JPS63224106A - Non-reducing dielectric ceramic composition - Google Patents

Non-reducing dielectric ceramic composition

Info

Publication number
JPS63224106A
JPS63224106A JP62056206A JP5620687A JPS63224106A JP S63224106 A JPS63224106 A JP S63224106A JP 62056206 A JP62056206 A JP 62056206A JP 5620687 A JP5620687 A JP 5620687A JP S63224106 A JPS63224106 A JP S63224106A
Authority
JP
Japan
Prior art keywords
dielectric ceramic
ceramic composition
parts
capacitance
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62056206A
Other languages
Japanese (ja)
Other versions
JPH0824006B2 (en
Inventor
優 藤野
西岡 吾朗
行雄 坂部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP62056206A priority Critical patent/JPH0824006B2/en
Priority to US07/169,393 priority patent/US4859641A/en
Publication of JPS63224106A publication Critical patent/JPS63224106A/en
Publication of JPH0824006B2 publication Critical patent/JPH0824006B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は酸素分圧の低い中性または還元性雰囲気中1
360℃以下の温度で焼成しても還元されることなく、
静電容量の温度係数の絶対値が11000pp/’C以
下と小さく、誘電率が200以上で、誘電体損失が0.
2%以下であり、20℃における比抵抗が1×1012
Ω1より大きい非還元性誘電体磁器組成物に関するもの
である。
[Detailed Description of the Invention] <Industrial Application Field> This invention is applicable to
Even if fired at temperatures below 360°C, it will not be reduced.
The absolute value of the temperature coefficient of capacitance is as small as 11000 pp/'C or less, the dielectric constant is 200 or more, and the dielectric loss is 0.
2% or less, and the specific resistance at 20℃ is 1×1012
The present invention relates to a non-reducible dielectric ceramic composition having a value larger than Ω1.

〈従来の技術およびその問題点〉 @!illセラミックコンデンサーの一般的な製法にお
いては、ドクターブレード法等の方法によって臀られた
グリーンシートと呼ばれる焼成前のセラミックシート上
に内部電極とする導体金属粉末ペーストを印刷塗布し、
これを複数枚交互に積層し、圧着したものを焼成する工
程がとられている。
<Conventional technology and its problems> @! In the general manufacturing method for Ill ceramic capacitors, a conductive metal powder paste is printed and applied as internal electrodes onto a pre-fired ceramic sheet called a green sheet, which is wrapped using a method such as the doctor blade method.
A process is used in which a plurality of these sheets are alternately stacked, pressed together, and then fired.

従来の誘電体セラミック材料は、中性または還元性の低
い酸素分圧下で焼成すると還元され、半導体化すること
が知られている。
It is known that conventional dielectric ceramic materials are reduced and converted into semiconductors when fired under neutral or low reducing oxygen partial pressures.

従って、誘電体セラミックと同時に焼成される積層コン
デンサーの内部電極金属としては、誘電体セラミックの
焼結する温度で溶融せず、かつセラミックが半導体化し
ない高い酸素分圧下での焼成において酸化されない金属
でなければならず、このため白金あるいはパラジウムな
どの高価な負金属を使用する必要があり、小型大容量化
、低価格化に対する障害となっていた。
Therefore, the internal electrode metal of a multilayer capacitor that is fired at the same time as the dielectric ceramic should be a metal that does not melt at the sintering temperature of the dielectric ceramic and that does not oxidize during firing under high oxygen partial pressure that does not convert the ceramic into a semiconductor. Therefore, it is necessary to use expensive negative metals such as platinum or palladium, which has been an obstacle to miniaturization, large capacity, and cost reduction.

以上のことから、積層セラミックコンデンサーの低価格
小型大容量化のために、内部電極を高価な0金属から安
価な卑金属に1−ることが望まれていたが、卑金属例え
ばN、を内部電極として用いるためには、N、が酸化あ
るいは溶融しない酸素分圧の低い中性または還元性雰囲
気中、1360℃以下の温度で焼成されても半導体化せ
ず、コンデンサー用誘電体として充分な高い比抵抗とす
ぐれた誘電特性を有するセラミック誘電体材料が必要と
されていた。
Based on the above, it has been desired to change the internal electrodes from expensive metals to inexpensive base metals in order to make multilayer ceramic capacitors smaller and more capacitive at low cost. In order to use N, it must have a high specific resistance that does not become a semiconductor even when fired at temperatures below 1360°C in a neutral or reducing atmosphere with a low oxygen partial pressure in which N is not oxidized or melted, and has a high enough resistivity as a dielectric for capacitors. There is a need for a ceramic dielectric material with excellent dielectric properties.

〈発明の目的〉 この発明は積層セラミックコンデンザーの内部電極にN
岬、Fe、Crあるいはこれらの合金等の安価な卑金属
を使用することを可能ならしめ、安価な小型人容吊の積
層セラミックコンデンサーを供給するために、i!II
I分圧の低い中性または還元性雰囲気中の1360℃以
下の温度で焼成しても還元されることなく、静電容量の
温度係数の絶対値が1000ppl/’C以下と小さく
、誘電率が200以上で、誘電体損失が0.2%以下で
あり、20℃における比抵抗が1×1012ΩC#より
大きい非還元性誘電体磁器組成物を供給することを目的
とするものである。
<Purpose of the invention> This invention uses N in the internal electrodes of a multilayer ceramic capacitor.
In order to make it possible to use inexpensive base metals such as Misaki, Fe, Cr, or their alloys, and to supply inexpensive small-sized multilayer ceramic capacitors, i! II
It does not undergo reduction even when fired at temperatures below 1360°C in a neutral or reducing atmosphere with low I partial pressure, the absolute value of the temperature coefficient of capacitance is as small as 1000 ppl/'C or less, and the dielectric constant is low. 200 or more, a dielectric loss of 0.2% or less, and a resistivity at 20° C. of more than 1×10 12 ΩC#.

く問題点を解決するための手段〉 この発明は上記した問題点を解消するためになされたも
のであって、その要旨とするところは組成式(S71−
x Ca x ) n  (T、1−y Zr y )
 Ogで表わされる物質を主成分とする誘電体磁器組成
物において、上式のxlyおよびmがモル比率でそれぞ
れ0.30≦x≦0.50.0.03≦y≦0.20.
0.95≦m≦ 1.08の範囲にあり、かつ生成分を
100重量部としたとき、副成分として1をhotに換
算しT O,01〜2.00重吊部、小部o、を0.1
0〜4.00重小部、さらに−Oを0.01〜1.00
巾吊部含有することを特徴とする非還元性誘電体磁器組
成物を提供するものである。
Means for Solving the Problems> This invention has been made to solve the above problems, and its gist is that the composition formula (S71-
x Ca x ) n (T, 1-y Zry)
In a dielectric ceramic composition whose main component is a substance represented by Og, xly and m in the above formula have a molar ratio of 0.30≦x≦0.50, 0.03≦y≦0.20, respectively.
In the range of 0.95≦m≦1.08, and when the produced component is 100 parts by weight, 1 is converted to hot as a subcomponent. 0.1
0 to 4.00 heavy parts, and -O 0.01 to 1.00
The present invention provides a non-reducible dielectric ceramic composition characterized by containing a width portion.

〈組成範囲の限定理由〉 この発明の組成式(Sr 1−X Ca x ) ll
(T& 1−y Zr、)03で表わされる誘電体磁器
組成物において、上式のxlyおよびmをモル比率にて
0.30≦x≦0.50.0.03≦y≦0.20.0
.95≦m≦1.08と限定する理由について説明する
<Reason for limiting the composition range> Compositional formula of the present invention (Sr 1-X Ca x ) ll
In the dielectric ceramic composition represented by (T & 1-y Zr,)03, the molar ratio of xly and m in the above formula is 0.30≦x≦0.50.0.03≦y≦0.20. 0
.. The reason for limiting 95≦m≦1.08 will be explained.

係数Xを0.30≦x≦0.50の範囲とするのは、0
.30より小さいか、または0.50より大きいと、焼
成温度が1360℃を越え、また静電容量の温度係数の
絶対値が1000pp11/’Cより大きくなり好まし
くない。
Setting the coefficient X in the range of 0.30≦x≦0.50 is 0
.. If it is smaller than 30 or larger than 0.50, the firing temperature will exceed 1360°C and the absolute value of the temperature coefficient of capacitance will be larger than 1000 pp11/'C, which is not preferable.

係e&yヲ0.03 ≦y≦0.20 ノ範囲トスルノ
ハ、0.03より小さいと誘電体損失(tanδ)が0
.2%より大きくなり、かつ25℃および85℃での比
抵抗が1×10120αより低くなって好ましくなく、
また0、20より大きい時は焼成温度が1360℃を越
え、静電容量の温度係数の絶対値が1000ppl/’
Cより大きくなって好ましくないためである。
The relationship between e & y is 0.03 ≦y≦0.20. If the range is smaller than 0.03, the dielectric loss (tan δ) is 0.
.. 2%, and the specific resistance at 25° C. and 85° C. is lower than 1×10120α, which is undesirable.
When it is larger than 0.20, the firing temperature exceeds 1360℃ and the absolute value of the temperature coefficient of capacitance is 1000ppl/'
This is because it becomes larger than C, which is not preferable.

さらに係数mについては、その値が0.95より小さい
時は25℃および85℃での比抵抗が1×1012Ωc
JIより低くなり、かつtanδが0.2%より太きく
なって好ましくなく、また1、08より大きいときは、
焼成温度が1360℃より高くなり、かつ静電容量の温
度係数の絶対値が11000pp/’Cより大きくなっ
て好ましくない。
Furthermore, regarding the coefficient m, when the value is smaller than 0.95, the specific resistance at 25℃ and 85℃ is 1×1012Ωc.
When it becomes lower than JI and tan δ becomes thicker than 0.2%, which is undesirable, and when it is larger than 1.08,
The firing temperature becomes higher than 1,360°C, and the absolute value of the temperature coefficient of capacitance becomes larger than 11,000 pp/'C, which is not preferable.

次に副成分添加量の範囲限定理由についてのべると、主
成分を100重吊部上したとき、lln Otの添加量
が0.01重量部より少ないと、焼成温度が1360℃
を越え、かつtanδが0.2%より大きくなり、25
℃および85℃での比抵抗も1X1012Ωciaより
低くなって好ましくなく、また2600重量部より多い
時は静電容量の温度係数の絶対値が1000pp11/
’Cより大きくなり、かつtanδが0.2%より大き
くなるとともに、25℃および85℃での比抵抗も1×
1012Ωartより低くなって好ましくない。
Next, regarding the reason for limiting the range of the amount of subcomponents added, when the main component is lifted by 100 parts, if the amount of llnOt added is less than 0.01 parts by weight, the firing temperature will be 1360°C.
and tan δ is greater than 0.2%, and 25
℃ and 85℃, which is undesirable, and when the amount exceeds 2600 parts by weight, the absolute value of the temperature coefficient of capacitance is 1000 pp11/
' C and tan δ is larger than 0.2%, and the resistivity at 25°C and 85°C is also 1×
It is undesirable because it becomes lower than 1012Ωart.

Si Otの添加量については、0.10重小部より少
ないと焼成温度が1360℃を越え、かつ静電容量の温
度係数の絶対値が11000ppr/’Cより大きくな
って好ましくなく、また4、00重小部より多い時は誘
電率が200より小さくなり、かつtanδが0.2%
より大きくなって好ましくない。
Regarding the amount of SiOt added, if it is less than 0.10 parts by mass, the firing temperature will exceed 1,360°C and the absolute value of the temperature coefficient of capacitance will become larger than 11,000 ppr/'C, which is undesirable. When the number is more than 00, the dielectric constant is less than 200 and tan δ is 0.2%.
It gets bigger and I don't like it.

10の添加量は0.011山部より少ないと85℃での
比抵抗が1×1012ΩCJIより低くなり、また1、
00 !I吊部より多いときは静電容量の温度係数の絶
対値が1000pp11/’Cより大きくなって好まし
くない。
If the amount of 10 added is less than 0.011 peak, the specific resistance at 85°C will be lower than 1 x 1012ΩCJI, and 1,
00! If the number is larger than the I-hung portion, the absolute value of the temperature coefficient of capacitance becomes larger than 1000 pp11/'C, which is not preferable.

〈実施例〉 以下、この発明を実施例により詳細に説明する。<Example> Hereinafter, this invention will be explained in detail with reference to Examples.

出発原料として工業用のSr Co 3 、Ca Co
 3 、Zr Ot、Tb0e 、rs+ot 、 5
LOt、10を用い、組成式(Sr 1− xCa  
)  (TLl−yZry)Os+11nOt+5LO
e+t%Oにll おいて、大々第1表に示す配合比になるように配合した
Industrial Sr Co 3 , Ca Co as starting materials
3, Zr Ot, Tb0e, rs+ot, 5
Using LOt, 10, the composition formula (Sr 1- xCa
) (TLl-yZry)Os+11nOt+5LO
e+t%O, and the mixtures were blended to approximately the blending ratio shown in Table 1.

次に、これら配合原料をボールミルにて湿式混合し、粉
砕したのち、蒸発乾燥させ、1150℃で2時間自然雰
囲気中で仮焼した。
Next, these raw materials were wet mixed in a ball mill, pulverized, evaporated to dryness, and calcined at 1150° C. for 2 hours in a natural atmosphere.

次いで仮焼した原料に結合材として酢酸ビニル系バイン
ダーを5重量部加え、ボールミルによって湿式混合し、
さらに蒸発乾燥、整粒の工程を経て、得られた粉末原料
を2.5ton/−の圧力にて直径1oss、厚さ1.
2鎮の円板状に成形した。
Next, 5 parts by weight of a vinyl acetate binder was added as a binding material to the calcined raw materials, and wet-mixed using a ball mill.
Further, through the steps of evaporation drying and sizing, the obtained powder raw material was heated to a pressure of 2.5 tons/- to a diameter of 1 oss and a thickness of 1.
It was molded into a 2-inch disk shape.

次にこの円板をジルコニア粉末を散粉としたアルミナ質
匣に入れ、自然雰囲気中500℃、2時間で酢酸ビニル
系バインダーを燃焼させたのち、体積比率で82 / 
N2 = 3/ 100の還元ガス雰囲気中において、
1240〜1360℃で2時間焼成した。
Next, this disc was placed in an alumina box sprinkled with zirconia powder, and the vinyl acetate binder was burned at 500°C in a natural atmosphere for 2 hours, resulting in a volume ratio of 82/
In a reducing gas atmosphere of N2 = 3/100,
It was baked at 1240-1360°C for 2 hours.

焼結した11Bの両面にIn−一合金を塗布し、誘電率
(ε)および誘電体損失(tanδ)をIK)−1z 
、 I Vrns、 20℃の条件で測定した。
In-1 alloy was applied to both sides of the sintered 11B, and the dielectric constant (ε) and dielectric loss (tan δ) were adjusted to IK)-1z
, I Vrns, measured at 20°C.

なお、静電容量の温度係数は20℃での静電容量を基準
とし、これと85℃での静電容量とから次式にて界出し
た。
Note that the temperature coefficient of capacitance is based on the capacitance at 20° C., and is calculated from the following equation from this and the capacitance at 85° C.

静電容量の瀉度係敗=ムニシーに工z+o’(rr1f
I/QQ+   1.!;−B また、比抵抗(ρ)は20℃および85℃において50
0Vの直21m電圧を印加した時に流れる電流値より求
めた。その結果は第2表に示した。
Electrostatic capacitance failure = munitions + o' (rr1f
I/QQ+ 1. ! ;-B Also, the specific resistance (ρ) is 50 at 20℃ and 85℃
It was determined from the current value that flows when a 21m voltage of 0V is applied. The results are shown in Table 2.

なお、表中本印の試F4香りのものは、この発明の請求
範囲外のものである。
Note that the sample F4 fragrance marked with this mark in the table is outside the scope of the claims of this invention.

第     1     表 〈発明の効果〉 上表からこの発明の非還元性誘電体磁器組成物において
は、還元雰囲気中1360℃以下で焼結し、温度に対す
る静電容量の温度係数の絶対値が11000pp/”C
以下と小さく、誘電率が200以上で誘電体損失が0.
2%以下であり、20℃における比抵抗が1×1012
Ωa以上の特性が得られることが認められた。
Table 1 <Effects of the Invention> From the above table, the non-reducing dielectric ceramic composition of the present invention is sintered at 1360°C or less in a reducing atmosphere, and the absolute value of the temperature coefficient of capacitance with respect to temperature is 11000 pp/ "C.
The dielectric constant is 200 or more and the dielectric loss is 0.
2% or less, and the specific resistance at 20℃ is 1×1012
It was confirmed that characteristics of Ωa or higher were obtained.

このような誘電体磁器組成物をmaセラミックコンデン
サー用用材上して用いることにより、従来の^価な偽金
属に比べて安価なNL、Fe、Cr等の卑金属を内部電
極とすることが可能になり、Vi層セラミックコンデン
サーの大容量化に伴う電極コストの増大を解消すること
ができ、低111格な積層セラミックコンデンサーを供
給することができるのである。
By using such a dielectric ceramic composition as a material for MA ceramic capacitors, it is possible to use base metals such as NL, Fe, and Cr, which are cheaper than conventional expensive pseudo metals, as internal electrodes. Therefore, it is possible to eliminate the increase in electrode cost due to the increase in the capacity of Vi layer ceramic capacitors, and it is possible to supply a multilayer ceramic capacitor with a low 111 rating.

なお、実施例において焼成雰囲気はN2−82からなる
還元性雰囲気を用いたが、Ar、 Co、 CO2、h
a、N2およびこれらの混合雰囲気ガスを用いてもよい
ことはいうまでもない。
In addition, in the examples, a reducing atmosphere consisting of N2-82 was used as the firing atmosphere, but Ar, Co, CO2, h
It goes without saying that atmospheric gases such as a, N2, and a mixture thereof may also be used.

Claims (1)

【特許請求の範囲】  組成式(Sr_1_−_xCa_x)_m(Ti_1
_−_yZr_y)O_3で表わされる物質を主成分と
する誘電体磁器組成物において、上式のx、yおよびm
が夫々モル比率にて 0.30≦x≦0.50 0.03≦y≦0.20 0.95≦m≦1.08 の範囲にあり、かつ主成分を100重量部としたとき、
副成分としてMnをMnO_2に換算して0.01〜2
.00重量部、SiO_2を0.10〜4.00重量部
、さらにMgOを0.01〜1.00重量部含有するこ
とを特徴とする非還元性誘電体磁器組成物。
[Claims] Compositional formula (Sr_1_-_xCa_x)_m(Ti_1
In a dielectric ceramic composition whose main component is a substance represented by ____yZr_y)O_3, x, y and m in the above formula
are in the following molar ratios: 0.30≦x≦0.50, 0.03≦y≦0.20, 0.95≦m≦1.08, and when the main component is 100 parts by weight,
Mn as a subcomponent is converted to MnO_2 and is 0.01 to 2.
.. A non-reducible dielectric ceramic composition characterized by containing 0.00 parts by weight, 0.10 to 4.00 parts by weight of SiO_2, and 0.01 to 1.00 parts by weight of MgO.
JP62056206A 1987-03-11 1987-03-11 Non-reducing dielectric ceramic composition Expired - Lifetime JPH0824006B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62056206A JPH0824006B2 (en) 1987-03-11 1987-03-11 Non-reducing dielectric ceramic composition
US07/169,393 US4859641A (en) 1987-03-11 1988-03-09 Nonreducible dielectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62056206A JPH0824006B2 (en) 1987-03-11 1987-03-11 Non-reducing dielectric ceramic composition

Publications (2)

Publication Number Publication Date
JPS63224106A true JPS63224106A (en) 1988-09-19
JPH0824006B2 JPH0824006B2 (en) 1996-03-06

Family

ID=13020640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62056206A Expired - Lifetime JPH0824006B2 (en) 1987-03-11 1987-03-11 Non-reducing dielectric ceramic composition

Country Status (1)

Country Link
JP (1) JPH0824006B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0978853A1 (en) * 1998-08-07 2000-02-09 Murata Manufacturing Co., Ltd. Anti-reducing dielectric ceramic composition and monolithic ceramic capacitor using the same
EP1125904A1 (en) 2000-02-09 2001-08-22 TDK Corporation Dielectric ceramic composition, electronic device, and method for producing the same
US6572793B2 (en) 2000-03-30 2003-06-03 Tdk Corporation Method of producing ceramic composition and method of producing electronic device
US6645895B2 (en) 2000-03-30 2003-11-11 Tdk Corporation Method of producing ceramic composition and method of producing electronic device
US7498285B2 (en) 2002-04-16 2009-03-03 Murata Manufacturing Co., Ltd. Nonreducing dielectric ceramic, and manufacturing method and monolithic ceramic capacitor of the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0978853A1 (en) * 1998-08-07 2000-02-09 Murata Manufacturing Co., Ltd. Anti-reducing dielectric ceramic composition and monolithic ceramic capacitor using the same
EP1125904A1 (en) 2000-02-09 2001-08-22 TDK Corporation Dielectric ceramic composition, electronic device, and method for producing the same
US6572793B2 (en) 2000-03-30 2003-06-03 Tdk Corporation Method of producing ceramic composition and method of producing electronic device
US6645895B2 (en) 2000-03-30 2003-11-11 Tdk Corporation Method of producing ceramic composition and method of producing electronic device
US7498285B2 (en) 2002-04-16 2009-03-03 Murata Manufacturing Co., Ltd. Nonreducing dielectric ceramic, and manufacturing method and monolithic ceramic capacitor of the same

Also Published As

Publication number Publication date
JPH0824006B2 (en) 1996-03-06

Similar Documents

Publication Publication Date Title
TWI242781B (en) Anti-reducing dielectric ceramic composition and monolithic ceramic capacitor using the same
US5264402A (en) Non-reducible dielectric ceramic composition
JPS63224106A (en) Non-reducing dielectric ceramic composition
US5202814A (en) Nonreducing dielectric ceramic composition
JPS63289707A (en) Nonreducible dielectric ceramic constituent
JPS63289709A (en) Nonreducible dielectric ceramic constituent
JPS63224108A (en) Non-reducing dielectric ceramic composition
JPS63224109A (en) Non-reducing dielectric ceramic composition
JPS61256959A (en) High permittivity ceramic composition
JPS63289710A (en) Nonreducible dielectric ceramic constituent
JPH0734327B2 (en) Non-reducing dielectric ceramic composition
EP0446814B1 (en) Nonreducing dielectric ceramic composition
JPH04206109A (en) Nonreduced dielectric ceramic composition
JPS62115608A (en) Dielectric porcelain compound
JPH0261434B2 (en)
JPS63121209A (en) Non-reducing dielectric ceramic composition
JPH0610931B2 (en) Non-reducing dielectric ceramic composition
JP3438261B2 (en) Non-reducing dielectric porcelain composition
JPS58188121A (en) Laminated ceramic condenser
JPS63289708A (en) Nonreducible dielectric ceramic constituent
JP3438334B2 (en) Non-reducing dielectric porcelain composition
JP2023117898A (en) Dielectric ceramic composition
JPH04368709A (en) Nonreducing dielectric porcelain composition material
JPS622408A (en) Non-reducing dielectric ceramic composition
JPH05205523A (en) Irreducible dielectric porcelain composition

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term