JPS63222063A - Production of ceramics - Google Patents

Production of ceramics

Info

Publication number
JPS63222063A
JPS63222063A JP62052139A JP5213987A JPS63222063A JP S63222063 A JPS63222063 A JP S63222063A JP 62052139 A JP62052139 A JP 62052139A JP 5213987 A JP5213987 A JP 5213987A JP S63222063 A JPS63222063 A JP S63222063A
Authority
JP
Japan
Prior art keywords
periodic table
oxides
oxide
metal
group iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62052139A
Other languages
Japanese (ja)
Inventor
Yukihiro Ikeda
幸弘 池田
Masaru Ozaki
勝 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP62052139A priority Critical patent/JPS63222063A/en
Publication of JPS63222063A publication Critical patent/JPS63222063A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain high-temperature superconducting oxide based ceramics, useful as a superconducting material, etc., by reacting a mixture of three consisting of respective (hydro)oxides or oxyacid salts of group III-a and II-a metals of the periodic table and copper, iron, Co, etc., by impact compression caused by explosion. CONSTITUTION:Three of (A) oxides, hydroxides or oxyacid salts of a group III-a metal of the periodic table (e.g. Sc2O3 or Y2O3) and (B) oxides, hydroxides or oxyacid salts of a group III-a metal of the periodic table (e.g. SrCO3 or BaO) and (C) oxide, hydroxide or oxyacid salt of one of Cu, Fe, Co and Ni are blended at a ratio according to a desired element constituent ratio of ceramics and the resultant blend, as necessary, is heat-treated at 600-1,200 deg.C in air or O2 atmosphere under 1.0X10<-8>-1atm. pressure for 1-24hr. A reaction raw material 2, such as the resultant powder blend, is placed in a metallic cylinder 1, closed with a metallic plug 3 and evacuated by an evacuation pipe 4, which is then is sealed. The periphery thereof is subsequently covered with 100g-5kg explosive 5 based on 1-500g raw material and exploded through an electric detonator 7 at the tip of an external vessel 6 to carry out reaction.

Description

【発明の詳細な説明】 (技術分野) 本発明は爆発による衝撃圧縮を利用する酸化物系セラミ
ックスの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method for manufacturing oxide-based ceramics using explosive impact compression.

(産業上の利用分野) イツトリウム、ランタン等の周期表m−a族元素、バリ
ウム、ストロンチウム等周期表II−a族元素および銅
と酸素から構成される酸化物系セラミックスは、30に
以上の転位温度Tcを有する超伝導材料として最近注目
されており、低損失超伝導電線、超伝導磁石、ジョセフ
ソン素子等様々な電線素材、電磁気学的機器・デバイス
に応用することができ産業上非常にを用である。
(Industrial Application Field) Oxide-based ceramics composed of elements of group M-A of the periodic table such as yttrium and lanthanum, elements of group II-a of the periodic table such as barium and strontium, and copper and oxygen have 30 or more dislocations. It has recently attracted attention as a superconducting material with a temperature Tc, and can be applied to various wire materials such as low-loss superconducting wires, superconducting magnets, Josephson elements, and electromagnetic equipment and devices, making it extremely useful in industry. It is for use.

(従来技術及び問題点) 従来のLa−Ba−Cu−0系、 La =Sr−Cu
−0系のセラミックス超伝導体は、超伝導特性を有する
多結晶のグレインにより構成されており、超伝導現象は
粒界を介したグレイン間のパーコレ−シコンによると考
えられる。
(Prior art and problems) Conventional La-Ba-Cu-0 system, La = Sr-Cu
The -0 series ceramic superconductor is composed of polycrystalline grains having superconducting characteristics, and the superconducting phenomenon is thought to be due to percolation between the grains via grain boundaries.

そのため、材料本来の超伝導特性が十分には発現してい
ないと考えられる。たとえば、La+−9BaXCu0
3−y (x =0.20または0.15)は常圧下で
は転移温度Tcが32にであり、これを40Kにまで上
げるためには13Kbarの圧力を加えなければならな
い。
Therefore, it is thought that the original superconducting properties of the material are not fully expressed. For example, La+-9BaXCu0
3-y (x = 0.20 or 0.15) has a transition temperature Tc of 32 under normal pressure, and in order to raise it to 40K, a pressure of 13 Kbar must be applied.

また、La+、e Sro、 CuO4については、試
料が多孔性であるため、反磁性による磁化率が理想的な
超伝導体の60〜70%の値しか示さないことが知られ
ている。
Furthermore, it is known that for La+, eSro, and CuO4, since the sample is porous, the magnetic susceptibility due to diamagnetic property exhibits only 60 to 70% of that of an ideal superconductor.

従って材料内の空隙を減らし、グレイン間の粒界による
超伝導特性の低下を防くことが必要になってくる。
Therefore, it is necessary to reduce voids in the material and prevent deterioration of superconducting properties due to grain boundaries between grains.

(問題を解決するための手段) このような問題に鑑み、本発明者らは超伝導セラミック
ス材料のグレイン間の粒界による超伝導特性の低下を防
ぐべく検討を重ねた結果、本発明の製造方法を得るに至
った。
(Means for Solving the Problem) In view of these problems, the present inventors have conducted repeated studies to prevent deterioration of superconducting properties due to grain boundaries between grains of superconducting ceramic materials. I have found a method.

すなわち、本発明ば周期表m−a族金属の酸化物、水酸
化物または酸素酸塩および周期表II−a族金属の酸化
物、水酸化物または酸素酸塩および銅、コバルト、ニッ
ケルのいずれか一つの酸化物、水酸化物または酸素酸塩
の三者の混合物Mを爆発に伴う衝撃圧縮により化学反応
させること、あるいは混合物Mとして600〜1200
℃で加熱処理した混合物M゛を用いて爆発に伴う衝撃圧
縮処理を施すこと、あるいは加熱処理混合物M゛を成形
後、600〜1200℃で焼結したものを用いて爆発に
伴う衝撃圧縮処理を施すことを特徴とするセラミックス
の製造方法に関する。
That is, according to the present invention, an oxide, hydroxide or oxyacid of a metal of group M-a of the periodic table, an oxide, hydroxide or oxyacid of a metal of group II-a of the periodic table, and any of copper, cobalt, and nickel. chemically reacting a mixture M of one of the three oxides, hydroxides, or oxyacids by impact compression accompanying an explosion, or as a mixture M 600 to 1200
Applying impact compression treatment due to explosion using mixture M'' that has been heat treated at ℃, or applying impact compression treatment due to explosion using mixture M'' that has been molded and sintered at 600 to 1200℃. The present invention relates to a method for manufacturing ceramics, which is characterized in that the method comprises:

本発明において、酸化物系セラミックスは、構成金属の
塩を所定のモル比で混合したものを、爆発に伴う衝撃圧
縮により合成することができる。
In the present invention, the oxide-based ceramic can be synthesized by impact-compressing a mixture of constituent metal salts at a predetermined molar ratio through explosion.

まず、周期表■−a族金属源としては、La20:++
La(Of+)+、La(NO3)3.Laz(CO3
):++ Y2O3+ Y(011)31Y(NO3)
31 Yz(COi)、l、5czOs+ 5C(01
1):II 5c(N03)a。
First, as a metal source of group ■-a of the periodic table, La20: ++
La(Of+)+, La(NO3)3. Laz(CO3
):++ Y2O3+ Y(011)31Y(NO3)
31 Yz(COi), l, 5czOs+ 5C(01
1): II 5c (N03)a.

5c2(COa)a+  Ce2O3,Ce(OH)3
.  Ce(NOa)3+Cez(CO3)3.  N
d2o3.  Nd(O)l)3.Nd(NOa)3゜
Nd2(CO3):++  Sm2O3,Sm(OH)
:++  Sm(NO3)3+Smz (CO3) 3
等が挙げられる。周期表II−a族金属源としては、B
aC0,、、Ba(NO:+)z、BaO+ Ba0z
+ 5rCC1++5r(NO:+)z、sro、 5
rOz、 CaC0,、、Ca(NOs)zlCab。
5c2(COa)a+ Ce2O3, Ce(OH)3
.. Ce(NOa)3+Cez(CO3)3. N
d2o3. Nd(O)l)3. Nd(NOa)3゜Nd2(CO3):++ Sm2O3, Sm(OH)
:++ Sm(NO3)3+Smz(CO3)3
etc. As a group II-a metal source of the periodic table, B
aC0, , Ba(NO:+)z, BaO+ Ba0z
+5rCC1++5r(NO:+)z, sro, 5
rOz, CaC0,, Ca(NOs)zlCab.

CaO2等が挙げられる。また、銅、鉄、コバルト、ニ
ッケル源としては、Cub、 Cu2O,Cu2O3+
 Cu (OtD 21C[I(NO3)21 Fed
、 FezO:++ Fe(011)z、  Fe(N
Oz)z。
Examples include CaO2. In addition, as sources of copper, iron, cobalt, and nickel, Cub, Cu2O, Cu2O3+
Cu (OtD 21C[I(NO3)21 Fed
, FezO:++ Fe(011)z, Fe(N
Oz)z.

Fe(NO3)3. FeC0a+ Cool COO
31Co(OH)21 Nl0IN+ (OH) 21
 Nl (NO3) 21 NIC03等が挙げられる
Fe(NO3)3. FeC0a+ Cool COO
31Co(OH)21 Nl0IN+ (OH) 21
Examples include Nl (NO3) 21 NIC03.

出発原料となる三種類の金属塩混合物Mは、望むセラミ
ックス化合物の元素構成比に合わせて調製する。たとえ
ば、lal、 s Bao、 2 C1104の場合は
、1.8モルの上記ランタン化合物、0.2モルの上記
バリウム化合物、1.0モルの上記銅化合物のそれぞれ
の粉末を均等に混合して使用する。
The three types of metal salt mixture M serving as a starting material is prepared in accordance with the elemental composition ratio of the desired ceramic compound. For example, in the case of lal, s Bao, 2C1104, 1.8 mol of the above lanthanum compound, 0.2 mol of the above barium compound, and 1.0 mol of the above copper compound powders were mixed evenly and used. do.

セラミック化合物の各元素構成比は、 αト、β8γδ3−y  またば α2−xβつγδa−y  または α5.、Xβ9γ5(3−y) (ただし、αは周期表■−a族金属、βは周期表H−a
族金属1 γはCu、 Fe+ Go+ Njのうちの
いずれか一つ、δはO; 0.05 ≦x ≦1.0.
 y ;i= 0) テあることが望ましいがこれに限
定されるものではない。
The composition ratio of each element in the ceramic compound is αt, β8γδ3-y, α2-xβxγδa-y, or α5. ,
Group metal 1 γ is one of Cu, Fe+ Go+ Nj, δ is O; 0.05 ≦x ≦1.0.
y;i=0) It is desirable that there be, but the present invention is not limited to this.

爆発時の衝撃圧縮による化学反応および粒界制御は数マ
イクロ秒から100マイクロ秒という極めて短時間内で
起こる。従って反応原料として各金属化合物粉末の混合
物Mを用いる場合は、反応効率を上げ、かつグレイン間
の粒界をなすくために、十分細かく粉砕しておくことが
望ましい。好ましくは、325メツシユ(43ミクロン
)以下の微粉末にするのがよい。
Chemical reactions and grain boundary control due to impact compression during explosion occur within an extremely short time of several microseconds to 100 microseconds. Therefore, when using the mixture M of each metal compound powder as a reaction raw material, it is desirable to grind it sufficiently finely in order to increase reaction efficiency and form grain boundaries between grains. Preferably, it is made into a fine powder of 325 meshes (43 microns) or less.

さらに好ましくは、グレイン間の粒界をなくす一5= ために混合物Mの代わりに、混合物Mを1.0X10−
’〜1気圧の空気または酸素雰囲気下、600〜120
0℃で1〜24時間加熱処理した粉末混合物M゛を用い
るのがよい。
More preferably, in order to eliminate grain boundaries between grains, instead of mixture M, mixture M is used at 1.0×10−
'~1 atm air or oxygen atmosphere, 600~120
It is preferable to use a powder mixture M' that has been heat-treated at 0°C for 1 to 24 hours.

さらに好ましくは、加熱処理混合物M”をプレス加工等
により成形し、600〜1200℃で5時間〜6日間焼
結させたものを用いるのがよい。
More preferably, the heat-treated mixture M'' is formed by pressing or the like and sintered at 600 to 1200°C for 5 hours to 6 days.

反応生成物の形体としては、円筒状、ペレット状、長方
体状、薄板状、薄膜状、針状、線状のいずれもとり得る
The shape of the reaction product may be cylindrical, pellet, rectangular, thin plate, thin film, needle, or linear.

爆発に伴う衝撃圧縮による反応装置(以下、衝撃合成装
置という)としては、パーソン(Person)が用い
た円錐状の装置、デカーリー(DeCarl+)とジエ
ミーソン(Jemieson)が用いた平面衝撃波発生
装置、衝撃銃、飛翔板を用いた装置、円筒衝撃波を利用
した円筒状の装置等の使用が可能である。
Reaction devices using shock compression accompanying explosions (hereinafter referred to as shock synthesis devices) include a conical device used by Person, a planar shock wave generator used by DeCarl+ and Jamieson, and an impact gun. , a device using a flying plate, a cylindrical device using a cylindrical shock wave, etc. can be used.

以下に例として円筒衝撃波を利用する装置を用いた製造
方法について説明する。
A manufacturing method using a device that utilizes cylindrical shock waves will be described below as an example.

図面は円筒衝撃波による衝撃圧縮反応装置(以下、衝撃
合成装置という)を示す。
The drawing shows a shock compression reaction device (hereinafter referred to as a shock synthesis device) using cylindrical shock waves.

反応原料として混合物Mまたは加熱処理混合物M”また
は加熱処理混合物M゛を成形焼結したものを金属製円筒
1に入れる。円筒1には排気バイブ4がついており、反
応原料を入れ、金属製の栓3でふたをし、真空排気を行
った後、バイブ4を溶接させてシールする。この円筒1
の周囲を爆薬5で覆い、外装容器6の頂部に電気雷管7
を設ける。電気雷管7により、爆薬5を爆発させ、反応
生成物を回収することにより、本発明のセラミックスを
得ることができる。
A molded and sintered mixture M, a heat-treated mixture M'', or a heat-treated mixture M'' as a reaction raw material is placed in a metal cylinder 1.The cylinder 1 is equipped with an exhaust vibrator 4, and the reaction raw material is placed in the metal cylinder 1. After covering the cylinder with a stopper 3 and evacuating it, a vibrator 4 is welded and sealed.
The surrounding area is covered with explosives 5, and an electric detonator 7 is attached to the top of the outer container 6.
will be established. The ceramic of the present invention can be obtained by detonating the explosive 5 using the electric detonator 7 and collecting the reaction product.

爆薬の量は、反応物の量に依存するが、反応物1〜50
0gに対して100g〜5 kg使用する。爆発により
加わる圧力は、5,000気圧〜2,500,000気
圧、爆速1 km / sec 〜5 km / se
cと計算され、金属化合物どうしが超高温高圧下で反応
する。
The amount of explosive depends on the amount of reactants, but between 1 and 50
Use 100g to 5kg for 0g. The pressure applied by the explosion is 5,000 atm to 2,500,000 atm, and the explosion speed is 1 km/sec to 5 km/sec.
It is calculated that the metal compounds react with each other under extremely high temperature and pressure.

本発明の製造方法により製造したセラミックスは高温超
伝導体としての特性を発現するものが多い。たとえば、
本発明の方法により合成したSC1,7Sro、+ C
u0t−y(y>O)は311にで、Yo、4Bao、
6Cub3は280にで、Lao、 a Bao、 z
 CuO+−y(y>O)は215K (−40℃)で
超伝導の兆候を示す。また、SC1,7Sro、+ C
u0a−y(y>0)は295にで、超伝導状態特有の
完全反磁性を示す。
Many of the ceramics produced by the production method of the present invention exhibit properties as high-temperature superconductors. for example,
SC1,7Sro, +C synthesized by the method of the present invention
u0t-y(y>O) is 311, Yo, 4Bao,
6Cub3 is 280, Lao, a Bao, z
CuO+-y (y>O) shows signs of superconductivity at 215K (-40°C). Also, SC1, 7Sro, +C
u0a-y (y>0) is 295 and exhibits perfect diamagnetism characteristic of the superconducting state.

(発明の効果) 本発明の製造方法によれば、衝撃合成により従来よりも
高温で作動する高温超伝導性セラミックス材料を製造す
ることができる。
(Effects of the Invention) According to the production method of the present invention, it is possible to produce a high-temperature superconducting ceramic material that operates at a higher temperature than before by impact synthesis.

次に、実施例により本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例1 酸化スカンジウム(SC203) 1.46 g 、炭
酸ストロンチウム(SrCOs)0.55 g 、酸化
銅(I[) (Cub)0.99gを十分に混合し、0
.02Torr (2,5X10−5気圧)の酸素雰囲
気下で900℃、5時間加熱処理を行った。この加熱処
理物を4 Kbarの圧力で円筒状ベレットに成形し、
0.02Torrの酸素雰囲気下、900℃で24時間
焼成を行い焼結を施した。焼結後のベレットを衝撃合成
装置の金属製円筒1内に詰め、金属製の栓3でふたをし
、内部を排気してバイブ4をシールした。この反応容器
を外装容器6に入れ、周囲を400gの爆薬5で覆った
。電気雷管7により点火して爆発させた後、2.8gの
セラミックス生成物を回収した。
Example 1 1.46 g of scandium oxide (SC203), 0.55 g of strontium carbonate (SrCOs), and 0.99 g of copper (I[) (Cub) oxide were thoroughly mixed, and
.. Heat treatment was performed at 900° C. for 5 hours in an oxygen atmosphere of 0.2 Torr (2.5×10 −5 atmospheres). This heated product was formed into a cylindrical pellet at a pressure of 4 Kbar,
Sintering was performed at 900° C. for 24 hours in an oxygen atmosphere of 0.02 Torr. The sintered pellet was packed into a metal cylinder 1 of an impact synthesis device, covered with a metal stopper 3, the inside was evacuated, and a vibrator 4 was sealed. This reaction container was placed in an outer container 6, and the surrounding area was covered with 400 g of explosive 5. After ignition and explosion using an electric detonator 7, 2.8 g of ceramic product was recovered.

生成物のベレットを長方形に切り、Au電極とInワイ
ヤで四端子を設け、タラビオスタット中で冷却しながら
比抵抗を測定した。350Kにおける比抵抗ρ(350
)に対する各絶対温度における比抵抗の比ρ(T)/ρ
(350)を測定したところ、311Kから急激に減少
し始め、298にでゼロに近い値を示した。また、冷却
しながら磁化率χを測定したところ、305Kから急激
に負の方向に増大し始め反磁性を示した。295にで磁
化率χは極小となり、このときの磁化率χの値は、同じ
体積を有する理想的な超伝導体について計算した完全反
磁性の値の98%であった。
The product pellet was cut into a rectangle, four terminals were provided with an Au electrode and an In wire, and the specific resistance was measured while cooling in a Taraviostat. Specific resistance ρ at 350K (350
) Ratio of specific resistance at each absolute temperature ρ(T)/ρ
When (350) was measured, it started to decrease rapidly from 311K and showed a value close to zero at 298. Furthermore, when the magnetic susceptibility χ was measured while being cooled, it began to rapidly increase in the negative direction from 305 K, indicating diamagnetic properties. The magnetic susceptibility χ reached a minimum at 295, and the value of the magnetic susceptibility χ at this time was 98% of the value of perfect diamagnetism calculated for an ideal superconductor having the same volume.

実施例2 酸化イツトリウム(Yz(L+) 0.94 g 、炭
酸バリウム(BaCO3)1.23g 、酸化銅(II
 ) (Cub) 0.83 gを十分に粉砕混合し、
実施例1と同様に加熱処理と成形・焼結を施し、爆発に
よる衝撃圧縮を行った。
Example 2 Yttrium oxide (Yz(L+) 0.94 g, barium carbonate (BaCO3) 1.23 g, copper oxide (II
) (Cub) 0.83 g was thoroughly ground and mixed,
Heat treatment, molding and sintering were performed in the same manner as in Example 1, and impact compression by explosion was performed.

生成物として、2.75gを回収した。ρ(T)/ρ(
350)の温度依存性を測定したところ、280Kから
冷却とともに急激に減少し始め、272にでゼロに近い
値を示した。
2.75 g of product was recovered. ρ(T)/ρ(
When the temperature dependence of 350) was measured, it began to rapidly decrease with cooling from 280 K, and at 272 it showed a value close to zero.

実施例3 水酸化ランタン(La(OH)3) 1.63g、酸化
バリウム(II) (Bad) 0.38g、酸化銅(
If ) (Cub) 0.99gを十分に粉砕混合し
、0.02Torr (2,5xio−5気圧)の酸素
雰囲気下で900℃、6時間加熱処理を行った。この加
熱処理物を衝撃合成装置の金属製円筒1内に詰め、実施
例1と同様に爆発による衝撃圧縮を行ったところ、2.
95gの生成物を回収した。ρ(T)/ρ(350)の
温度依存性を調べたところ、215kから冷却とともに
急激に減少し始め、200にでゼロに近い値を示した。
Example 3 Lanthanum hydroxide (La(OH)3) 1.63g, barium(II) oxide (Bad) 0.38g, copper oxide (
If ) (Cub) 0.99 g was thoroughly ground and mixed, and heat-treated at 900° C. for 6 hours in an oxygen atmosphere of 0.02 Torr (2.5 xio-5 atm). This heated product was packed into the metal cylinder 1 of an impact synthesis device and subjected to impact compression by explosion in the same manner as in Example 1.2.
95g of product was collected. When the temperature dependence of ρ(T)/ρ(350) was investigated, it began to decrease rapidly with cooling from 215k, and at 200k it showed a value close to zero.

実施例4 酸化ランタン(LazO3) 2.19 g、炭酸スト
ロンチウム(SrC(L+) 0.22 g 、酸化銅
(II ) (CuO)0.59gを十分に粉砕混合し
、衝撃合成装置の金属製円筒1内に詰め、実施例1と同
様に爆発による衝撃圧縮を行った。生成物2.85gを
回収した。ρ (T)/ρ(350)の温度依存性を測
定したところ、220Kから冷却とともに急激に減少し
始め、203にでゼロに近い値を示した。
Example 4 2.19 g of lanthanum oxide (LazO3), 0.22 g of strontium carbonate (SrC(L+)), and 0.59 g of copper(II) oxide (CuO) were thoroughly ground and mixed, and the mixture was placed in a metal cylinder of an impact synthesis device. 1 and subjected to impact compression by explosion in the same manner as in Example 1. 2.85 g of product was recovered. When the temperature dependence of ρ (T)/ρ (350) was measured, it was found that from 220 K with cooling. It started to decrease rapidly and reached a value close to zero at 203.

実施例5 酸化イツトリウム(Y2O2) 1.52g、炭酸スト
ロンチウム(SrC(h)0.27 g 、酸化銅(I
I ) (Cub) 1.21gを十分に粉砕混合し、
実施例1と同様に加熱処理と成形・焼結を施し、爆発に
よる衝撃圧縮を行った。生成物として2.95gを回収
した。ρ (T)/ρ(350)の温度依存性を測定し
たところ、295Kから冷却とともに急激に減少し始め
、282にでゼロに近い値を示した。
Example 5 Yttrium oxide (Y2O2) 1.52 g, strontium carbonate (SrC(h) 0.27 g, copper oxide (I
I) (Cub) 1.21g was thoroughly ground and mixed,
Heat treatment, molding and sintering were performed in the same manner as in Example 1, and impact compression by explosion was performed. 2.95g of product was recovered. When the temperature dependence of ρ (T)/ρ (350) was measured, it began to rapidly decrease with cooling from 295 K, and at 282 it showed a value close to zero.

実施例6 酸化スカンジウム(SC203) 1..66 g 、
炭酸カルシウム(CaCO3) 0.27 g 、酸化
鉄(m) (pezoa)1.07 gを十分に粉砕混
合し、実施例1と同様に加熱処理と成形・焼結を施し、
爆発による衝撃圧縮を行った。生成物として、2.7g
を回収した。ρ(T)/ρ(350)の温度依存性を測
定したところ、195Kから冷却とともに急激に減少し
始め、173にでゼロに近い値を示した。
Example 6 Scandium oxide (SC203) 1. .. 66 g,
0.27 g of calcium carbonate (CaCO3) and 1.07 g of iron oxide (m) (pezoa) were thoroughly ground and mixed, and heat treated, shaped and sintered in the same manner as in Example 1,
Shock compression was performed by explosion. As product, 2.7g
was recovered. When the temperature dependence of ρ(T)/ρ(350) was measured, it began to rapidly decrease with cooling from 195K, and at 173, it showed a value close to zero.

実施例7 酸化イツ]・リウム(YzO,J) 1.90 g 、
炭酸ストロンチウム(SrC(h) o、 31 g 
、酸化ニッケル(IT)(NiO) 0.79 gを十
分に粉砕混合し、実施例1と同様に加熱処理と成形・焼
結を施し、爆発による衝撃圧縮を行った。生成物として
、2.75gを回収した。ρ(T)/ρ(350)の温
度依存性を測定したところ、182Kから冷却とともに
急激に減少し始め、177にでゼロに近い値を示した。
Example 7 Lithium oxide (YzO,J) 1.90 g,
Strontium carbonate (SrC(h) o, 31 g
, 0.79 g of nickel oxide (IT) (NiO) were sufficiently pulverized and mixed, subjected to heat treatment, molding and sintering in the same manner as in Example 1, and subjected to impact compression by explosion. 2.75 g of product was recovered. When the temperature dependence of ρ(T)/ρ(350) was measured, it began to rapidly decrease with cooling from 182 K, and at 177 it showed a value close to zero.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は衝撃合成装置の断面図である。図中の1は金属製
円筒、2は反応原料、3は金属製枠、4は排気用パイプ
、5は爆薬、6は外装容器、7は電気雷管である。 71?許出願人   旭化成工常イ朱弐会社図 〆 7−′ 、7
The drawing is a sectional view of the impact synthesizer. In the figure, 1 is a metal cylinder, 2 is a reaction raw material, 3 is a metal frame, 4 is an exhaust pipe, 5 is an explosive, 6 is an outer container, and 7 is an electric detonator. 71? Applicant: Asahi Kasei Kogyo Company, Ltd. Figure 7-', 7

Claims (1)

【特許請求の範囲】[Claims]  周期表III−a族金属の酸化物、水酸化物または酸素
酸塩および周期表II−a族金属の酸化物、水酸化物、ま
たは酸素酸塩および銅、鉄、コバルト、ニッケルのうち
のいずれか一つの酸化物、水酸化物または酸素酸塩の三
者の混合物を爆発に伴う衝撃圧縮により互いに化学反応
させることを特徴とするセラミックスの製造方法
Oxides, hydroxides, or oxyacids of metals of Group III-a of the Periodic Table; oxides, hydroxides, or oxyacids of metals of Group II-a of the Periodic Table; and any of copper, iron, cobalt, and nickel A method for producing ceramics, which comprises chemically reacting a mixture of oxides, hydroxides, or oxyacids with each other through impact compression accompanied by an explosion.
JP62052139A 1987-03-09 1987-03-09 Production of ceramics Pending JPS63222063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62052139A JPS63222063A (en) 1987-03-09 1987-03-09 Production of ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62052139A JPS63222063A (en) 1987-03-09 1987-03-09 Production of ceramics

Publications (1)

Publication Number Publication Date
JPS63222063A true JPS63222063A (en) 1988-09-14

Family

ID=12906536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62052139A Pending JPS63222063A (en) 1987-03-09 1987-03-09 Production of ceramics

Country Status (1)

Country Link
JP (1) JPS63222063A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428265A (en) * 1987-07-22 1989-01-30 Sumitomo Electric Industries Production of superconducting material
JP2007224174A (en) * 2006-02-24 2007-09-06 Sumitomo Electric Ind Ltd Electroluminescent phosphor and method for producing the same
WO2008013243A1 (en) * 2006-07-27 2008-01-31 Kuraray Luminas Co., Ltd. Phosphor precursor manufacturing method
CN103011243A (en) * 2012-12-01 2013-04-03 中北大学 Preparation method of nano metal oxide and reaction device for preparing nano metal oxide

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428265A (en) * 1987-07-22 1989-01-30 Sumitomo Electric Industries Production of superconducting material
JP2007224174A (en) * 2006-02-24 2007-09-06 Sumitomo Electric Ind Ltd Electroluminescent phosphor and method for producing the same
WO2008013243A1 (en) * 2006-07-27 2008-01-31 Kuraray Luminas Co., Ltd. Phosphor precursor manufacturing method
US8110124B2 (en) 2006-07-27 2012-02-07 Kuraray Co., Ltd. Method of preparing fluorescent body precursor
JP5185117B2 (en) * 2006-07-27 2013-04-17 株式会社クラレ Method for producing phosphor precursor
CN103011243A (en) * 2012-12-01 2013-04-03 中北大学 Preparation method of nano metal oxide and reaction device for preparing nano metal oxide

Similar Documents

Publication Publication Date Title
Itoh et al. High-and low-spin transition of Ru 4+ in the perovskite-related layered system Sr n+ 1 Ru n O 3 n+ 1 (n= 1, 2, and∞) with the change in n
JPS63222063A (en) Production of ceramics
JP2767283B2 (en) Bi-Pb-Sr-Ba-Ca-Cu-O based superconducting material
JPH0251468A (en) Production of yttrium-barium-copper oxide powder and superconducting yttrium-barium-copper oxide sintered body
US3625898A (en) Method of manufacturing a ceramic, polycrystalline, magnetically anisotropic spinel ferrite body
EP0463506B1 (en) Oxide superconductor and its manufacturing method
JP2893405B2 (en) Bi-Pb-Sr-Ca-Cu-o based superconducting material
US5536705A (en) Superconductor with 1212 phase of Hg,Pb,Sr,Ba,Ca,Y,Cu oxide
JPH07106893B2 (en) Manufacturing method of ceramics superconductor
JPH0753212A (en) High temperature superconductor and its production
JPH03240985A (en) Method for electrochemical treatment of material in oxide form, application of said method to superconductor, metal and material having semiconductive property and product obtained
JPH02120227A (en) Production of bi-based oxide superconductor
JPH02204358A (en) Oxide superconductor and production thereof
JP3365522B2 (en) Mercury oxide superconductor
JP2637617B2 (en) Manufacturing method of superconducting material
Sankarshana Murthy et al. Preparation of manganous zinc ferrites
JPH02188462A (en) Production of superconducting molded body of tl-alkaline earth metal-cu oxide
JPH0292827A (en) Production of bi oxide superconductor
JPH01264954A (en) Production of high-temperature superconductor
JPH02120228A (en) Production of bi-based oxide superconductor
JPH01264955A (en) Production of high-temperature superconductor
JPH01212227A (en) Oxide superconducting material
JPS63277550A (en) Synthesis of superconductive ceramic
JPH03285823A (en) Oxide superconductor
JPH02204323A (en) Oxide superconductor and its production