JPS63222126A - Pressure oxidation coupling of methane - Google Patents

Pressure oxidation coupling of methane

Info

Publication number
JPS63222126A
JPS63222126A JP62054100A JP5410087A JPS63222126A JP S63222126 A JPS63222126 A JP S63222126A JP 62054100 A JP62054100 A JP 62054100A JP 5410087 A JP5410087 A JP 5410087A JP S63222126 A JPS63222126 A JP S63222126A
Authority
JP
Japan
Prior art keywords
methane
reaction
catalyst
oxidative coupling
carbon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62054100A
Other languages
Japanese (ja)
Other versions
JPH0788314B2 (en
Inventor
Hiroo Tominaga
冨永 博夫
Kaoru Fujimoto
薫 藤元
Tomoshi Hikita
疋田 知士
Hiroshi Takahashi
高橋 容
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP62054100A priority Critical patent/JPH0788314B2/en
Publication of JPS63222126A publication Critical patent/JPS63222126A/en
Publication of JPH0788314B2 publication Critical patent/JPH0788314B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain the aimed compound together with carbon monoxide useful as synthetic raw material gas advantageously in producing >=2C hydrocarbons by oxidative coupling reaction of methane, by carrying out the reaction under concentration at a specific temperature in the absence of a catalyst. CONSTITUTION:Methane and molecular oxygen are heated in a molar ratio of methane/O2 of >=5, preferably >=10 in the absence of a catalyst preferably under 5-20kg/cm<2> at 650-1,000 deg.C, preferably 700-900 deg.C and subjected to oxidative coupling reaction to give >=2C hydrocarbons together with carbon monoxide useful for a raw material for methanol synthesis and Fisher-Tropsch synthesis in high reaction rate while suppressing formation of carbon dioxide without complexity of catalytic use such as regeneration of catalyst.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はメタンの酸化的カップリング反応を加圧下で行
い炭素数2以上の炭化水素と一酸化炭素を合成する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for synthesizing a hydrocarbon having two or more carbon atoms and carbon monoxide by carrying out an oxidative coupling reaction of methane under pressure.

〔従来の技術〕[Conventional technology]

メタンは天然ガスの主成分として地球上に豊富に存在し
ており、現在のところ、主に燃料として使用されている
。メタンはまた所謂C1化学原料の1つとして合成ガス
を経由してアルコール製造等に用いられているが、化学
原料としての用途は石油に比べて少ない。しかし石油を
補完する炭素資源としての化学原料用途の拡大は今後に
期待される。
Methane is abundant on earth as the main component of natural gas, and is currently used primarily as a fuel. Methane is also used as one of the so-called C1 chemical raw materials for alcohol production etc. via synthesis gas, but its use as a chemical raw material is less than that of petroleum. However, the use of chemical raw materials as a carbon resource that complements petroleum is expected to expand in the future.

メタンの化学原料としての用途の中、メタンを原料とす
る炭素数2以上の炭化水素の合成法は合成ガスを経由す
るフィッシャー・トロプシュ法のほかに、メタンを酸化
的に脱水素してカップIJングさせる方法がUSP 4
,443,647で代表される一連の特許やケラ−(J
、 Catal、 73 、、9.1982)、ヒンセ
ン(Proc * 8 th Int’l ”flg”
Catal、 1984)等により報告されている。
Among the uses of methane as a chemical raw material, methods for synthesizing hydrocarbons with a carbon number of 2 or more using methane as a raw material include the Fischer-Tropsch method via synthesis gas, and the cup IJ method in which methane is oxidatively dehydrogenated. The USP 4 is how to
, 443,647 and Keller (J.
, Catal, 73, 9.1982), Hinsen (Proc * 8 th Int'l "flg"
Catal, 1984) and others.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記米国特許やケラ−は金属酸化物を触媒として開用し
、5iO1などに担持させて常圧下500〜1000℃
でメタンと接触させて一定時間反応させ、その後メタン
の流入をやめて分子状酸素により再び金属酸化物に再生
させた後メタンを流入する周期的反応方式を採用してお
り、メタンと酸素を共存させると目的生成物はほとんど
得られないとしている。またヒンセンはPb。
The above-mentioned US patent and Keller utilized metal oxides as catalysts, supported them on 5iO1, etc., and heated them at 500 to 1000°C under normal pressure.
A periodic reaction method is used in which methane is brought into contact with methane and reacted for a certain period of time, then the methane is stopped flowing and the metal oxide is regenerated by molecular oxygen, and then methane is introduced, allowing methane and oxygen to coexist. It is said that the desired product is hardly obtained. Also, Hinsen is Pb.

を触媒とし種々の担体に担持させて酸素共存下で実験し
ているが、いずれも好ましい結果は得られていない。
Experiments have been carried out in the coexistence of oxygen using various carriers as catalysts, but no favorable results have been obtained in any of them.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、上記のように触媒による酸化的カップリ
ング反応における触媒の再生等触媒使用の煩雑さと不十
分な結果に鑑み、無触媒で酸化的カップリング反応を行
わせ、かつ反応速度を大きくするため加圧条件を採用す
ることにより、炭素数2以上の炭化水素の生成と酸化炭
素として一酸化炭素を得ることを見出し、本発明に到達
した。
In view of the complexity and unsatisfactory results of using catalysts such as catalyst regeneration in catalytic oxidative coupling reactions as described above, the present inventors conducted oxidative coupling reactions without catalysts and improved the reaction rate. The present invention was achieved by discovering that by adopting pressurized conditions to increase the size, hydrocarbons having two or more carbon atoms can be produced and carbon monoxide can be obtained as carbon oxide.

すなわち本発明はメタンを分子状酸素と共に加圧下、無
触媒で650〜1000℃に加熱して酸化カップリング
反応を行わせることを特徴とする炭素数2以上の炭化水
素と一酸化炭素を得る方法である。−酸化炭素がメタノ
ール合成やフィッシャm−トロプシュ合成の原料として
有用であることは言うまでもない。
That is, the present invention provides a method for obtaining a hydrocarbon having two or more carbon atoms and carbon monoxide, which is characterized by heating methane together with molecular oxygen at 650 to 1000°C under pressure and without a catalyst to perform an oxidative coupling reaction. It is. - It goes without saying that carbon oxide is useful as a raw material for methanol synthesis and Fischer m-Tropsch synthesis.

本発明に使用するメタンは濃度が高い程有利であるが、
希釈されていても差支えない。分子状酸素は必ずしも0
.100%である必要はなく空気のように分子状酸素を
含むガスであればよい。ただし反応ガス中のメタン10
2のモル比か常に5以上、好ましくは10以上であるこ
とが必要である。モル比が5未満ではそれだけ分子状酸
素が多くなり、好ましくない二酸化炭素の生成が多くな
る。
The higher the concentration of methane used in the present invention, the more advantageous it is.
There is no problem even if it is diluted. Molecular oxygen is not necessarily 0
.. It does not need to be 100%, and any gas containing molecular oxygen such as air may be used. However, methane in the reaction gas
It is necessary that the molar ratio of 2 to 2 is always 5 or more, preferably 10 or more. If the molar ratio is less than 5, the amount of molecular oxygen will increase accordingly, and undesirable carbon dioxide will be produced in large quantities.

本発明のメタン酸化カップリング反応は反応温度650
℃〜1000℃、好ましくは700〜900℃である。
The methane oxidative coupling reaction of the present invention has a reaction temperature of 650
℃~1000℃, preferably 700~900℃.

反応温度が650℃未満ではメタンの転化速度が小さく
、一方1000℃を超えてもそれ程向上しない。また使
用する圧力は5〜20級個が好ましく、5 ky/−未
満では加圧の効果がほとんどなく、またzoky/−を
超えても収率はそれ程向上せず、高圧のための装置上の
問題があり、かつ不経済である。
If the reaction temperature is less than 650°C, the conversion rate of methane will be low, while if it exceeds 1000°C, it will not improve much. In addition, the pressure used is preferably 5 to 20 class. If it is less than 5 ky/-, there is almost no effect of pressurization, and if it exceeds zoky/-, the yield will not improve much, and the It is problematic and uneconomical.

本発明のメタンの加圧酸化カップリング方法の特徴は触
媒を使用しないことである。触媒の種類を問わず、加圧
子触媒を使用すると酸化反応が進み一酸化炭素はすべて
二酸化炭素となるほか、生成した炭素数2以上の炭化水
素も酸化して二酸化炭素となってしまうので好ましくな
い。
A feature of the pressure oxidative coupling method for methane of the present invention is that no catalyst is used. Regardless of the type of catalyst, if a pressurizer catalyst is used, the oxidation reaction will progress and all of the carbon monoxide will become carbon dioxide, and the generated hydrocarbons with carbon numbers of 2 or more will also be oxidized and become carbon dioxide, which is undesirable. .

〔作 用〕[For production]

本発明の加圧下で酸化カップ11ング反if実施するこ
とによって反応速度が大きくなるのは以下のように考察
される。すなわちエタンの生成はメタンと酸素との反応
で生成したメチルラジカル(CHs・)のカップリング
反応に依ると考えられるが、この反応は可逆反応である
The reason why the reaction rate is increased by carrying out the oxidation cup 11 reaction under pressure according to the present invention is considered as follows. That is, the production of ethane is thought to depend on the coupling reaction of methyl radicals (CHs.) produced by the reaction of methane and oxygen, but this reaction is a reversible reaction.

2 CHsC(CJa” ) :j C*Haしかもメ
チルラジカルは高いエネルギーヲ持つため、それから生
成したエタンは励起状態にある。したがって通常は容易
に分解して再びメチルラジカルとなる。しかし励起状態
のエタンが他の分子と衝突してそのエネルギーを失えば
安定なエタン分子となり、生成物となる(三体衝突理論
)。この確率は圧力の三乗に比例するから加圧下で反応
を実施することがエタン(およびエチレン)の生成に不
可欠であるものと考えられる。
2 CHsC(CJa”):j C*HaMoreover, since methyl radicals have high energy, the ethane produced from them is in an excited state.Therefore, it usually decomposes easily and becomes methyl radicals again.However, ethane in an excited state If it collides with another molecule and loses its energy, it becomes a stable ethane molecule and becomes a product (three-body collision theory).Since this probability is proportional to the cube of pressure, it is possible to carry out the reaction under pressure. It is believed to be essential for the production of ethane (and ethylene).

以下に実施例を挙げて本発明を具体的に説明する。The present invention will be specifically described below with reference to Examples.

〔実施例〕〔Example〕

実施例1 反応は加圧流通装置を用いた。反応器は管型のインコロ
イH製の容器に石英管を挿入し金属表面での反応を無視
できるようにした。
Example 1 A pressurized flow device was used for the reaction. The reactor was a tubular Incoloy H container with a quartz tube inserted so that reactions on the metal surface could be ignored.

反応条件は750℃、CHa : 02 : N2 =
 14 :1.6 : 84.4  (モル比)、ガス
光景350 mA/minを標準とし、圧力を種々変え
て行った。結果を第1表に示す。
The reaction conditions were 750°C, CHa: 02: N2 =
14:1.6:84.4 (molar ratio) and a gas flow rate of 350 mA/min as standard, and the pressure was varied. The results are shown in Table 1.

第  1  表 第1表によれば圧力の増加と共にメタン及び酸素の転化
率が上昇し、カップリング反応、燃焼反応の両者が起こ
った。反応の選択性は反応圧力の増加に伴ってカップリ
ング反応の選択性が60係から45%に減少し、燃焼反
応への選択性が増加した。
Table 1 According to Table 1, the conversion rates of methane and oxygen increased as the pressure increased, and both a coupling reaction and a combustion reaction occurred. As the reaction pressure increased, the selectivity for the coupling reaction decreased from 60% to 45%, and the selectivity for the combustion reaction increased.

C3炭化水素の大部分はC5Haであり、そのほかC8
H,、C4H8、C4H,が生成した。
Most of the C3 hydrocarbons are C5Ha, and other C8
H,,C4H8,C4H, were generated.

一方圧力の上昇と共にCOの選択率は上昇したが、CO
2の選択率はあまり圧力に依存しないことがわかった。
On the other hand, the selectivity of CO increased with increasing pressure, but CO
It was found that the selectivity of 2 does not depend much on pressure.

第1表のメタンの転化率と選択率とから生成物を収率で
あられしたのが第1図である。
FIG. 1 shows the product yield calculated from the methane conversion rate and selectivity shown in Table 1.

実施例2 CH4: Ox : Nz= 14 : 1.6 : 
84.4、流量340 mg/mtn、圧力101w/
J−Gで温度を種々変えて実験したのが第2図である。
Example 2 CH4: Ox: Nz= 14: 1.6:
84.4, flow rate 340 mg/mtn, pressure 101w/
Figure 2 shows experiments conducted at various temperatures on J-G.

800℃を超えるとC,H,の収率はほぼ横ばいになる
が、C,H4、COは750℃以上急増する。
When the temperature exceeds 800°C, the yields of C, H, and C remain almost unchanged, but the yields of C, H4, and CO rapidly increase above 750°C.

CO2は一般に少なくそれほど温度の影響を受けない。CO2 is generally small and not significantly affected by temperature.

〔発明の効果〕〔Effect of the invention〕

本発明の加圧下におけるメタンの酸化カップリング反応
は温度及び圧力に最適の範囲があり、触媒を使用しなく
てもC1以上の炭化水素が生成し、かつ常圧触媒使用で
の反応に比ベニ酸化炭素の生成を抑えて一酸化炭素が多
く生成するため、合成原料ガスとしても有用である。
The oxidative coupling reaction of methane under pressure according to the present invention has an optimal range of temperature and pressure, produces C1 or higher hydrocarbons without using a catalyst, and is superior to the reaction using a normal pressure catalyst. Since it suppresses the production of carbon oxide and produces a large amount of carbon monoxide, it is also useful as a raw material gas for synthesis.

【図面の簡単な説明】[Brief explanation of drawings]

図はメタンの加圧酸fヒカップリング反応における反応
条件と収率の関係を示すグラフで、第1図は圧力の影響
、第2図は温度の影響を示す。
The figure is a graph showing the relationship between reaction conditions and yield in the pressurized acid f-hycoupling reaction of methane. Figure 1 shows the influence of pressure, and Figure 2 shows the influence of temperature.

Claims (2)

【特許請求の範囲】[Claims] (1)メタンを分子状酸素と共に加圧下、無触媒で65
0〜1000℃に加熱して酸化カップリング反応を行わ
せることを特徴とする炭素数2以上の炭化水素と一酸化
炭素を得る方法。
(1) Methane with molecular oxygen under pressure without catalyst
A method for obtaining a hydrocarbon having 2 or more carbon atoms and carbon monoxide, which comprises heating to 0 to 1000°C to perform an oxidative coupling reaction.
(2)加圧が5〜20kg/cm^2である特許請求の
範囲第(1)項記載の方法。
(2) The method according to claim (1), wherein the pressurization is 5 to 20 kg/cm^2.
JP62054100A 1987-03-11 1987-03-11 Method for pressurized oxidation of methane Expired - Lifetime JPH0788314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62054100A JPH0788314B2 (en) 1987-03-11 1987-03-11 Method for pressurized oxidation of methane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62054100A JPH0788314B2 (en) 1987-03-11 1987-03-11 Method for pressurized oxidation of methane

Publications (2)

Publication Number Publication Date
JPS63222126A true JPS63222126A (en) 1988-09-16
JPH0788314B2 JPH0788314B2 (en) 1995-09-27

Family

ID=12961197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62054100A Expired - Lifetime JPH0788314B2 (en) 1987-03-11 1987-03-11 Method for pressurized oxidation of methane

Country Status (1)

Country Link
JP (1) JPH0788314B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2746396C1 (en) * 2017-12-14 2021-04-13 Мицубиси Хеви Индастриз Энджиниринг, Лтд. Co-production unit for co-production of olefins and methanol and method for co-production of olefins and methanol

Also Published As

Publication number Publication date
JPH0788314B2 (en) 1995-09-27

Similar Documents

Publication Publication Date Title
TWI359131B (en) Integrated catalytic process for converting alkane
KR102061235B1 (en) Activation method of catalyst for fischer-tropsch synthesis
Choi et al. Hydrogenation of carbon dioxide over alumina supported Fe-K catalysts
Asami et al. Synthesis of ethane and ethylene from methane and carbon dioxide over praseodymium oxide catalysts
CN101624324B (en) Hybrid autothermal catalytic process for converting alkanes to alkenes and catalysts useful for same
JPH0665124A (en) Chromia on metal oxide catalyst for oxidizing methane into methanol
US7435703B2 (en) Catalyst comprising iron oxide made by heat decomposition of an iron halide and a lanthanide
KR100995792B1 (en) Alkene separation process
EA021509B1 (en) Process for producing a mixture of aliphatic and aromatic hydrocarbons
KR101816787B1 (en) Storage method of activated catalysts for Fischer-Tropsch synthesis
TWI327143B (en) A method of manufacturing ethylene oxide
JP2006502218A (en) Rare earth metals as oxidative dehydrogenation catalysts
CN113597422A (en) By CO2Recycled methanol production process with higher carbon utilization
KR101025678B1 (en) A process for the dehydrogenation of an unsaturated hydrocarbon
Chao et al. V–Mg–O prepared via a mesoporous pathway: a low-temperature catalyst for the oxidative dehydrogenation of propane to propene
EP2370379B1 (en) Process for oxidative dehydrogenation of paraffinic lower hydrocarbons
JPS63222126A (en) Pressure oxidation coupling of methane
US4826803A (en) Process for the production of a syngas conversion catalyst
Michorczyk et al. Simultaneous propane dehydrogenation and co 2 hydrogenation overCrO x/SiO 2 catalyst
JP2005519107A (en) Process for producing alkenyl carboxylate or alkyl carboxylate
Korf et al. The development of doped Li/MgO catalyst systems for the low-temperature oxidative coupling of methane
JPS6341892B2 (en)
JPS6341893B2 (en)
JPH10174871A (en) Catalyst for production of synthesis gas and production of synthesis gas
Li et al. Oxidative coupling of methane by water as the oxidant on perovskite oxide catalysts