JPS63223137A - Shape memory alloy - Google Patents

Shape memory alloy

Info

Publication number
JPS63223137A
JPS63223137A JP62054991A JP5499187A JPS63223137A JP S63223137 A JPS63223137 A JP S63223137A JP 62054991 A JP62054991 A JP 62054991A JP 5499187 A JP5499187 A JP 5499187A JP S63223137 A JPS63223137 A JP S63223137A
Authority
JP
Japan
Prior art keywords
shape memory
alloy
atomic
phase
memory alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62054991A
Other languages
Japanese (ja)
Other versions
JPH0747792B2 (en
Inventor
Takeshi Masumoto
健 増本
Akihisa Inoue
明久 井上
Shinji Furukawa
古川 伸治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP62054991A priority Critical patent/JPH0747792B2/en
Publication of JPS63223137A publication Critical patent/JPS63223137A/en
Publication of JPH0747792B2 publication Critical patent/JPH0747792B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To easily manufacture a shape memory alloy excellent in workability, by incorporating specific percentages of Fe and Al into Ni. CONSTITUTION:By subjecting an alloy consisting of, by atom, 3-25%, preferably 5-20%, of Fe, 20-35%, preferably 23-34%, of Al, and the balance essentially Ni to hardening from a temp. as high as >=about 1,000 deg.C, the shape memory alloy excellent in workability is obtained. This shape memory alloy can be improved in toughness by the addition of about 0.01-1atom.% B or C, and, by further adding some transition metals (Co, Mn, Cu, etc.) by about 0.1-10atom.%, toughness can be improved to a greater extent. Moreover, by adopting liquisol quenching or powder metallurgy, workability and shape-memory effect can be improved to a greater extent.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、室温付近で塑性加工ひずみを与えた後、変態
温度以上(逆変態温度:Af)に加熱した時に形状記憶
効果を持つと同時に、加工性の優れた形状記憶合金に関
するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention has a shape memory effect when heated above the transformation temperature (reverse transformation temperature: Af) after applying plastic working strain near room temperature. , relates to a shape memory alloy with excellent workability.

(従来の技術) 形状記憶合金は、温度変化によって材料自身の形状を可
逆的に変えることのできる合金であり。
(Prior Art) Shape memory alloys are alloys that can reversibly change the shape of the material itself due to temperature changes.

温度センサー、マニピュレーター、エネルギー関連材料
及び生体用材料等、広範囲な実用化研究が進められてい
る。形状記憶合金を用いることによって、装置の駆動部
分の大幅な簡素化及び小型化が実現でき、また、形状記
憶合金を用いたエンジンは、微小な熱量変化を効率よく
機械的エネルギーに変換することができる。
A wide range of practical research is underway, including temperature sensors, manipulators, energy-related materials, and biological materials. By using shape memory alloys, the driving parts of devices can be significantly simplified and miniaturized, and engines using shape memory alloys can efficiently convert minute changes in heat into mechanical energy. can.

現在までに、Ti−Ni系、  Cu−Zn−Aj!系
及びCu−A1−Ni系が実用化されている。
To date, Ti-Ni, Cu-Zn-Aj! system and Cu-A1-Ni system have been put into practical use.

これらの合金材料は、いずれも熱弾性型マルテンサイト
の変態又は逆変態の際の形状回復を利用しているもので
あり、形状記憶効果を示す合金はほかにも数多(見出さ
れているが2機械的特性が劣るものが多いため、上記し
た3合金系以外に実用化されたものはなかった。
All of these alloy materials utilize shape recovery during transformation or reverse transformation of thermoelastic martensite, and there are many other alloys that exhibit shape memory effects (such as those that have been discovered). Since most of the alloys have inferior mechanical properties, no alloys other than the three alloys mentioned above have been put into practical use.

従来の合金系のうち、Ti−Ni系は、5US−316
以上の耐食性、50%を上回る破断伸び及び温度に対す
る安定性等、非常に優れた合金である。しかし、構成元
素にTiを用いるため、製造時及び熱処理時に酸化を防
ぐことに非常に注意しなければならない。例えば2合金
の溶解の際。
Among the conventional alloy systems, the Ti-Ni system is 5US-316
This alloy has excellent corrosion resistance, elongation at break of more than 50%, and stability against temperature. However, since Ti is used as a constituent element, great care must be taken to prevent oxidation during manufacturing and heat treatment. For example, when melting two alloys.

一般に用いられているアルミするつぼを用いると酸化物
の混入が起こるため、黒鉛るつぼが用いられている。し
かし、そのため、炭化物の混入及びT i −N i母
相のTiの比率の変動が起こり、一定の品質の製品を作
ることは非常に困難である。
If a commonly used aluminum crucible is used, oxides may be mixed in, so a graphite crucible is used. However, this causes the contamination of carbides and the fluctuation of the Ti ratio in the Ti-Ni matrix, making it very difficult to produce products of constant quality.

また、この合金は難加工材であり、製品形状に仕上げる
ためには非常に多くの工程が必要であり。
Additionally, this alloy is a difficult-to-process material and requires a large number of processes to finish into a product shape.

また、複雑な形状のものを作製することは困難である。Furthermore, it is difficult to manufacture a device with a complicated shape.

これらのことから、この合金は非常に高価格であった。For these reasons, this alloy was extremely expensive.

一方、Cu−Zn−Aj2系及びCu−Al−Ni系の
Cu基合金は、Ti−Ni系に比べると比較的酸化の影
響を考えなくてもよ(2通常のアルミするつぼを用いる
ことができ、原料も比較的安価であるため、Ti−Ni
系よりも安価に製造できる。しかし、これらCu基合金
は、耐食性が悪く、また2粒界破壊を起こしやすい等の
欠点を有していた。さらに、Cu基合金は、動作温度が
環境によって影響を受けやすく、熱安定性が悪かった。
On the other hand, Cu-Zn-Aj2-based and Cu-Al-Ni-based Cu-based alloys require relatively little consideration of the effects of oxidation compared to Ti-Ni systems. Ti-Ni
It can be manufactured more cheaply than other systems. However, these Cu-based alloys have drawbacks such as poor corrosion resistance and a tendency to cause two-grain boundary fracture. Furthermore, the operating temperature of Cu-based alloys was easily affected by the environment and had poor thermal stability.

そのため、利用はごく限られた分野にとどまっていた。Therefore, its use remained in very limited fields.

また、前記実用化されている形状記憶合金のほかに、B
2型金属間化合物の多くで形状記憶効果が認められてい
る。例えば、前述以外の合金系であるN1−Al系でも
、Afが34〜38原子%の組成で高温から水中に焼き
入れた合金に形状記憶効果が認められ、36.5〜38
原子%の組成でNi固溶体(y)相、Ni3Aj! (
T’)相、N15A12相の混在がなく、ioo%の形
状記tα特性を示すことが知られている。この合金が形
状記憶効果を示す原因も、Ti−Ni系、Cu−Zn−
Al系及びCu−Al!−Ni系と同じく、熱弾性マル
テンサイトの変態及び逆変態によるものである。しかも
この合金は、室温はもとよりioo。
In addition to the shape memory alloys that have been put into practical use, B
Shape memory effects have been recognized in many type 2 intermetallic compounds. For example, even in the N1-Al system, which is an alloy system other than the above, a shape memory effect is observed in an alloy with a composition of 34 to 38 at% Af and quenched in water at a high temperature;
Ni solid solution (y) phase with a composition of atomic %, Ni3Aj! (
It is known that there is no coexistence of the T') phase and the N15A12 phase, and that it exhibits the shape tα characteristic of ioo%. The reason why this alloy exhibits the shape memory effect is also due to the Ti-Ni system, Cu-Zn-
Al-based and Cu-Al! Like the -Ni system, this is due to the transformation and reverse transformation of thermoelastic martensite. Moreover, this alloy is ioO at room temperature.

℃以上でも耐食性に優れたものであったが、非常に脆い
という欠点を有していた。
Although it had excellent corrosion resistance even at temperatures above 0.9°C, it had the drawback of being extremely brittle.

一方、N1Al(B2)相は、非常に広い組成範囲で存
在する金属間化合物であり、また、Fe。
On the other hand, the N1Al(B2) phase is an intermetallic compound that exists in a very wide composition range and also contains Fe.

Co、Mn、Cr、Ti、Si等、多くの元素に対して
広い固溶限を有する。
It has a wide solid solubility limit for many elements such as Co, Mn, Cr, Ti, and Si.

ニス・リトビノフ:フイズ・メタル・メタロ−ブト(S
、 Litvinov: Fiz、 Metal、 M
etalloved。
Nis Litvinov: Fiz Metal Metal Robeto (S
, Litvinov: Fiz, Metal, M
etalloved.

主1,11h3.P580〜585  (1974) 
 ;土±。
Main 1, 11h3. P580-585 (1974)
;Sat±.

隘4.P826〜833  (1977)  ;  4
4.  患6゜P L 297〜1299 (1977
))の文献には、  Go。
4. P826-833 (1977); 4
4. 6゜PL 297-1299 (1977
)) Go.

Fe、StがB2相の安定化(B2相又はB2相が熱弾
性変態して生じたマルテンサイト相以外の相が生じない
ことを示す。)に効果があることが記載され、特に、前
記文献においてリトビノフ(Li tvinov)らは
、N1−Aに元系ではγ′相やNi、AJ2相が混在す
る36原子%A1組成で。
It is stated that Fe and St are effective in stabilizing the B2 phase (indicating that no phase other than the B2 phase or the martensitic phase generated by thermoelastic transformation of the B2 phase is generated), and in particular, the above-mentioned document , Litvinov et al. reported that N1-A had a 36 atom % A1 composition in which the γ' phase, Ni, and AJ2 phases were mixed.

Niのうち2,4.6原子%をFeで置換することによ
り、B2相が安定化することを示している。
It is shown that the B2 phase is stabilized by replacing 2.4.6 atomic % of Ni with Fe.

(発明が解決しようとする問題点) 前記したN 1bzA 1236F e z(原子%)
、Nia。
(Problem to be solved by the invention) The above-mentioned N 1bzA 1236F e z (atomic %)
, Nia.

A13bFea(原子%)及びN 15sA l 36
 F e &(原子%)からなる合金は、Ti−Ni並
の耐食性と。
A13bFea (atomic %) and N15sA l36
An alloy consisting of Fe & (atomic %) has corrosion resistance comparable to Ti-Ni.

Cu基並の経済性及び製造の容易さの両方を有するもの
であるが、この合金は、マルテンサイト変態温度が非常
に低く、また、脆いため、加工性が十分でなかった。
Although this alloy is as economical and as easy to manufacture as Cu, it has a very low martensitic transformation temperature and is brittle, resulting in insufficient workability.

(問題点を解決するための手段) そこで1本発明者らは、これらの現状に鑑み。(Means for solving problems) Therefore, the inventors of the present invention took these current circumstances into account.

N1−Aj!系合金に特定量のFeを添加することによ
り、低A1組成領域において形状記憶効果を示し、かつ
加工性に優れた形状記憶合金が得られることを見出し1
本発明に到達した。
N1-Aj! It was discovered that by adding a specific amount of Fe to a series alloy, a shape memory alloy that exhibits a shape memory effect in the low A1 composition region and has excellent workability can be obtained.
We have arrived at the present invention.

すなわち2本発明は、原子%として、Fe3〜25%及
びAl2O〜35%を含有し、残部が実質的にNiより
なり、加工性に優れた形状記憶合金を要旨とするもので
ある。
That is, the gist of the present invention is a shape memory alloy containing 3 to 25% of Fe and 35 to 35% of Al2O in terms of atomic %, the remainder being substantially Ni, and having excellent workability.

本発明の形状記憶合金は、完全な形状記憶効果及び加工
性に優れた材料であり、その合金組成は上記の特定を満
足するために以下のように限定することが必要である。
The shape memory alloy of the present invention is a material with perfect shape memory effect and excellent workability, and its alloy composition needs to be limited as follows in order to satisfy the above specifications.

すなわち、Feは3原子%以上、25原子%以下である
ことが必要で、5原子%以上、20原子%以下であるこ
とが好ましい。Feの比率が3原子%未溝の場合は、靭
性が不足し、脆いため、実用に値しない。また、Feの
比率が25原子%を超えた場合は、マルテンサイト変態
温度が実用温度域となる組成(A/量)ではγ相、γ′
相又はNi。
That is, Fe needs to be at least 3 at % and at most 25 at %, preferably at least 5 at % and no more than 20 at %. If the proportion of Fe is 3 atomic % without grooves, the toughness is insufficient and brittle, so it is not of practical use. In addition, if the Fe ratio exceeds 25 atomic %, the composition (A/amount) where the martensitic transformation temperature is in the practical temperature range is γ phase, γ'
Phase or Ni.

A 122相が混在し、完全な形状記憶は示さない。A: 122 phase is mixed, and complete shape memory is not shown.

また、Affの比率は20原子%以上、35原子%以下
であることが必要で、23原子%以上。
Further, the ratio of Aff needs to be 20 atomic % or more and 35 atomic % or less, and 23 atomic % or more.

34原子%以下であることが好ましい。Alの比率が2
0原子%未溝の場合は、γ相、T′相又はNi、A12
相が混在し、完全な形状記憶は示さない。Alの比率が
35原子%を超える場合は、動作温度(マルテンサイト
変態温度及び逆変態温度)が極低温となり、実用に値せ
ず、かつ靭性が不足し、脆いものとなる。
It is preferably 34 atomic % or less. Al ratio is 2
In the case of 0 atomic % ungrooved, γ phase, T' phase or Ni, A12
Phases are mixed and complete shape memory is not shown. When the proportion of Al exceeds 35 atomic %, the operating temperature (martensitic transformation temperature and reverse transformation temperature) becomes extremely low, making it unsuitable for practical use, and resulting in insufficient toughness and brittleness.

さらに、上記のように規定された合金に、B又はCを0
.01原子%以上、1原子%以下、さらに好ましくは0
.03原子%以上、0.07原子%以下添加することに
よって、靭性はさらに改善される。
Furthermore, 0 B or C is added to the alloy defined above.
.. 01 atomic % or more, 1 atomic % or less, more preferably 0
.. By adding 0.03 at % or more and 0.07 at % or less, the toughness is further improved.

B又はCの添加量が0.01原子%未溝の場合は効果が
なく、逆に1原子%を超えた場合は、はう化物が粗大化
するため、むしろ靭性は低下する。
If the amount of B or C added is 0.01 atomic % without grooves, there is no effect, and on the other hand, if it exceeds 1 atomic %, the toughness is rather reduced because the fertilization becomes coarse.

また9本発明の合金は、一部の遷移金属の添加も効果的
であり、Co、Mn、Cu、Cr、Ti。
In addition, the alloy of the present invention is also effective in adding some transition metals, such as Co, Mn, Cu, Cr, and Ti.

V、W、Ta、Nb、Y、’Ce、Pd、Moのうち1
種又は2種以上を、0.1原子%以上、10原子%以下
、好ましくは0.5原子%以上、5原子%以下添加する
ことにより、靭性はさらに向上する。
One of V, W, Ta, Nb, Y, 'Ce, Pd, Mo
Toughness is further improved by adding one or more species in an amount of 0.1 atomic % or more and 10 atomic % or less, preferably 0.5 atomic % or more and 5 atomic % or less.

また、これらの元素を添加することにより、動作温度(
マルテンサイト変態温度及び逆変態温度)を容易に制御
することができる。これらの特性は。
In addition, by adding these elements, the operating temperature (
martensitic transformation temperature and reverse transformation temperature) can be easily controlled. These characteristics are.

上記条件を満たすことが必要であり、これらの元素の添
加量が0.1原子%未溝の場合は効果がなく。
It is necessary to satisfy the above conditions, and if the amount of these elements added is less than 0.1 atomic %, there will be no effect.

また、添加量が10原子%を超える場合も、靭性を悪化
させ、形状記憶特性にも悪影ツを与える。
Further, when the amount added exceeds 10 at %, the toughness is deteriorated and the shape memory properties are also adversely affected.

これらの遷移金属を添加した合金に前記した条件(0,
01原子%以上、1原子%以下)でB又はCを添加する
こともできる。
Alloys containing these transition metals were subjected to the conditions described above (0,
B or C can also be added in an amount of 01 atomic % or more and 1 atomic % or less).

本発明の形状記憶合金を得るためには1例えば。For example, in order to obtain the shape memory alloy of the present invention.

前記した組成を有する合金を1000℃以上の高温から
焼き入れるこ・とにより製造することができる。
It can be manufactured by quenching an alloy having the above-mentioned composition at a high temperature of 1000° C. or higher.

これらの条件を満たす本合金材料は2通常行われている
ように、鋳造後加工することによっても勿論製造するこ
とができるが、液体急冷法又は粉末冶金法によっても製
造することができる。液体急冷法は2合金溶湯を固体、
液体又は気体の冷却媒体で急速に冷却する方法であり9
例えば、固体を冷却媒体として用いるものとして単(又
は双)ロール法、液体を用いるものとして回転液中紡糸
法、気体を用いるものとして高圧ガスアトマイズ法等が
あげられる。これらの方法によって、非晶質や非平衡相
の生成や結晶粒の微細化等が達成される。
The present alloy material that satisfies these conditions can of course be manufactured by processing after casting, as is commonly done, but it can also be manufactured by liquid quenching or powder metallurgy. The liquid quenching method turns the molten metal of two alloys into a solid,
It is a method of rapid cooling using a liquid or gaseous cooling medium.9
For example, the single (or double) roll method uses a solid as the cooling medium, the rotating liquid spinning method uses a liquid, and the high-pressure gas atomization method uses a gas. By these methods, generation of amorphous or non-equilibrium phases, refinement of crystal grains, etc. are achieved.

単ロール法は1回転する冷却ロールの円周面に溶融金属
を噴出し、急速固化する方法で、薄帯状の材料を製造す
ることができる。回転液中紡糸法とは2回転するドラム
内壁に形成された冷却液体層に溶融金属をジェット状に
噴出し、急速固化させる方法で2円形断面を有する連続
繊維を製造することができるという特徴がある。高圧ガ
スアトマイズ法は、溶融金属を高圧のガスを噴きつける
ことによって粉末化し、急速固化させる方法である。い
ずれの方法によっても、溶融金属は10’〜106℃/
秒の非常に速い速度で冷却される。
The single-roll method is a method in which molten metal is jetted onto the circumferential surface of a cooling roll that rotates once and rapidly solidifies, thereby making it possible to produce a thin strip-shaped material. The rotating liquid spinning method is characterized by the ability to produce continuous fibers with two circular cross sections by jetting molten metal into a cooling liquid layer formed on the inner wall of a rotating drum and rapidly solidifying it. be. The high-pressure gas atomization method is a method in which molten metal is pulverized by spraying high-pressure gas and rapidly solidified. Regardless of the method, the temperature of the molten metal is 10'~106℃/
Cools down at a very fast rate of seconds.

本発明の合金を液体急冷法を用いて製造した場合、結晶
粒の微細化等によってさらに靭性は向上し、熱的安定性
もさらに良好なものとなる。また。
When the alloy of the present invention is manufactured using a liquid quenching method, the toughness is further improved due to the refinement of crystal grains, and the thermal stability is also improved. Also.

液体急冷法は、高温の溶融状態から急冷するため。The liquid quenching method rapidly cools the material from a high-temperature molten state.

鋳造法のように急冷熱処理をする必要がなく、工程の省
力化に繋がる。さらに、薄帯や細線等の形状を用いる場
合は、直接製品形状をしたものが得られるため、加工の
必要がない。これらの理由から9本発明の合金を液体急
冷法を用いて製造することは非常に有利である。
Unlike the casting method, there is no need for rapid cooling and heat treatment, leading to labor savings in the process. Furthermore, when using a shape such as a thin ribbon or thin wire, there is no need for processing because the product shape can be obtained directly. For these reasons, it is highly advantageous to produce the alloys of the present invention using liquid quenching.

また1本発明の合金を粉末冶金法を用いて製造すること
は、以下の点で有効である。すなわち。
Furthermore, manufacturing the alloy of the present invention using a powder metallurgy method is effective in the following points. Namely.

第1には、非常に微細な結晶粒の材料を得ることができ
るため、靭性に富むものが製造できることであり、第2
には、焼結過程で製品形状にすることができることであ
る。勿論、焼結の際に、前述した液体急冷法の範曙に入
る高圧ガスアトマイズ法で製造した粉末を用いることは
、さらに有効である。
The first is that it is possible to obtain materials with extremely fine grains, so products with high toughness can be manufactured.
The main reason is that it can be shaped into a product shape during the sintering process. Of course, it is more effective to use powder produced by the high-pressure gas atomization method, which falls within the range of the liquid quenching method described above, during sintering.

(作 用) 本発明の形状記憶合金は、 N1−Fe−Ajl!三元
合金のAJIを、N1−Aj!二元合金でγ相。
(Function) The shape memory alloy of the present invention is N1-Fe-Ajl! The ternary alloy AJI is N1-Aj! γ phase in binary alloy.

γ′相又はN15A/z相の混在がなく、形状記憶効果
を示すことが知られている組成範囲(36,5〜38原
子%、l)よりも少ないところで、N1−Aff系のN
iの一部をFeで置換することにより、B2相の安定化
に対する寄与がリトビノフ(Litv1nov)らが考
えたよりもはるかに大きく。
N of the N1-Aff system does not contain γ' phase or N15A/z phase and is less than the composition range (36.5 to 38 at%, l) which is known to exhibit shape memory effect.
By substituting part of i with Fe, the contribution to the stabilization of the B2 phase is much larger than that thought by Litv1nov et al.

かつFeO量が25原子%を超えるまでは 176の量
が増える程、Alがかなり少な(てもB2相が安定とな
り、また、FeO量が増える程、マルテンサイト変態温
度を大きく低下させることができる。さらに、Fe及び
ANの量を適当にすることにより、前記したNi−Al
二元合金及びリトビノフ(L i tv i nov)
の示した組成の合金に比べてはるかに加工性に富んでい
る。
And until the amount of FeO exceeds 25 at%, as the amount of 176 increases, the B2 phase becomes stable even if the amount of Al is considerably small (even if the amount of Al increases), and as the amount of FeO increases, the martensitic transformation temperature can be greatly reduced. Furthermore, by adjusting the amounts of Fe and AN appropriately, the Ni-Al
Binary alloys and Litvinov
It has much better workability than the alloy with the composition shown.

(実施例) 以下1本発明を実施例及び比較例により具体的に説明す
る。
(Examples) The present invention will be specifically explained below using Examples and Comparative Examples.

実施例1〜7.比較例1〜4 99.99%A1と99.97%電解Niと99.99
%電解Feとを表1に示す合成組成となるように総量で
1 kg秤量し、真空溶解炉で溶解した。それぞれの合
金から、50龍X1X10mmX3の試料を切り出し、
1250℃で1時間保持した後、水冷した。
Examples 1-7. Comparative Examples 1 to 4 99.99% A1 and 99.97% electrolytic Ni and 99.99
% electrolytic Fe, a total of 1 kg was weighed so as to have the synthetic composition shown in Table 1, and melted in a vacuum melting furnace. Cut out a sample of 50 x 1 x 10 mm x 3 from each alloy,
After being held at 1250°C for 1 hour, it was cooled with water.

これらの試料の破断伸び(εf)はインストロン型引張
試験機1組織はX線回折、動作温度(逆変態温度:Af
)は熱走査分析器(D S C)で調べた。
The elongation at break (εf) of these samples was determined using an Instron tensile tester.
) was investigated using a thermal scanning analyzer (DSC).

なお、形状記憶特性は、試料をマルテンサイト単相温度
で90℃曲げ変形させた後、逆変態温度Af以上に加熱
し、母相単相となった時の形状回復量(%)をもって評
価した(完全に変形前の形状に回復した場合、形状回復
量は100%とした)。
The shape memory properties were evaluated by the amount of shape recovery (%) when the sample was bent at 90°C at a martensite single phase temperature, heated to a reverse transformation temperature Af or higher, and became a single matrix phase. (If the shape was completely restored to the shape before deformation, the amount of shape recovery was taken as 100%).

また、耐食性の評価は、1規定30℃の塩酸水溶液に2
時間浸漬した後の重量変化(%)で評価した。
In addition, the evaluation of corrosion resistance was carried out by adding 1N to a 30°C hydrochloric acid aqueous solution.
Evaluation was made based on the weight change (%) after immersion for a period of time.

その結果を表1に示す。The results are shown in Table 1.

表1に示したように、実施例1〜7の合金は。As shown in Table 1, the alloys of Examples 1-7.

全てNi固溶体(γ)相やNi3A/(γ′)相の混在
がなく、10094の良好な形状記憶特性を示した。
In all cases, there was no Ni solid solution (γ) phase or Ni3A/(γ') phase, and 10094 exhibited good shape memory properties.

また、破断伸び(εf)も、8〜13%と実用するのに
支障のない特性を示し、加工性が優れていることが明ら
かである。さらに、耐食性に関しても、塩酸にまったく
腐食されなかった。
Furthermore, the elongation at break (εf) was 8 to 13%, which is sufficient for practical use, and it is clear that the workability is excellent. Furthermore, regarding corrosion resistance, it was not corroded by hydrochloric acid at all.

しかし2本発明の範囲を逸脱した組成である比較例1の
場合、Feの置換の効果がなく、破断伸びは0%で、加
工性が乏しかった。また、比較例2の場合は2組織にN
i固溶体(γ)相が混在し。
However, in the case of Comparative Example 1, which had a composition outside the scope of the present invention, there was no effect of Fe substitution, the elongation at break was 0%, and the workability was poor. In addition, in the case of Comparative Example 2, N
i Solid solution (γ) phase is mixed.

形状記憶特性は80%に悪化した。Shape memory properties deteriorated to 80%.

実施例8 実施例3と同様な方法で製造した合金から、約5gの棒
状の塊を切り出し、これを母合金とし。
Example 8 A rod-shaped lump of approximately 5 g was cut out from an alloy produced in the same manner as in Example 3, and this was used as a master alloy.

回転液中紡糸法を用いて液体急冷した。回転ドラムの直
径は600龍で1回転数を30Orpmとした。母合金
を石英製の噴出ノズル内で高周波誘導加熱によって溶解
し、直径0.1mmのノズル孔から。
The liquid was quenched using a rotating liquid spinning method. The diameter of the rotating drum was 600 mm, and the number of revolutions was 30 rpm. The master alloy is melted by high-frequency induction heating in a quartz jet nozzle, and then through a nozzle hole with a diameter of 0.1 mm.

Arガスにより圧力4 kg / cllで回転するド
ラム内壁に形成された冷却水層に噴出した。
Ar gas was ejected onto the cooling water layer formed on the inner wall of the rotating drum at a pressure of 4 kg/cll.

このようにして製造した試料は、直径0.1nmで。The sample produced in this way had a diameter of 0.1 nm.

長さ50mの連続繊維であった。この試料を用いて、実
施例1〜7と同様な評価試験をしたところ。
It was a continuous fiber with a length of 50 m. Using this sample, evaluation tests similar to those in Examples 1 to 7 were conducted.

表2に示す結果が得られ、破断伸びが液体急冷を施さな
かった実施例2に比べて約2倍に向上した。
The results shown in Table 2 were obtained, and the elongation at break was approximately twice as high as that of Example 2 in which liquid quenching was not performed.

実施例9 実施例2の合金から、高圧ガスアトマイズ法を用いて粉
末を作製した。アトマイズガスはArを用い、アトマイ
ズ圧は100kg/co!であった。分級した粉末の内
、44μm以下のものを用い、加圧焼結法で成形した。
Example 9 A powder was produced from the alloy of Example 2 using a high-pressure gas atomization method. Ar is used as the atomizing gas, and the atomizing pressure is 100 kg/co! Met. Among the classified powders, those having a diameter of 44 μm or less were used and molded using a pressure sintering method.

焼結体を、直径10++m、高さ25龍になるように、
温度1100℃、焼結圧力50kg/a(で成形した。
The sintered body has a diameter of 10++m and a height of 25mm.
It was molded at a temperature of 1100°C and a sintering pressure of 50 kg/a.

この焼結体から、5鶴×20fl×3龍の試料を切り出
し、1250℃で1時間保持した後、水冷して測定試料
とした。
A sample of 5 cranes x 20 fl x 3 dragons was cut out from this sintered body, held at 1250°C for 1 hour, and then cooled with water to be used as a measurement sample.

この試料を用いて、実施例1〜7と同様な評価試験をし
たところ2表2に示す結果が得られ、粉末冶金法を用い
なかった実施例2に比べて破断伸びが向上した。
Using this sample, the same evaluation tests as in Examples 1 to 7 were conducted, and the results shown in Table 2 were obtained, and the elongation at break was improved compared to Example 2, which did not use the powder metallurgy method.

(発明の効果) 本発明の形状記憶合金は、Ti−Ni系合金に匹敵する
耐食性を有し、Cu−Zn−Al系又はCu−Aj2−
Ni系等の銅基合金と同程度に製造が容易であり、かつ
加工性に優れている。また。
(Effects of the Invention) The shape memory alloy of the present invention has corrosion resistance comparable to that of Ti-Ni alloys, and has corrosion resistance comparable to that of Ti-Ni alloys.
It is as easy to manufacture as copper-based alloys such as Ni-based alloys, and has excellent workability. Also.

本発明の形状記憶合金は、液体急冷法又は粉末冶金法を
用いて製造すると、加工性及び形状記憶効果がさらに優
れたものとなる。
When the shape memory alloy of the present invention is manufactured using a liquid quenching method or a powder metallurgy method, its workability and shape memory effect become even more excellent.

これらの特性を活かして9本発明の形状記憶合金は、温
度センサー、マイクロマニピュレーター。
Taking advantage of these properties, the shape memory alloy of the present invention can be used as temperature sensors and micromanipulators.

バネ材、熱エンジン構成材料、生体材料、各種補強材等
に用いることができる。
It can be used for spring materials, heat engine constituent materials, biological materials, various reinforcing materials, etc.

特許出願人  増  本      健ユニ亭力株式会
Patent applicant: Masumoto Kenyunitei Riki Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)原子%として,Fe3〜25%及びAl20〜3
5%を含有し,残部が実質的にNiよりなり,加工性に
優れた形状記憶合金。
(1) Fe3~25% and Al20~3 as atomic%
A shape memory alloy containing 5% Ni, with the remainder essentially consisting of Ni, and has excellent workability.
JP62054991A 1987-03-10 1987-03-10 Shape memory alloy Expired - Lifetime JPH0747792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62054991A JPH0747792B2 (en) 1987-03-10 1987-03-10 Shape memory alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62054991A JPH0747792B2 (en) 1987-03-10 1987-03-10 Shape memory alloy

Publications (2)

Publication Number Publication Date
JPS63223137A true JPS63223137A (en) 1988-09-16
JPH0747792B2 JPH0747792B2 (en) 1995-05-24

Family

ID=12986118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62054991A Expired - Lifetime JPH0747792B2 (en) 1987-03-10 1987-03-10 Shape memory alloy

Country Status (1)

Country Link
JP (1) JPH0747792B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002014565A1 (en) * 2000-08-14 2002-02-21 National Institue Of Advance Industrial Science And Technology Ferromagnetic shape-memory alloy
WO2011046055A1 (en) * 2009-10-14 2011-04-21 独立行政法人科学技術振興機構 Ferrous shape memory alloy and production method therefor
JP2017218673A (en) * 2016-06-03 2017-12-14 ヴィーラント ウェルケ アクチーエン ゲゼルシャフトWieland−Werke Aktiengesellschaft Copper alloy and method for its use

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002014565A1 (en) * 2000-08-14 2002-02-21 National Institue Of Advance Industrial Science And Technology Ferromagnetic shape-memory alloy
WO2011046055A1 (en) * 2009-10-14 2011-04-21 独立行政法人科学技術振興機構 Ferrous shape memory alloy and production method therefor
JP5005834B2 (en) * 2009-10-14 2012-08-22 独立行政法人科学技術振興機構 Fe-based shape memory alloy and method for producing the same
US8815027B2 (en) 2009-10-14 2014-08-26 Japan Science And Technology Agency Fe-based shape memory alloy and its production method
JP2017218673A (en) * 2016-06-03 2017-12-14 ヴィーラント ウェルケ アクチーエン ゲゼルシャフトWieland−Werke Aktiengesellschaft Copper alloy and method for its use

Also Published As

Publication number Publication date
JPH0747792B2 (en) 1995-05-24

Similar Documents

Publication Publication Date Title
USRE47529E1 (en) Fe-base in-situ composite alloys comprising amorphous phase
US4144057A (en) Shape memory alloys
JP2001303218A (en) HIGHLY CORROSION RESISTANT AND HIGH STRENGTH Fe-Cr BASE BULK AMORPHOUS ALLOY
JP2005504882A (en) Method for improving bulk solidified amorphous alloy composition and castings made therefrom
JP3142659B2 (en) High strength, heat resistant aluminum base alloy
JP3891736B2 (en) High strength and high corrosion resistance Ni-based amorphous alloy
JP2004091868A (en) Cu-BASED AMORPHOUS ALLOY
EP0093487B1 (en) Nickel-based alloy
JP4332647B2 (en) High-strength amorphous alloy and method for producing the same
JP5488941B2 (en) Austenitic cast iron, austenitic cast iron casting and method for producing the same
JPH0250189B2 (en)
JPS63223137A (en) Shape memory alloy
JP4317930B2 (en) Amorphous alloy particles
US6231808B1 (en) Tough and heat resisting aluminum alloy
US4430115A (en) Boron stainless steel powder and rapid solidification method
JP4086195B2 (en) Ni-based metallic glass alloy with excellent mechanical properties and plastic workability
JP2000119793A (en) Low expansion cast iron with low temperature stability, and its manufacture
JP2006322025A (en) Heat resistant cast alloy and its manufacturing method
JPS6337177B2 (en)
JPH09279287A (en) Grain dispersed powdery heat resistant alloy
Inoue et al. Microstructure and mechanical properties of metastable lath martensite wires in the Fe-Ni-Cr-Al-C system produced by melt spinning in rotating water
JPH0147540B2 (en)
JPS6213427B2 (en)
JP3710698B2 (en) Ni-Ti-Zr Ni-based amorphous alloy
JPH051346A (en) High strength aluminum-base alloy