシレン等の芳香族炭化水素類、ヘプタン、
オクタン、シクロヘキサジ、デカリン等の脂肪族炭化水
素類、酢酸n−ブチル、酢酸イソブチル、酢酸n−ヘキ
シル、アジピン酸ジオクチル等の脂肪酸エステル類、フ
タル酸ジメチル、フタル酸ジオクチル、安息香酸メチル
等の芳香族エステル類、ブタノール、ヘプタツール、オ
クタツール等のアルコール類を挙げることができる。
Specifically, the organic solvent for dissolving the monomer mixture is as follows:
Aromatic hydrocarbons such as toluene and xylene, heptane,
Aliphatic hydrocarbons such as octane, cyclohexadi, decalin, etc., fatty acid esters such as n-butyl acetate, isobutyl acetate, n-hexyl acetate, dioctyl adipate, etc., aromas such as dimethyl phthalate, dioctyl phthalate, methyl benzoate, etc. Examples include alcohols such as group esters, butanol, heptatool, and octatool.

懸濁重合を行なう場合には、水に溶解しにくい有機溶媒
が好ましい。
When carrying out suspension polymerization, an organic solvent that is difficult to dissolve in water is preferred.

有機溶媒の量は単量体混合物100重量部当り20重量
部以上300重量部以下が好ましい。
The amount of the organic solvent is preferably 20 parts by weight or more and 300 parts by weight or less per 100 parts by weight of the monomer mixture.

架橋共重合体の重量や孔径分布を制御するために、ある
いは架橋共重合体の柔軟性を増すために単量体混合物に
溶解する線状重合体やゴムを単量体混合物に添加しても
よい。
Linear polymers or rubbers that dissolve in the monomer mixture may be added to the monomer mixture to control the weight or pore size distribution of the cross-linked copolymer or to increase the flexibility of the cross-linked copolymer. good.

単量体混合物に溶解する線状重合体やゴムとは、たとえ
ばポリ酢酸ビニル、ポリスチレン、クロロプレンゴム、
ブタジェンゴム等のことで、単量体100重量部に対し
て20重量部以下、好ましくは10重量部以下で用いら
れる。
Linear polymers and rubbers that dissolve in the monomer mixture include, for example, polyvinyl acetate, polystyrene, chloroprene rubber,
It refers to butadiene rubber, etc., and is used in an amount of 20 parts by weight or less, preferably 10 parts by weight or less, per 100 parts by weight of the monomer.

重合に際して用いられる開始剤の種類や量は重合方法に
合わせて任意に選び得る。通常の懸濁重合や塊状重合で
は一般的なラジカル重合開始剤、たとえば2,2°−ア
ゾビスインブチロニトリル、2,2°−アゾビス−(2
,4−ジメチルバレロニトリル)等のアゾ系の開始剤や
、過酸化ベンゾイル、過酸化ラウロイル等の過酸化物系
の開始剤を用いることができる。
The type and amount of the initiator used during polymerization can be arbitrarily selected depending on the polymerization method. In normal suspension polymerization and bulk polymerization, common radical polymerization initiators are used, such as 2,2°-azobisinbutyronitrile, 2,2°-azobis-(2
, 4-dimethylvaleronitrile) and peroxide initiators such as benzoyl peroxide and lauroyl peroxide can be used.

懸濁重合を行なう際には水相にはポリビニルアルコール
やメチルセルロース等の通常用いられる有機高分子系の
懸濁安定剤を加えておくのがよく、必要によりリン酸ナ
トリウム等のl)H緩衝剤を併用してもよい。懸濁安定
剤の種類や量、あるいは攪拌速度を変えることによって
、重合によって得られる粒状共重合体の粒径を変えるこ
とができる。重合によって得られた粒状重合体から線状
重合体、残留単量体あるいは有機溶媒を除いた後、必要
により分級を行なって充填剤として用いることができる
When performing suspension polymerization, it is recommended to add a commonly used organic polymer suspension stabilizer such as polyvinyl alcohol or methyl cellulose to the aqueous phase, and if necessary, add an H buffer such as sodium phosphate. may be used together. By changing the type and amount of the suspension stabilizer or the stirring speed, the particle size of the particulate copolymer obtained by polymerization can be changed. After removing the linear polymer, residual monomer or organic solvent from the granular polymer obtained by polymerization, it can be used as a filler after being classified if necessary.

架橋共重合体製造の′他の方法として、次の方法を挙げ
ることができる。すなわち、疎水基を有している架橋共
重合体あ、るいは疎水基を有していない架橋共重合体に
ハイドロフォーピック フラグメンタル コンスタント
が1.5以上の疎水基を共有結合によって導入する方法
を挙げることができる。上記方法の具体例として以下の
方法を挙げることができる。
Other methods for producing crosslinked copolymers include the following method. That is, a method of introducing a hydrophobic group having a hydrophobic fragmental constant of 1.5 or more into a crosslinked copolymer having a hydrophobic group or a crosslinked copolymer having no hydrophobic group by covalent bonding. can be mentioned. The following method can be mentioned as a specific example of the above method.

たとえば前述の如き架橋剤と酢酸ビニル、プロピオン酸
ビニル等を共重合して架橋共重合体を得た後、該架橋共
重合体をケン化又はエステル交換して水酸基を導入した
後、該水酸基と酸クロライド、イソシアネート等を反応
させることによって得ることができる。酸クロライドを
反応させた場合には(I>の単量体より誘導される単量
体単位を有する架橋共重合体を得ることができる。イソ
シアネートを反応させた場合は(III)の単量体より
誘導される単量体単位を有する架橋共重合体を コ得る
ことができる。
For example, a crosslinked copolymer is obtained by copolymerizing a crosslinking agent such as the one described above with vinyl acetate, vinyl propionate, etc., and then the crosslinked copolymer is saponified or transesterified to introduce a hydroxyl group. It can be obtained by reacting acid chloride, isocyanate, etc. When acid chloride is reacted, a crosslinked copolymer having monomer units derived from monomer (I>) can be obtained. When isocyanate is reacted, monomer (III) can be obtained. A crosslinked copolymer having monomer units derived from the above can be obtained.

酸クロライドの例としてはブタン酸クロライド、オクタ
ン酸クロライド、ステアリン酸クロライド、ベンゾイル
クロライド等を挙げることができる。
Examples of acid chlorides include butanoic acid chloride, octanoic acid chloride, stearic acid chloride, benzoyl chloride, and the like.

イソシアネートの例としてはオクタデシルイソシアネー
ト、フェニルイソシアネート等を挙げることができる。
Examples of isocyanates include octadecyl isocyanate and phenyl isocyanate.

この場合、重合に際して有機溶媒、線状重合体やゴムを
加えることにより架橋共重合体の表面積、重量、孔径等
を調節することができる。有機溶媒、線状重合体、ゴム
の量や種類は先に述べたのと同様である。又、重合(際
して用いられる重合開始剤や、懸濁重合に際して用いら
れる懸濁安定剤も先に述べたのと同様のものを用いるこ
とができる。
In this case, the surface area, weight, pore diameter, etc. of the crosslinked copolymer can be adjusted by adding an organic solvent, linear polymer, or rubber during polymerization. The amounts and types of organic solvent, linear polymer, and rubber are the same as described above. Furthermore, the same polymerization initiators used during polymerization and suspension stabilizers used during suspension polymerization as described above can be used.

[実施例] 以下、実施例によって本発明の内容を具体的に説明する
[Example] Hereinafter, the content of the present invention will be specifically explained with reference to Examples.

町施例1 重合体の製造 ステアリン酸ビニル      10grトリアリルイ
ソシアヌレート 545gr酢酸ブチル       
  390grより成る均一混合液と少量のポリビニル
アルコールおよびリン酸ナトリウムを溶解した水310
0111とを還流冷却器、窒素導入管、攪拌器を備えた
10J2の三つロフラスコに入れ十分攪拌したのち、窒
素気流下で攪拌しつつ80℃で20時間重合を行ない、
粒状の疎水性架橋重合体(ゲル)を得た。該ゲルを濾過
、水洗、アセトン抽出しついで分級を行ない、重量平均
粒径8.8μ−のゲルを得た。該ゲルの比表面積(SA
>は40m/gr 、溶媒保持!(SR)は1.057
/grであった。
Town Example 1 Production of polymer Vinyl stearate 10 gr triallylisocyanurate 545 gr Butyl acetate
A homogeneous mixture of 390gr and 310g of water in which a small amount of polyvinyl alcohol and sodium phosphate were dissolved.
0111 was placed in a 10J2 three-necked flask equipped with a reflux condenser, a nitrogen inlet tube, and a stirrer and thoroughly stirred, and then polymerization was carried out at 80°C for 20 hours while stirring under a nitrogen stream,
A granular hydrophobic crosslinked polymer (gel) was obtained. The gel was filtered, washed with water, extracted with acetone, and then classified to obtain a gel with a weight average particle size of 8.8 .mu.m. The specific surface area (SA
>40m/gr, solvent retention! (SR) is 1.057
/gr.

重合体の試験 該ゲルを内径6mm、長さ150111mのステンレス
カラムに充填し、80%メタノール水溶液を溶離液とし
て、流速tm+/minでエチレングリコール及びドデ
カノールの分析を行なったところ、エチレングリコール
の溶出容量は3.3ml、理論段数(N)は9000で
あった。又、ドデカノールの溶出容量は26.3ml、
理論段数(N>は8300であった。測定時のカラム恒
温槽温度は30℃、検出器は示差屈検出器5E−51(
昭和電工n製)を用いた。又理論段数の算出方法は、“
日本分析化学会関東支部編高速液体クロマトグラフィー
ハンドブック(丸善)″によった。これから疎水性が大
で強く分配されるドデカノールの如き化合物も疎水性が
小さくあまり分配されないエチレングリコールとほとん
ど同じ理論段数が得られることがわかった。又、該充填
カラムを用いて下記条件で各種ペプチドを分析したとこ
ろ表1の如き結果を得た。
Polymer Test The gel was packed into a stainless steel column with an inner diameter of 6 mm and a length of 150111 m, and ethylene glycol and dodecanol were analyzed using an 80% methanol aqueous solution as the eluent at a flow rate of tm+/min. was 3.3 ml, and the number of theoretical plates (N) was 9,000. In addition, the elution volume of dodecanol is 26.3 ml,
The number of theoretical plates (N>) was 8300. The temperature of the column constant temperature bath at the time of measurement was 30°C, and the detector was a differential refractive detector 5E-51 (
(manufactured by Showa Denko n) was used. Also, the calculation method for the number of theoretical plates is “
According to the High Performance Liquid Chromatography Handbook (Maruzen), edited by the Kanto Branch of the Japanese Society for Analytical Chemistry.From now on, compounds such as dodecanol, which is highly hydrophobic and strongly partitions, have almost the same number of theoretical plates as ethylene glycol, which is small and does not partition very well. Furthermore, various peptides were analyzed using the packed column under the following conditions, and the results shown in Table 1 were obtained.

分析条件 溶離液 初期液 0.05%TFA/)1eCN −7
5/25最終液 0.05%TFA/ MeCN = 
10/ 90初期液から最終液への40分間リニア グラジェント 流速 0.7ml/min カラム恒温槽温度 30℃ 溶離液送液システム HPLCポンプ880 Pu 2台にシステムコントロ
ーラ801−3Cを組合せて用いた(いずれも日本分光
工業n製) 検出 LJV−280nll  AUFS  0.32
検出器UVIDEC100−IV (日本分光工業n製
)データ処理装置 5IC−7000B(システムイン
スツルメンツ製) 試料負荷量 40ggr 表1 表1かられかる様に、各種ペプチドが高回収率で回収さ
れた。
Analysis conditions Eluent Initial solution 0.05% TFA/)1eCN-7
5/25 Final solution 0.05% TFA/MeCN =
10/90 Linear gradient for 40 minutes from initial solution to final solution Flow rate: 0.7 ml/min Column constant temperature bath temperature: 30°C Eluent liquid delivery system: Two HPLC pumps 880 Pu were used in combination with a system controller 801-3C ( Both manufactured by JASCO Corporation) Detection LJV-280nll AUFS 0.32
Detector UVIDEC100-IV (manufactured by JASCO Corporation) Data processing device 5IC-7000B (manufactured by System Instruments) Sample loading amount 40 ggr Table 1 As shown in Table 1, various peptides were recovered at high recovery rates.

実施例2 重合体の製造 酢酸ビニル          100grトリアリル
イソシアヌレート 180g r酢酸ブチル     
    190にl r2.2°アゾビスイソブチロニ
トリル7grより成る均一混合液と少量のポリビニルア
ルコールおよびリン酸ナトリウムを溶解した水1600
m1とを還流冷却器、窒素導入管、攪拌器を備えた5文
の三つロフラスコに入れ十分攪拌したのち、窒素気流下
で攪拌しつつ60℃で16時間重合を行なって、粒状重
合体を得た。
Example 2 Production of polymer Vinyl acetate 100g triallylisocyanurate 180g rButyl acetate
190 l r2.2° Water in which a homogeneous mixture of 7 gr of azobisisobutyronitrile and a small amount of polyvinyl alcohol and sodium phosphate were dissolved 1600 l
After thorough stirring, polymerization was carried out at 60°C for 16 hours with stirring under a nitrogen stream to obtain a granular polymer. Obtained.

該粒状重合体を濾過、水洗、アセトン抽出し更に乾燥し
た。ついで該ゲルをカセイソーダ10grを溶解した水
31と共に、還流冷却器、窒素導入管、攪拌器を備えた
5又三つロフラスコ中で窒素気流下15℃で20時間攪
拌して該粒状重合体のケン化反応を行ったのち、濾過、
水洗、更に乾燥した。ケン化によって得られた重合体中
の水酸基の密度を求めたところ、0、8n+eq/gr
ゲルであった。水酸基の密度の測定方法は特開昭57−
108662号公報に記載の方法を用いた。
The granular polymer was filtered, washed with water, extracted with acetone, and further dried. Next, the gel was stirred together with water 31 in which 10 g of caustic soda was dissolved in a five-pronged three-neck flask equipped with a reflux condenser, a nitrogen inlet tube, and a stirrer at 15° C. under a nitrogen stream for 20 hours to dissolve the granular polymer. After the reaction, filtration,
Washed with water and further dried. When the density of hydroxyl groups in the polymer obtained by saponification was determined, it was 0.8n+eq/gr.
It was gel. The method for measuring the density of hydroxyl groups is JP-A-57-
The method described in Japanese Patent No. 108662 was used.

次いで該重合体をステアリン酸クロライド200gを溶
解したピリジン3ffiと共に、還流冷却器、窒素導入
管、攪拌器を備えた10Qの三つロフラスコに入れ、窒
素気流下、攪拌しつつ40℃で20時時間量合体とステ
アリン酸クロライドを反応させた。反応終了後、濾過し
、クロロホルム、アセトンで洗浄して疎水性架橋共重合
体(ゲル)を得た。得られたゲルの重量平均粒径は9.
1μ鴎であった。又該ゲルの水酸基密度はomeq/g
rであった。重合時の仕込組成、ケン化後の水Ill重
密度び導入されたステアロイル基の量から算出すると、
該ゲルは疎水基を有する単量体単位(すなわちステアリ
ン酸ビニル単位)45.1重量部、疎水基を有する単量
体単位以外の単量体単位(すなわち酢酸ビニル単位)5
4.9重量部および架橋単位であるトリアリル イソシ
アヌレート単位120.1重量部の割合で構成されてい
る。
Next, the polymer was placed in a 10Q three-necked flask equipped with a reflux condenser, a nitrogen inlet tube, and a stirrer together with 3ffi of pyridine in which 200 g of stearic acid chloride was dissolved, and the mixture was heated at 40° C. for 20 hours with stirring under a nitrogen stream. The polymer was reacted with stearic acid chloride. After the reaction was completed, it was filtered and washed with chloroform and acetone to obtain a hydrophobic crosslinked copolymer (gel). The weight average particle size of the obtained gel was 9.
It was a 1μ seaweed. Also, the hydroxyl group density of the gel is omeq/g
It was r. Calculated from the charging composition during polymerization, the water density after saponification, and the amount of introduced stearoyl groups,
The gel contained 45.1 parts by weight of a monomer unit having a hydrophobic group (i.e. vinyl stearate unit) and 5 parts by weight of a monomer unit other than the monomer unit having a hydrophobic group (i.e. vinyl acetate unit).
4.9 parts by weight and 120.1 parts by weight of triallyl isocyanurate units, which are crosslinking units.

又、該ゲルの比表面積(SA)は160Td/F溶媒保
持量(SR)は0.52 dlOrであった。
The gel had a specific surface area (SA) of 160 Td/F and a solvent retention capacity (SR) of 0.52 dlOr.

次いで該ゲルを実施例1と同様に内径6111長ざ15
0uのステンレスカラム゛に充填し、80%メタノール
水溶液を流速211/Sinで16時間通液したところ
、カラム入口と出口の圧力差は40kg/cm2で一定
であった。これから該ゲルが十分硬質であることがわか
る。
Next, the gel was prepared in the same manner as in Example 1, with an inner diameter of 6111 and a length of 15.
When a 0U stainless steel column was packed and an 80% methanol aqueous solution was passed through the column at a flow rate of 211/sin for 16 hours, the pressure difference between the column inlet and outlet was constant at 40 kg/cm2. This shows that the gel is sufficiently hard.

更に該ゲルを充填したカラムを用いて実施例1と同様の
条件でエチレングリコール及びドデカノールを分析した
ところ、エチレングリコールの溶出容量は2.6ml、
溶出ピークの理論段数(N>は4200、ドデカノール
の溶出容量は16.5n+1、溶出ピークの理論段数(
N)は4300であった。
Furthermore, when ethylene glycol and dodecanol were analyzed using a column filled with the gel under the same conditions as in Example 1, the elution volume of ethylene glycol was 2.6 ml.
The number of theoretical plates for the elution peak (N> is 4200, the elution volume of dodecanol is 16.5n+1, the number of theoretical plates for the elution peak (
N) was 4300.

実施例3 重合体の製造 酢酸ビニル         ioogrトリアリルイ
ソシアヌレート 145Qr酢酸ブチル       
  170Qr2.2°アゾビスイソブチロニトリル6
grよりなる均一混合液を用いた他は実施例2と同様の
方法で懸濁重合を行ない、粒状重合体を得た。該粒状重
合体を実施例2と同様に洗浄、乾燥した後、カセイソー
ダ6grを溶解した水2.51を用いた他は実施例2と
同様の条件でケン化し、水酸基の密度が0.4+1eq
/l;lrの重合体を得た。ステアリン酸クロライド9
01)rを用いた他は実施例2と同様の方法で該重合体
とステアリン酸クロライドを反応させた。
Example 3 Production of polymer Vinyl acetate ioogr triallyl isocyanurate 145Qr Butyl acetate
170Qr2.2°Azobisisobutyronitrile 6
Suspension polymerization was carried out in the same manner as in Example 2, except that a homogeneous mixture of gr was used to obtain a granular polymer. After washing and drying the granular polymer in the same manner as in Example 2, it was saponified under the same conditions as in Example 2 except that 2.5 g of water in which 6 g of caustic soda was dissolved was used, and the density of hydroxyl groups was 0.4 + 1 eq.
A polymer of /l; lr was obtained. Stearic acid chloride 9
01) The polymer and stearic acid chloride were reacted in the same manner as in Example 2 except that r was used.

反応後実施例2と同様の方法で処理し、疎水性架橋共重
合体(ゲル)を得た。該ゲルの重量平均粒径は8.5μ
−であった。又、該ゲルの水酸基密度はOmeq/gr
であった。重合時の仕込組成、ケン化後の水酸基密度、
及び導入されたステア0イル基の量から算出すると該ゲ
ルは、疎水基を有する単量体単位(すなわちステアリン
酸ビニル単位>23.8重量部、疎水基を有する単量体
単位以外の単量体単位(すなわち酢酸ビニル単位>76
.2重量部、架橋単位であるトリアリルイソシアヌレー
ト単位120.0重量部の割合で構成されている。
After the reaction, the mixture was treated in the same manner as in Example 2 to obtain a hydrophobic crosslinked copolymer (gel). The weight average particle size of the gel is 8.5μ
-It was. In addition, the hydroxyl group density of the gel is Omeq/gr.
Met. Charge composition during polymerization, hydroxyl group density after saponification,
Calculated from the amount of stearyl groups introduced, the gel contains monomer units having hydrophobic groups (i.e., vinyl stearate units>23.8 parts by weight, monomer units other than monomer units having hydrophobic groups). body units (i.e. vinyl acetate units >76
.. 2 parts by weight, and 120.0 parts by weight of triallylisocyanurate units, which are crosslinking units.

該ゲルの比表面積は270dlQr 1溶媒保持!(S
R)は0.8d10rであった。
The specific surface area of the gel is 270 dlQr and holds 1 solvent! (S
R) was 0.8d10r.

重合体の試験 該ゲルを実施例1と同様に内径61111.長さ150
11のステンレスカラムに充填し、80%メタノール水
溶液を流速211/ff1inで16時間通液したとこ
ろ、カラム入口と出口の圧力差は42kMcm2で一定
であった。
Polymer Test The gel was prepared in the same manner as in Example 1 with an inner diameter of 61111. length 150
When an 80% methanol aqueous solution was passed through the column at a flow rate of 211/ff1 inch for 16 hours, the pressure difference between the column inlet and outlet was constant at 42 kmcm2.

更に該ゲルを充填したカラムを用いて実施例1と同様の
条件でエチレングリコールとドデカノールを分析したと
ころ、エチレングリコールの溶出容量は2.71、溶出
ピークの理論段数(N>は4300、ドデカノールの溶
出容量は18.11+、溶出ピークの理論段数(N)は
4400であった。
Furthermore, when ethylene glycol and dodecanol were analyzed using a column filled with the gel under the same conditions as in Example 1, the elution volume of ethylene glycol was 2.71, the number of theoretical plates of the elution peak (N> was 4300, and the elution volume of dodecanol was 2.71, The elution volume was 18.11+, and the number of theoretical plates (N) of the elution peak was 4400.

比較例1 重合体の製造 酢酸ビニル         100Qrトリアリルイ
ソシアヌレート 43.OQr酢酸nブチル     
    30grアゾビスイソブチロニトリル 3.6
grよりなる均一混合液を用いた他は実施例2と同様の
方法で懸濁重合を行ない、粒状重合体を得た。該粒状重
合体を実施例2と同様に洗浄、乾燥した後、カセイソー
ダ9.5grを溶解した水1.51を用いた他は実施例
2と同様の条件でケン化し、水酸基の密度が1.5me
q/grの重合体を得た。ステアリン酸クロライド20
0gr、ピリジン1.5.Qを用いた他は実施例2と同
様の方法で該重合体とステアリン酸クロライドを反応さ
せた。反応後、実施例2と同様の方法で処理しゲルを得
た。該ゲルの重量平均粒径は9.5μmであった。又、
該ゲルの水酸基密度はOmeQ/gであった。重合時の
仕込組成、ケン化後の水酸基密度、及び導入されたステ
アロイル基の量から算出すると該ゲルは、疎水基を有す
る単量体単位(すなわちステアリン酸ビニル単位>42
.5重量部、疎水基を有する単量体単位以外の単量体単
位(すなわち酢酸ビニル単位)57.5重量部、架橋単
位であるトリアリルイソシアヌレート単位27.5重量
部の割合で構成され“ている。
Comparative Example 1 Production of polymer Vinyl acetate 100Qr triallyl isocyanurate 43. OQr n-butyl acetate
30gr azobisisobutyronitrile 3.6
Suspension polymerization was carried out in the same manner as in Example 2, except that a homogeneous mixture of gr was used to obtain a granular polymer. The granular polymer was washed and dried in the same manner as in Example 2, and then saponified under the same conditions as in Example 2, except that 1.5 g of water in which 9.5 g of caustic soda was dissolved was used, so that the density of hydroxyl groups was 1.5 g. 5me
A polymer of q/gr was obtained. Stearic acid chloride 20
0gr, pyridine 1.5. The polymer and stearic acid chloride were reacted in the same manner as in Example 2 except that Q was used. After the reaction, a gel was obtained by processing in the same manner as in Example 2. The weight average particle size of the gel was 9.5 μm. or,
The hydroxyl group density of the gel was OmeQ/g. Calculated from the charging composition during polymerization, the hydroxyl group density after saponification, and the amount of introduced stearoyl groups, the gel contains monomer units having hydrophobic groups (i.e., vinyl stearate units > 42
.. " ing.

該ゲルの比表面積(SA>は1 m10r 、溶媒保持
量(SR)は0.18 m/(llrであった。
The gel had a specific surface area (SA> of 1 m10r and a solvent retention capacity (SR) of 0.18 m/(llr).

重合体の試験 該ゲルを実施例1と同様に内径681111.長さ15
0mmのステンレスカラムに充填し、実施例1と同様の
条件でエチレングリコールおよびドデカノールを分析し
たところ、エチレングリコールの溶出容量は2.8+n
l、溶出ピークの理論段数(N>は4200であった。
Polymer Test The gel was prepared in the same manner as in Example 1 with an inner diameter of 681111. length 15
When ethylene glycol and dodecanol were analyzed under the same conditions as in Example 1 using a 0 mm stainless steel column, the elution volume of ethylene glycol was 2.8+n.
l, the number of theoretical plates (N>) for the elution peak was 4200.

一方線水性物質であるドデカノールの溶出容量は7.1
mlであり、実施例に比べて小さかった。又、ドデカノ
ールの理論段数(N)は1200であり、エチレングリ
コールのそれに比べて著るしく低かった。
On the other hand, the elution capacity of dodecanol, which is an aqueous substance, is 7.1
ml, which was smaller than that in the example. Further, the theoretical plate number (N) of dodecanol was 1200, which was significantly lower than that of ethylene glycol.

[発明の効果] 以上説明したように本発明の架橋共重合体は高度に架橋
されており硬質であるため、たとえばカラムに充填して
液体クロマトグラフィー用充填剤として用いた場合、溶
離液を高流速で流すことができ、迅速分析が可能である
。又、シリカゲルを母体とし、表面にオクタ・デシル基
等疎水基を結合した充填剤は前述の如く化学的に不安定
であると共に、塩基性物質を吸着する場合があるが、本
発明の架橋共重合体は化学的に安定であり、かつ塩基性
物質を吸着する可能性が低い。
[Effects of the Invention] As explained above, the crosslinked copolymer of the present invention is highly crosslinked and hard, so when it is packed in a column and used as a packing material for liquid chromatography, for example, the eluent is It can be flowed at a high flow rate, allowing rapid analysis. In addition, fillers made of silica gel and having hydrophobic groups such as octa-decyl groups bonded to the surface are chemically unstable as described above and may adsorb basic substances, but the crosslinking material of the present invention Polymers are chemically stable and less likely to adsorb basic substances.

又、本発明の架橋共重合体は、分離に必要でかつ強度を
保ちつる孔間を有しており、液体クロマトグラフィー用
充填剤として好ましい。合成ポリマー系の充填剤は分離
性能が不十分である場合が多く、特に分配される成分を
分析した場合に、その成分の溶出バンド幅が広くなる、
すなわち該成分の理論段数が低い欠点を有する場合が多
い。
Further, the crosslinked copolymer of the present invention has pores necessary for separation, maintains strength, and is preferable as a packing material for liquid chromatography. Synthetic polymer-based fillers often have insufficient separation performance, and especially when analyzing components to be distributed, the elution band width of that component becomes wide.
That is, the component often has a drawback of having a low theoretical plate number.

本発明の架橋共重合体は大きな比表面積を有するため、
試料との接触効率が良く、試料の吸着脱離が迅速に行わ
れ、強く分配される成分においても理論段数が高く、良
好な分離が得られる。
Since the crosslinked copolymer of the present invention has a large specific surface area,
The contact efficiency with the sample is good, the adsorption and desorption of the sample is carried out quickly, and the number of theoretical plates is high even for components that are strongly distributed, and good separation can be obtained.

特開昭58−61463号公報に記載のポリマーゲルも
長鎖アルキル基を有し、該アルキル基と試料の疎水性相
互作用を利用して分離するために用いられる。しかし該
公報に記載のゲルは主として工業分離用に用いることを
目的としており、高度な分離が必要な高速液体のクロマ
トグラフィー用充填剤として用いるのに必要な要件が記
載されていない。
The polymer gel described in JP-A-58-61463 also has a long-chain alkyl group, and is used for separation by utilizing the hydrophobic interaction between the alkyl group and the sample. However, the gel described in this publication is primarily intended for use in industrial separation, and does not describe the requirements necessary for use as a packing material for high-performance liquid chromatography that requires high-performance liquid separation.

本発明の架橋共重合体は、硬質で適当な量の疎水基と適
当な孔間を有し、かつ適当な表面積を有するため、疎水
性相互作用を利用して分離する液体クロマトグラフィー
用充填剤として好適であり、高度な分離を要求される高
速液体クロマトグラフィー用充填剤として特に好ましい
The crosslinked copolymer of the present invention is hard, has an appropriate amount of hydrophobic groups, an appropriate pore space, and has an appropriate surface area, so it is a packing material for liquid chromatography that separates using hydrophobic interactions. It is particularly suitable as a packing material for high performance liquid chromatography which requires a high degree of separation.

Claims (1)

【特許請求の範囲】[Claims] (1)一般式CH_2=CXYで表わされ、Xが▲数式
、化学式、表等があります▼、Yが水素原子又はメチル
基 である単量体・・・( I )、 Xが▲数式、化学式、表等があります▼、Yが水素原子
又はメチル基 である単量体・・・(II) Xが▲数式、化学式、表等があります▼、Yが水素原子
又はメチ ル基である単量体・・・(III) (但し、R_1はハイドロフォービックフラグタンタル
コンスタントが1.5以上の疎水基)のいずれかの単量
体より誘導される単量体単位またはこの単量体単位とこ
の単量体単位以外の単量体単位の混合物から誘導される
構成単量体単位100重量部と、50重量部以上のエチ
レン性二重結合および/又はアセチレン性三重結合を二
つ以上有する架橋剤より誘導される架橋単位とからなり
、下記(A)及び(B)の物性を有する疎水性架橋共重
合体。 (A)比表面積(SA)30≦SA≦1000m^2/
gr(B)溶媒保持量(SR)0.2≦SR≦3.0m
l/gr(2)疎水基が炭素数3〜30のアルキル基、
及び下記式(IV)より選ばれた一種又は二種以上である
特許請求の範囲第(1)項記載の疎水性架橋共重合体。 ▲数式、化学式、表等があります▼・・・(IV) [但し−R_2−は−C_nH_2n−(n=0〜30
)であり、X_1〜X_5は水素原子、塩素原子、臭素
原子、ヨウ素原子、又は炭素数1〜30のアルキル基の
一種以上五種までである。]
(1) A monomer represented by the general formula CH_2=CXY, where X is a ▲mathematical formula, chemical formula, table, etc.▼, Y is a hydrogen atom or a methyl group... (I), X is a ▲mathematical formula, There are chemical formulas, tables, etc. ▼, Monomers where Y is a hydrogen atom or methyl group... (II) Monomers where X is ▲ Numerical formulas, chemical formulas, tables, etc. are available ▼, Y is a hydrogen atom or methyl group (III) (However, R_1 is a hydrophobic group with a hydrophobic flag tantalum constant of 1.5 or more) or a monomer unit derived from this monomer and this monomer unit. A crosslinking agent having 100 parts by weight of constituent monomer units derived from a mixture of monomer units other than monomer units, and 50 parts by weight or more of two or more ethylenic double bonds and/or acetylenic triple bonds. A hydrophobic crosslinked copolymer comprising a crosslinking unit derived from a hydrophobic crosslinked copolymer having the following physical properties (A) and (B). (A) Specific surface area (SA) 30≦SA≦1000m^2/
gr (B) Solvent retention amount (SR) 0.2≦SR≦3.0m
l/gr (2) the hydrophobic group is an alkyl group having 3 to 30 carbon atoms,
and the hydrophobic crosslinked copolymer according to claim (1), which is one or more selected from the following formula (IV). ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(IV) [However, -R_2- is -C_nH_2n- (n=0 to 30
), and X_1 to X_5 are one or more of a hydrogen atom, a chlorine atom, a bromine atom, an iodine atom, or an alkyl group having 1 to 30 carbon atoms. ]
JP62039018A 1986-10-24 1987-02-24 Packing material for liquid chromatography Expired - Lifetime JPH0746098B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE8787201905T DE3778113D1 (en) 1986-10-24 1987-10-06 CROSSLINKED HYDROPHOBIC POLYMER AND METHOD FOR PRODUCING THE SAME.
EP87201905A EP0264997B1 (en) 1986-10-24 1987-10-06 A hydrophobic crosslinked copolymer and a method for producing the same
US07/106,356 US4988786A (en) 1986-10-24 1987-10-09 Hydrophobic crosslinked copolymer from ethylenic ester or carbamate with polyethylenic monomer
CA000549895A CA1334119C (en) 1986-10-24 1987-10-21 Hydrophobic crosslinked copolymer and a method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-251793 1986-10-24
JP25179386 1986-10-24

Publications (2)

Publication Number Publication Date
JPS63225606A true JPS63225606A (en) 1988-09-20
JPH0746098B2 JPH0746098B2 (en) 1995-05-17

Family

ID=17228014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62039018A Expired - Lifetime JPH0746098B2 (en) 1986-10-24 1987-02-24 Packing material for liquid chromatography

Country Status (1)

Country Link
JP (1) JPH0746098B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010260831A (en) * 2009-05-08 2010-11-18 Kanagawa Univ Photodegradable hetero-bivalent crosslinking agent

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5748740A (en) * 1980-09-05 1982-03-20 Canon Inc Developing method
JPS58109444A (en) * 1981-11-19 1983-06-29 Kureha Chem Ind Co Ltd Separation and purification of eicosapentaenoic acid or it ester and docosahexaenoic acid or its ester
JPS6290534A (en) * 1985-10-09 1987-04-25 Nippon Oil & Fats Co Ltd Polymer filter for high performance liquid chromatography

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5748740A (en) * 1980-09-05 1982-03-20 Canon Inc Developing method
JPS58109444A (en) * 1981-11-19 1983-06-29 Kureha Chem Ind Co Ltd Separation and purification of eicosapentaenoic acid or it ester and docosahexaenoic acid or its ester
JPS6290534A (en) * 1985-10-09 1987-04-25 Nippon Oil & Fats Co Ltd Polymer filter for high performance liquid chromatography

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010260831A (en) * 2009-05-08 2010-11-18 Kanagawa Univ Photodegradable hetero-bivalent crosslinking agent

Also Published As

Publication number Publication date
JPH0746098B2 (en) 1995-05-17

Similar Documents

Publication Publication Date Title
EP1137466B1 (en) A chromatography method and a column material useful in said method
CA1194644A (en) Totally porous activated gel
CA2737404C (en) Temperature-responsive polymer particles in protein separation
JP5981133B2 (en) Temperature-responsive adsorbent having strong cation exchange group and method for producing the same
JPH021747A (en) Macro-porous polymer film and its preparation
EP0831113B1 (en) Alkylated porous resin, process for production thereof, and use thereof
US20220176273A1 (en) Packing material for size exclusion chromatography and method for producing the same
JPS5861463A (en) Carrier for liquid chromatography and separating and refining method for fat soluble material using said carrier
AU5381700A (en) Process for making fluorinated polymer adsorbent particles
US3896092A (en) Material for gel permeation chromatography
JPH07318551A (en) Chromatography and filler therefor
US20030162853A1 (en) Use of adsorbent polymer particles in DNA separation
Ling et al. Polymer‐bound cellulose phenylcarbamate derivatives as chiral stationary phases for enantioselective HPLC
US7148264B2 (en) Method of producing macroporous cross-linked polymer particles
JPS63225606A (en) Hydrophobic crosslinked copolymer
WO1992001721A1 (en) Crosslinked copolymer particle and process for preparing the same
EP0366042A2 (en) Adsorbent for optical resolution and resolution method employing it
EP0264997B1 (en) A hydrophobic crosslinked copolymer and a method for producing the same
JPS6090040A (en) Synthetic adsorbent and preparation thereof
JP3029640B2 (en) Adsorbent
JPS6392627A (en) Hydrophilic porous particle
JPH0142746B2 (en)
JPH0141383B2 (en)
Gibson et al. Economic fabrication and utilisation of agar composites in bioselective recovery in fixed and fluidised beds
JPH02211242A (en) Adsorbent for optical resolution and method using the adsorbent