JPS6290534A - Polymer filter for high performance liquid chromatography - Google Patents

Polymer filter for high performance liquid chromatography

Info

Publication number
JPS6290534A
JPS6290534A JP60223832A JP22383285A JPS6290534A JP S6290534 A JPS6290534 A JP S6290534A JP 60223832 A JP60223832 A JP 60223832A JP 22383285 A JP22383285 A JP 22383285A JP S6290534 A JPS6290534 A JP S6290534A
Authority
JP
Japan
Prior art keywords
log
filler
polymer gel
crosslinking agent
liquid chromatography
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60223832A
Other languages
Japanese (ja)
Inventor
Yasuyuki Tanaka
康之 田中
Hisaya Sato
佐藤 寿弥
Yoshiki Yamada
佳樹 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP60223832A priority Critical patent/JPS6290534A/en
Publication of JPS6290534A publication Critical patent/JPS6290534A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To separate many kinds of hydrocarbons each having an aliphatic chain and derivatives thereof with high accuracy on the basis of the difference between hydrophobic constants without generating specific adsorption, by allowing a predetermined polymer gel high-molecular filler with a specific particle size obtained by the suspension polymerization of predetermined mechacrylate and a crosslinking agent in a predetermined ratio to satisfy a predetermined condition. CONSTITUTION:Methacrylate represented by general formula I (wherein R is a 8-24C alkyl group) and a crosslinking agent are subjected to suspension polymerization in a volumetric ratio of 1:0.3-5 to obtain a polymer gel with a particle size of 2-20mum and this polymer gel is uses as a filler for high performance liquid chromatography. As the crosslinking agent, an aromatic polyvinyl monomer or an acrylic acid type polyvinyl monomer is used. By allowing said filler to satisfy log K'=y X log P + m (wherein K' is the holding ratio of a specimen, log P is a hydrophobicity constant and y and m are a constant), good separation can be performed regardless of the polarity of the specimen on the basis of the difference between the hydrophobicity constants of components to be separated.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は高速液体クロマトグラフィー用高分子充填剤に
関し、更に詳細にはメタクリレート系ポリマーゲルから
なる高速液体クロマトグラフィー用充填剤に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a polymer packing material for high performance liquid chromatography, and more particularly to a packing material for high performance liquid chromatography comprising a methacrylate polymer gel.

〈従来の技術及び問題点〉 従来より液体クロマトグラフィーとしては試料の疎水性
定数(log P)の相違により分離する逆相分配液体
クロマトグラフィーが知られている。一般的に、逆相分
配液体クロマトグラフィーで試料を分離する場合、用い
られる充填剤として、コーティング型カラム充填剤、化
学結合型カラム充填剤が挙げられる。
<Prior Art and Problems> Conventionally, as liquid chromatography, reverse phase partition liquid chromatography, which separates samples based on differences in their hydrophobic constants (log P), has been known. Generally, when separating samples by reverse phase partition liquid chromatography, examples of the packing material used include coated column packing materials and chemically bonded column packing materials.

現在適用されているコーティング型カラム充填剤はシリ
カゲル、アルミナ、ケイソウ土の表面に固定物質として
、β、β′−オキシジプロピオニトリル、カーボワック
ス、エチレングリコール、トリメチレングリコール、シ
アノエチルシリコーン、ヒドロカーボンポリマー、ポリ
アミド、ジメチルスルホキシドをコーティングしたもの
等があり、化学結合型カラム充填剤は一般にシリカ表面
のシラノール基(Si−OH)と共有結合によって結合
され、固定相としてポリエチレングリコール、オクタデ
シルシラン、オクタデシルトリクロロシラン、ジフェニ
ルジクロロシラン、四級アルキルアミン、オキシプロピ
オニトリル等が適用されている。オクタデシル基を化合
結合したシリカゲル充填剤はODSシリカと称され、一
般的に液体クロマトグラフィーに用いられている。
Currently applied coated column packing materials include silica gel, alumina, and diatomaceous earth as fixed substances, such as β, β'-oxydipropionitrile, carbowax, ethylene glycol, trimethylene glycol, cyanoethyl silicone, and hydrocarbon polymers. Chemically bonded column packing materials are generally covalently bonded to the silanol groups (Si-OH) on the silica surface, and are coated with polyethylene glycol, octadecylsilane, or octadecyltrichlorosilane as the stationary phase. , diphenyldichlorosilane, quaternary alkylamine, oxypropionitrile, etc. are used. A silica gel packing material having octadecyl groups bonded thereto is called ODS silica and is generally used in liquid chromatography.

コーティング型カラム充填剤は、シリカゲル表面にコー
ティングした固定相が移動相の溶離液の種類によっては
溶解し、コーティング相が剥離し溶出してしまうという
欠点がある。また一方、化学結合型カラム充填剤は前者
の欠点を補う目的でシラノール基に化学結合されている
が化学結合したSi−〇−C型結合はCH(1,等の含
ハロゲン系の溶媒、アセトン等によって切断されるため
これらを溶離液に用いることはです、また、溶離液のp
Hも2〜8と制限され、すべてのPH範囲で用いること
はできないという欠点がある。
Coated column packing materials have the disadvantage that the stationary phase coated on the silica gel surface dissolves depending on the type of mobile phase eluent, causing the coating phase to peel off and elute. On the other hand, chemically bonded column packing materials are chemically bonded to silanol groups in order to compensate for the drawbacks of the former, but the chemically bonded Si-〇-C type bonds are used in halogen-containing solvents such as CH(1, etc.), acetone, etc. These can be used as eluents because they are cleaved by
H is also limited to 2 to 8, which has the disadvantage that it cannot be used in all pH ranges.

さらに、シリカ表面のシラノール基をす−べて化学結合
させることは難しく、未反応のシラノール基が残存して
いることから、ある種の試料については特異吸着をおこ
し、試料の疎水性定数(log P)の違いだけにより
分離することはできなかった。
Furthermore, it is difficult to chemically bond all the silanol groups on the silica surface, and some unreacted silanol groups remain, which may cause specific adsorption for some types of samples, resulting in a change in the hydrophobicity constant (log It was not possible to separate them only due to the difference in P).

また、ODSシリカによる分離の場合も、残存シラノー
ル基による影響があり、更にまた。ODSシリカでは一
般的に溶離液に極性の高い水−メタノール混合液若しく
は水−アセトニトリル混合液を用いるが、サンプルの中
には、混合液に溶けないものが多いなど使用にあたって
問題がある他。
Furthermore, in the case of separation using ODS silica, there is also an influence due to residual silanol groups. ODS silica generally uses a highly polar water-methanol mixture or water-acetonitrile mixture as the eluent, but there are other problems with its use, such as the fact that many samples do not dissolve in the mixture.

疎水性定数(log P)の値の小さいものに対する保
持時間が短く、これらの分離が不可能となるなど種々の
欠点がある。
It has various drawbacks, such as a short retention time for substances with a small hydrophobic constant (log P), making it impossible to separate them.

〈発明の目的〉 本発明の目的は特異吸着がなく、試料の疎水性定数(l
og P)の相違により、脂肪族鎖を有する多種の炭化
水素及びその誘導体を高精度にて分離することができる
高速液体クロマトグラフィー用高分子充填剤を提供する
ことにある。
<Object of the invention> The object of the present invention is to avoid specific adsorption and to maintain the hydrophobicity constant (l) of the sample.
An object of the present invention is to provide a polymer packing material for high performance liquid chromatography that can separate various types of hydrocarbons having aliphatic chains and their derivatives with high precision due to differences in og P).

く問題点を解決するための手段〉 本発明によれば、下記の一般式(1) %式%(1) (式中、Rは炭素数8〜24のアルキル基を示す)で表
わされるメタクリレートと架橋剤とをその体積比率を1
:0.3〜5の範囲で懸濁重合して得られる粒径が2〜
20μのポリマーゲルからなる高分子充填剤であって、
該充填剤が下記式1式% (式中、logK’は試料の保持比に′の対数値、lo
g Pは疎水性定数、y及びmは定数を示す)を満足す
る特性を有することを特徴とする高速液体クロマトグラ
フィー用高分子充填剤が提供される。
According to the present invention, a methacrylate represented by the following general formula (1) % formula % (1) (wherein R represents an alkyl group having 8 to 24 carbon atoms) and the crosslinking agent at a volume ratio of 1
: Particle size obtained by suspension polymerization in the range of 0.3 to 5.
A polymeric filler consisting of a 20μ polymer gel,
The filler is expressed by the following formula 1% (where log K' is the logarithm of the retention ratio of the sample, log
A polymer packing material for high performance liquid chromatography is provided, which is characterized by having a property satisfying the following: g P is a hydrophobic constant, and y and m are constants.

以下、本発明につき更に詳細に説明する。The present invention will be explained in more detail below.

本発明では上記一般式(1)で示される炭素数8〜24
のアルキル基を有するメタクリレートと架橋剤とを憑濁
重合して得られるポリマーゲルを用いる。メタクリレー
トのエステル基であるアルキル基の炭素数が7以下とな
ると分離精度が悪くなり、また一方25以上となると合
成が困蓮となり実用上適さない。架橋剤としては芳香族
系のポリビニルモノマー又はアクリル酸系のポリビニル
モノマーを用いることができ、具体的にはジビニルベン
ゼン、ジビニルトルエン、ジビニルキシレン、ジビニル
ピリジン、トリビニルベンゼン又はジアリルフタレート
、ジアリルアクリレート、エチレングリコールジメタク
リレート、トリメタクリル酸トリメチロールプロパン、
テトラメタクリル酸ペンタエリスリトール等を挙げるこ
とができる。また、上記一般式(1)で示されるメタク
リレートの一部、たとえばメタクリレート100重量部
に対し10〜80重量部程度をスチレン系芳香族化合物
又はアクリル酸系脂肪族化合物などのモノビニル化合物
で置き換えてもよい。上記スチレン系芳香族化合物とし
てはスチレン、エチルスチレン、ビニルナフタレン等を
挙げることができ、また、アクリル酸系脂肪族としては
、アクリル酸エステル、メタクリル酸エステル等を挙げ
ることができる。
In the present invention, carbon number 8 to 24 represented by the above general formula (1) is used.
A polymer gel obtained by turbidity polymerization of a methacrylate having an alkyl group and a crosslinking agent is used. If the number of carbon atoms in the alkyl group, which is the ester group of methacrylate, is 7 or less, the separation accuracy will be poor, while if it is 25 or more, synthesis will be difficult and it is not suitable for practical use. As the crosslinking agent, aromatic polyvinyl monomers or acrylic acid-based polyvinyl monomers can be used, and specifically, divinylbenzene, divinyltoluene, divinylxylene, divinylpyridine, trivinylbenzene, diallylphthalate, diallyl acrylate, and ethylene. Glycol dimethacrylate, trimethylolpropane trimethacrylate,
Examples include pentaerythritol tetramethacrylate. Alternatively, a part of the methacrylate represented by the above general formula (1), for example, about 10 to 80 parts by weight per 100 parts by weight of methacrylate, may be replaced with a monovinyl compound such as a styrene-based aromatic compound or an acrylic acid-based aliphatic compound. good. Examples of the styrene-based aromatic compounds include styrene, ethylstyrene, vinylnaphthalene, etc., and examples of the acrylic acid-based aliphatic compounds include acrylic esters, methacrylic esters, and the like.

メタクリレートと架橋剤との配合割合はメタクリレート
:架橋剤が体積比にて1:0.3〜5、好ましくは1 
: 0.4〜2である。架橋剤が0.3未満では、充填
剤の機械的強度が低下し、また一方5を越えると試料の
保持力が小さくなる。重合は水中においてポリビニルア
ルコール等を分散安定化剤として用い、S濁重合をおこ
なう。重合開始剤としては過酸化ベンゾイル、ブチルパ
ーオキシド、過酸化コハク酸、ブチルヒドロキシパーオ
キシドのような有機過酸化物、2,2′−アシヒス(2
,4−ジメチルバレロニトリル)、アゾビスイソブチロ
ニトリル等が利用できる。重合にあたっては希釈剤とし
てメタクリレートおよび架橋剤と反応性がなく、これら
と相溶性のあるもの、たとえばトルエン、キシレン、ク
ロルベンゼン、ジクロロベンゼン、クロロホルム、アセ
トン、酢酸エチルなどを用いてもよく、また沈澱剤とし
て。
The mixing ratio of methacrylate and crosslinking agent is methacrylate:crosslinking agent in a volume ratio of 1:0.3 to 5, preferably 1:
: 0.4-2. If the crosslinking agent content is less than 0.3, the mechanical strength of the filler will decrease, while if it exceeds 5, the holding force of the sample will decrease. Polymerization is carried out in water using polyvinyl alcohol or the like as a dispersion stabilizer to carry out S-turbid polymerization. As a polymerization initiator, organic peroxides such as benzoyl peroxide, butyl peroxide, succinic peroxide, butyl hydroxy peroxide, 2,2'-acyhis (2
, 4-dimethylvaleronitrile), azobisisobutyronitrile, etc. can be used. In polymerization, diluents that are not reactive with methacrylates and crosslinking agents and are compatible with them, such as toluene, xylene, chlorobenzene, dichlorobenzene, chloroform, acetone, and ethyl acetate, may be used. as an agent.

たとえばパラフィン類、高級アルコール、天然の油脂、
低重度の線状高分子類及びこれ等のハロゲン化合物、あ
るいは膨潤剤として高沸点有機溶媒でハロゲン化合物や
芳香族系溶剤及びこれ等のハロゲン化合物を加えてもよ
い。重合は通常温度25〜100℃にて1〜20時間程
度行なう。
For example, paraffins, higher alcohols, natural oils and fats,
Low gravity linear polymers and their halogen compounds, or halogen compounds, aromatic solvents, and these halogen compounds may be added as a swelling agent using a high boiling point organic solvent. Polymerization is usually carried out at a temperature of 25 to 100°C for about 1 to 20 hours.

本発明ではポリマーゲルの粒径が2〜20μ、好ましく
は3〜10μのものを用いる。20μを越えると分離精
度が悪くなり使用できない。また2μ未満のものを用い
ると分離に時間を要する。
In the present invention, a polymer gel having a particle size of 2 to 20 microns, preferably 3 to 10 microns is used. If it exceeds 20μ, the separation accuracy deteriorates and it cannot be used. Furthermore, if a particle less than 2μ is used, it will take time to separate it.

なお、ポリマーゲルの粒径とは体積平均粒径をいう1粒
径が20μ以下のポリマーゲルを得るには界面活性剤の
添加量を多くするか、比較的高温で重合させるか又は反
応中高速で十分攪拌を行なう。
Note that the particle size of polymer gel refers to the volume average particle size. To obtain a polymer gel with a particle size of 20μ or less, it is necessary to increase the amount of surfactant added, to polymerize at a relatively high temperature, or to increase the speed during the reaction. Stir thoroughly.

これらを併用してもよい。You may use these together.

かようにして得られる本発明の高速液体クロマトグラフ
ィー用高分子充填剤は下記式 1式% (式中、1式gK’は試料の保持比に′の対数値、lo
g Pは疎水性定数、y及びmは定数を示す)を満足す
る特性を有する。定数y及びmは溶離液、測定温度によ
り定まる定数である。ここでいう疎水性定数(log 
P)とはHansch法(A、Leo、P、V、C,J
ov。
The polymer packing material for high performance liquid chromatography of the present invention obtained in this manner has the following formula 1% (wherein 1 formula gK' is the logarithm of the retention ratio of the sample, lo
g P is a hydrophobic constant, y and m are constants). The constants y and m are constants determined by the eluent and the measurement temperature. The hydrophobic constant (log
P) is the Hansch method (A, Leo, P, V, C, J
ov.

C,5ilipo、and  C,Hansch、J、
Meol、Che+n、18,856(1975))に
より算出される定数であり、試料の親水性、親油性の程
度を表わす。疎水性定数(logP)は試料の保持比(
k′)と関連がある。詳細には、保持比(k′)は試料
の溶出時間(tr)、溶媒の溶出時間(to)より算出
され、 k’ =(t r−t o)/ t、 oで表
わされる。保持比の対数値(log k’ )と試料の
疎水性定数(log P)には、試料の特異吸着がない
場合、 (log k’ )= y X(log P)
+mの関係が成り立ち、良好な分離を得るためには、y
の値は大きいほど(Log P)の値のわずかな差で分
離が可能となり、mの値が大きいほど(log P)の
値の小さいものの分離が可能となり適している。
C, 5ilipo, and C, Hansch, J.
Meol, Che+n, 18, 856 (1975)) and represents the degree of hydrophilicity and lipophilicity of the sample. The hydrophobicity constant (logP) is the retention ratio of the sample (
k'). Specifically, the retention ratio (k') is calculated from the sample elution time (tr) and the solvent elution time (to), and is expressed as k' = (tr-t o)/t, o. If there is no specific adsorption of the sample, the logarithm of the retention ratio (log k') and the hydrophobic constant of the sample (log P) are expressed as (log k') = y X (log P)
+m holds true, and in order to obtain good separation, y
The larger the value of m, the more suitable the separation becomes possible with a slight difference in the (log P) value, and the larger the value of m is, the more suitable the separation becomes possible with a small difference in the (log P) value.

本発明の充填剤によれば、試料の極性によらず良好な分
離ができ、溶出時間より試料の極性を推定することも可
能である。
According to the packing material of the present invention, good separation can be performed regardless of the polarity of the sample, and it is also possible to estimate the polarity of the sample from the elution time.

本発明では、上述のようにして得られるポリマーゲルを
高速液体クロマトグラフィー用充填剤として用いる。充
填剤をカラム内へ充填する方法としては、充填率の制御
可能な方法であれば公知の方法、たとえば「充填剤」 
(橋本勉編著、武蔵野畜房)に記載の平衡スラリー法、
簡易スラリー法、高粘度スラリー法等いずれに依っても
よい、どのような充填方法を用いようとも充填剤の均一
充填に十分配慮すべきは言うまでもない。
In the present invention, the polymer gel obtained as described above is used as a packing material for high performance liquid chromatography. As a method for filling the column with the packing material, there are known methods that allow control of the packing rate, such as "filling material".
(Edited by Tsutomu Hashimoto, Musashino Livestock), the balanced slurry method,
It goes without saying that no matter what filling method is used, such as a simple slurry method or a high viscosity slurry method, sufficient consideration should be given to uniform filling of the filler.

〈発明の効果〉 本発明の分離方法によれば、多種の脂肪族炭化水素及び
その誘導体、たとえば脂肪酸及びそのエステル、アルコ
ール、ジオール、アルキルベンゼンなどを特異吸着なく
試料の疎水性定数(log P)の違いにより、正確に
分離ができ、実験用分析。
<Effects of the Invention> According to the separation method of the present invention, various aliphatic hydrocarbons and their derivatives, such as fatty acids and their esters, alcohols, diols, alkylbenzenes, etc., can be removed without specific adsorption and with the hydrophobicity constant (log P) of the sample being reduced. The difference allows for accurate separation and experimental analysis.

工業用の分離精製等に広く利用できる。It can be widely used for industrial separation and purification.

〈実施例〉 以下、実施例および比較例によって本発明を具体的に説
明するが、本発明はこれらの実施例に限定されるもので
はな゛い。
<Examples> The present invention will be specifically explained below with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

去111− IQフラスコに、水600mQに溶解したポリビニルア
ルコール3.6gを入れ、各種メタクリル酸エステル(
メタクリル酸メチル、メタクリル酸ブチル、メタクリル
酸オクチル)40mQに対して各々エチレングリコール
ジメタクリレート40mQ、希釈剤としてのトルエン6
0mQ、2,2−イソブチルバレロニトリル2.0gを
添加して均一混合液を調製し、これを入れたフラスコを
氷水浴に入れ、充分に冷却して内温を20℃以下に保ち
ながら、フラスコ内の重合液を高速攪拌機で高速で攪拌
した1次に、80℃に保った水浴にフラスコを入れ、舟
型翼付攪拌捧でフラスコ内の温度を均一に保つ程度に攪
拌しながら80℃で10時間重合した0重合終了後、生
成したゲルを熱水、アセトンで洗浄後、アセトンによる
デカンテーションによりゲルの体積平均粒径を5.0〜
7.5μに揃えた。
111- Put 3.6 g of polyvinyl alcohol dissolved in 600 mQ of water into an IQ flask, and add various methacrylic esters (
For each 40 mQ of methyl methacrylate, butyl methacrylate, octyl methacrylate, 40 mQ of ethylene glycol dimethacrylate, and 6 toluene as a diluent.
Add 0 mQ, 2.0 g of 2,2-isobutylvaleronitrile to prepare a homogeneous mixture, place the flask containing this in an ice water bath, and cool the flask while keeping the internal temperature below 20°C. First, the polymerization solution inside was stirred at high speed with a high-speed stirrer.Then, the flask was placed in a water bath kept at 80℃, and the flask was heated to 80℃ while stirring with a boat-shaped stirring rod to keep the temperature inside the flask uniform. After 10 hours of polymerization, the resulting gel was washed with hot water and acetone, and the volume average particle size of the gel was reduced to 5.0 to 5.0 by decantation with acetone.
I adjusted it to 7.5μ.

上記の重合法で合成した高分子充填剤をカラム(4,5
mφX25aa、ステンレス)に充填後。
Column (4, 5
After filling mφX25aa, stainless steel).

疎水性定数(log P)の異なる試料(1,ベンゼン
2、トルエン;3.エチルベンゼン;4.n−プロピル
ベンゼン;5.n−ブチルベンゼン;6゜5aC−ブチ
ルベンゼン; 7 、 tert−ブチルベンゼン;8
.n−ヘキサン;9.n−へブタン;10゜n−オクタ
ン;11.n−ノナン;12.n−デカン;13.n−
ウンデカン;14.n−カプロン酸メチル;15.n−
カプリル酸メチル;16゜n−カプリン酸メチル;17
.ラウリン酸メチル;18、ミリスチン酸メチル;19
.バルミチン酸メチル;20.フェノール;21.アセ
トフェノン;22.安息香酸メチル)についてメタノー
ルを溶離液とした逆相分配液体クロマトグラフィー法で
保持比(k′)を測定した。第1図(イ)にはメタクリ
ル酸メチル(MMA)とエチレングリコールジメタクリ
レート(EDMA)とのポリマーゲル(MMA−EDM
A)を用いた場合の各試料1〜22の疎水性定数(lo
g P) (横軸)と保持比に′の対数値(log k
’ ) (縦軸)との関係をグラフに示す。同様に第1
図(ロ)にはメタクリル酸ブチル(HMA)とエチレン
グリコールジメタクリレート(EDMA)とのポリマー
ゲル(BMA−EDMA)を用いた場合、第1図(ハ)
にはメタクリル酸オクチル(OMA)とエチレングリコ
ールジメタクリレート(EDMA)とのポリマーゲル(
OMA−EDMA)を用いた場合の同様の関係を各々示
す、第1図(イ)(ロ)に示されるように。
Samples with different hydrophobic constants (log P) (1, benzene, 2, toluene; 3. ethylbenzene; 4. n-propylbenzene; 5. n-butylbenzene; 6°5aC-butylbenzene; 7, tert-butylbenzene; 8
.. n-hexane; 9. n-hebutane; 10° n-octane; 11. n-nonane; 12. n-decane; 13. n-
Undecane; 14. Methyl n-caproate; 15. n-
Methyl caprylate; 16゜n-methyl caprate; 17
.. Methyl laurate; 18, methyl myristate; 19
.. Methyl balmitate; 20. Phenol; 21. Acetophenone; 22. The retention ratio (k') of methyl benzoate was measured by reverse phase partition liquid chromatography using methanol as an eluent. Figure 1 (a) shows a polymer gel (MMA-EDM) of methyl methacrylate (MMA) and ethylene glycol dimethacrylate (EDMA).
A) The hydrophobicity constant (lo
g P) (horizontal axis) and the retention ratio is the logarithm of '(log k
) (vertical axis) is shown in the graph. Similarly, the first
Figure (b) shows the case where a polymer gel (BMA-EDMA) of butyl methacrylate (HMA) and ethylene glycol dimethacrylate (EDMA) is used;
A polymer gel of octyl methacrylate (OMA) and ethylene glycol dimethacrylate (EDMA) (
As shown in FIGS. 1(a) and 1(b), which respectively show similar relationships when using OMA-EDMA).

アルキル基(エステル基)の炭素数が1 (MMA)及
び4 (BMA)のメタクリレートを用いたポリマーゲ
ルでは3本の直線が認められ、log k’ =y x
(log P)+mの関係が3種類存在し、官能基によ
る特異吸着が認められ、試料の極性のみで分離できない
ことが判る。これに対し、第1図(ハ)では炭素数8の
メタクリレートを用いた本発明のポリマーゲルを用いて
おり、(log P)と(log k’ )との間に一
本の直線関係が認められ、試料の疎水性定数(log 
P)によって、試料を分離できることがわかる。
Three straight lines are observed in polymer gels using methacrylates in which the alkyl group (ester group) has 1 (MMA) and 4 (BMA) carbon atoms, and log k' = y x
There are three types of relationships of (log P)+m, and specific adsorption due to functional groups is observed, indicating that separation cannot be achieved solely based on sample polarity. On the other hand, in Figure 1 (c), the polymer gel of the present invention using methacrylate having 8 carbon atoms is used, and a linear relationship is observed between (log P) and (log k'). and the hydrophobicity constant (log
P) shows that the sample can be separated.

去皇叢又 メタクリル酸ステアリル(SMA)とエチレングリコー
ルジメタクリレート(EDMA)とを体積比率をSMA
/EDMA=0.5,1.0,2.0に各々変えた以外
は実施例1と同様にして体積平均粒径5.O〜7.5μ
(7)ポリマーゲ/L/(−SMA−EDMA)を調製
した。
The volume ratio of stearyl methacrylate (SMA) and ethylene glycol dimethacrylate (EDMA) is SMA.
/EDMA=0.5, 1.0, 2.0, respectively, in the same manner as in Example 1, except that the volume average particle size was 5. O~7.5μ
(7) Polymer gel/L/(-SMA-EDMA) was prepared.

実施例1と同様の試料につき、メタノールを溶離液とし
た逆相分配液体クロマトグラフィー法で保持比(K′)
を測定した。
Retention ratio (K') was determined by reverse phase partition liquid chromatography using methanol as an eluent for the same sample as in Example 1.
was measured.

第2図(イ)には、SMA/EDMA=0.5の場合、
第2図(ロ)にはSMA/EDMA=1.0、第2図(
ハ)にはSMA/EDMA=2.0の各場合の保持比の
対数値(log K’ )と(logP)との関係を示
す実施例1と同様のグラフを示す。いずれの場合も(l
og ’ P )と(log K’ )との間には一本
の直線関係が認められ、試料の疎水性定数(log P
)によって試料の分離が可能なことがわかる。また、同
一の溶離液ではSMAの配合比が増すと、y及びmの値
が大となる傾向がみられ、特に分離に適することが判る
Figure 2 (a) shows that when SMA/EDMA=0.5,
In Figure 2 (b), SMA/EDMA = 1.0, Figure 2 (
C) shows a graph similar to Example 1 showing the relationship between the logarithm (log K') of the retention ratio and (logP) in each case of SMA/EDMA=2.0. In either case (l
A linear relationship is observed between og' P ) and (log K'), and the hydrophobic constant of the sample (log P
) shows that it is possible to separate the sample. Furthermore, for the same eluent, as the blending ratio of SMA increases, the values of y and m tend to increase, indicating that the eluent is particularly suitable for separation.

失胤胤立 実施例2と同一のポリマーゲル(SMA/EDMA=1
)を用い、飽和脂肪酸CH、(CH−)n−zC○OH
(n=6.8,10,12,14.16)の混合物並び
に公知のODSシリカゲルについて実施例1に準じてメ
タノールを溶離液として疎水性定数(log P)と保
持比に′の対数値(log k’ )との関係を調べた
。第3図に本発明の充填剤とODSシリカゲルとを用い
た場合を比較して示す。
The same polymer gel as in Example 2 (SMA/EDMA=1
), saturated fatty acids CH, (CH-)n-zC○OH
(n = 6.8, 10, 12, 14.16) and a known ODS silica gel, using methanol as an eluent according to Example 1, the hydrophobic constant (log P) and the retention ratio were determined by the logarithm of '( log k') was investigated. FIG. 3 shows a comparison between the use of the filler of the present invention and ODS silica gel.

第3図より明らかなように、本発明の充填剤ではm=−
0,762が得られ、公知充填剤(m=−1,259)
に比してmの値が大であり、疎水性定数(log P)
の値の小さいものの分離に適することが判る。
As is clear from FIG. 3, in the filler of the present invention, m=-
0,762 was obtained, known filler (m=-1,259)
The value of m is large compared to the hydrophobic constant (log P)
It can be seen that this method is suitable for separating objects with small values.

去7Jf!(fl14 、 実施例2により得られたSMA/EDMA=1.0
のポリマーゲルを用い、溶離液としてメタノール/水(
体積比)=9/1を使用した以外は実施例2と同様にし
て保持比(K′)を測定した。
Last 7Jf! (fl14, SMA/EDMA obtained in Example 2 = 1.0
using methanol/water (
The retention ratio (K') was measured in the same manner as in Example 2, except that a volume ratio of 9/1 was used.

その結果より、第1図と同様の関係を示すグラフを第4
図に示す。第4図から明らかなように、(log P)
と(log K’ )との間には一本の直線関係が認め
られ、この溶離液においても試料の疎水性定数により試
料を分離できることが判る。
Based on the results, a graph showing the same relationship as in Figure 1 was created in Figure 4.
As shown in the figure. As is clear from Figure 4, (log P)
A linear relationship is observed between and (log K'), indicating that the sample can be separated by the hydrophobic constant of the sample even in this eluent.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(イ)〜(ハ)は実施例1による本発明の充填剤
及び比較例による充填剤を用いた場合の試料の疎水性定
数と保持比の対数値との関係を示すグラフである。第2
図(イ)〜(ハ)は実施例2による本発明の充填剤を用
いた場合の第1図と同様の関係を示すグラフ、第3図は
実施例3による本発明の充填剤と比較例による充填剤を
用いた場合のグラフ、第4図は実施例4による本発明の
充填剤を用いた場合のグラフである。
Figures 1 (a) to (c) are graphs showing the relationship between the hydrophobic constant and the logarithm of the retention ratio of samples when using the filler of the present invention according to Example 1 and the filler according to Comparative Example. . Second
Figures (A) to (C) are graphs showing the same relationships as in Figure 1 when the filler of the present invention according to Example 2 is used, and Figure 3 is a graph showing the relationship between the filler of the present invention according to Example 3 and a comparative example. FIG. 4 is a graph when the filler of the present invention according to Example 4 is used.

Claims (1)

【特許請求の範囲】 下記の一般式(1) ▲数式、化学式、表等があります▼・・・(1) (式中、Rは炭素数8〜24のアルキル基を示す)で表
わされるメタクリレートと架橋剤とをその体積比率を1
:0.3〜5の範囲で懸濁重合して得られる粒径が2〜
20μのポリマーゲルからなる高分子充填剤であって、
該充填剤が下記式 log K′=y×log P+m (式中、log K′は試料の保持比K′の対数値、l
og Pは疎水性定数、y及びmは定数を示す)を満足
する特性を有することを特徴とする高速液体クロマトグ
ラフィー用高分子充填剤。
[Claims] A methacrylate represented by the following general formula (1) ▲ Numerical formula, chemical formula, table, etc. ▼... (1) (In the formula, R represents an alkyl group having 8 to 24 carbon atoms) and the crosslinking agent at a volume ratio of 1
: Particle size obtained by suspension polymerization in the range of 0.3 to 5.
A polymeric filler consisting of a 20μ polymer gel,
The filler has the following formula log K'=y×log P+m (where log K' is the logarithm of the retention ratio K' of the sample, l
og P is a hydrophobic constant, and y and m are constants). A polymer packing material for high performance liquid chromatography.
JP60223832A 1985-10-09 1985-10-09 Polymer filter for high performance liquid chromatography Pending JPS6290534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60223832A JPS6290534A (en) 1985-10-09 1985-10-09 Polymer filter for high performance liquid chromatography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60223832A JPS6290534A (en) 1985-10-09 1985-10-09 Polymer filter for high performance liquid chromatography

Publications (1)

Publication Number Publication Date
JPS6290534A true JPS6290534A (en) 1987-04-25

Family

ID=16804414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60223832A Pending JPS6290534A (en) 1985-10-09 1985-10-09 Polymer filter for high performance liquid chromatography

Country Status (1)

Country Link
JP (1) JPS6290534A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63225606A (en) * 1986-10-24 1988-09-20 Asahi Chem Ind Co Ltd Hydrophobic crosslinked copolymer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861463A (en) * 1981-10-07 1983-04-12 Kureha Chem Ind Co Ltd Carrier for liquid chromatography and separating and refining method for fat soluble material using said carrier

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861463A (en) * 1981-10-07 1983-04-12 Kureha Chem Ind Co Ltd Carrier for liquid chromatography and separating and refining method for fat soluble material using said carrier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63225606A (en) * 1986-10-24 1988-09-20 Asahi Chem Ind Co Ltd Hydrophobic crosslinked copolymer
JPH0746098B2 (en) * 1986-10-24 1995-05-17 旭化成工業株式会社 Packing material for liquid chromatography

Similar Documents

Publication Publication Date Title
EP1764374B1 (en) Method for making swellable particles
US4497710A (en) Substrate for liquid chromatography and process for isolating and purifying fat-soluble substance by the liquid chromatography on the substrate
JPH01260360A (en) Packing agent for reverse phase chromatography
Lee et al. Characterization of binary polymer mixtures by simultaneous size exclusion chromatography and interaction chromatography
EP0043074A2 (en) High speed liquid chromatographic packing and process for production thereof
JPH0373848A (en) Packing material for liquid chromatography and production thereof
JPS6290534A (en) Polymer filter for high performance liquid chromatography
JPH07318551A (en) Chromatography and filler therefor
JPH0576931B2 (en)
JPS6290533A (en) Polymer filler for high performance liquid chromatography
JPH064689B2 (en) Polymer
JPH03118466A (en) Assay of saccharified hemoglobin
JPH0117412B2 (en)
JPH087198B2 (en) Quantitative method for glycated hemoglobin
JP4038849B2 (en) Weakly acidic cation exchanger and method for producing the same
JPS6359462B2 (en)
WO2017112516A1 (en) Droplets distributed in an aqueous medium
JPH11295288A (en) Column packing for ion exchange liquid chromatography and measuring method
Pączkowski et al. Studies on Preparation, Characterization and Application of Porous Functionalized Glycidyl Methacrylate-Based Microspheres. Materials 2021, 14, 1438
JPH0450765A (en) Packing material for liquid chromatograph
JPH02211242A (en) Adsorbent for optical resolution and method using the adsorbent
JPS5845658B2 (en) Packing material for liquid chromatography
JPS63112589A (en) Separation and purification of phosphatidylcholine
JP2000009707A (en) Manufacture of packing for reverse-phase partition chromatography and packing for reverse-phase chromatography
JPS58221164A (en) Filler used for liquid chromatography