JPS63222016A - Production of high-purity manganese compound - Google Patents

Production of high-purity manganese compound

Info

Publication number
JPS63222016A
JPS63222016A JP5487187A JP5487187A JPS63222016A JP S63222016 A JPS63222016 A JP S63222016A JP 5487187 A JP5487187 A JP 5487187A JP 5487187 A JP5487187 A JP 5487187A JP S63222016 A JPS63222016 A JP S63222016A
Authority
JP
Japan
Prior art keywords
manganese
iron
solution
ferromanganese
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5487187A
Other languages
Japanese (ja)
Other versions
JPH0455133B2 (en
Inventor
Yoji Kenmochi
洋司 見持
Koichi Yoshioka
吉岡 孝一
Hideaki Honoki
朴木 秀明
Koichi Kanbe
神戸 功一
Kiyoshi Matsuura
松浦 清
Tatsuo Kiyono
清野 達雄
Yoshiyuki Kimura
義行 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Original Assignee
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd filed Critical Japan Metals and Chemical Co Ltd
Priority to JP5487187A priority Critical patent/JPS63222016A/en
Priority to FR878717776A priority patent/FR2612173B1/en
Priority to NL8703098A priority patent/NL8703098A/en
Priority to DE3805797A priority patent/DE3805797A1/en
Priority to GB8805418A priority patent/GB2204029B/en
Publication of JPS63222016A publication Critical patent/JPS63222016A/en
Priority to US07/361,757 priority patent/US4943418A/en
Publication of JPH0455133B2 publication Critical patent/JPH0455133B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To readily obtain a high-purity Mn compound, by adding ferromanganese and (or) metallic Mn to an aqueous solution containing an electrolyte, adding an acid, controlling pH, dissolving Mn and iron, separating and removing undissolved substances, precipitating Mn and iron and recovering. CONSTITUTION:An electrolyte-containing aqueous solution (e.g. aqueous solution of ammonium chloride) is blended with one or more of ferromanganese and metallic manganese), an acid is added while stirring, manganese and iron are dissolved by maintaining temperature at 20-60 deg.C and at pH2-9. Then undissolved substances are separated and removed, manganese and iron in the solution are precipitated and recovered to give high-purity manganese compound. Consequently, since ferromanganese and metallic manganese are added to the electrolytic solution, the solution is adjusted to proper pH and maintained at given temperature, the impurities such as Co and Ca in the raw material can be simply removed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高純度マンガン化合物の製造方法に関スるもの
であって、特にマンガン系フェライト用原料に好適なマ
ンガン化合物を製造する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a high-purity manganese compound, and particularly to a method for producing a manganese compound suitable as a raw material for manganese-based ferrite. It is.

〔従来の技術〕[Conventional technology]

従来高純度のマンガン化合物はマンガン鉱石を硫酸に溶
解し、不純物たる重金属は硫化物法、溶媒抽出法又はア
ルコレート法等で、また鉄は酸化して水酸化物として分
離除去した後、マンガンを各種塩類として回収する方法
が行われている。
Conventionally, high-purity manganese compounds are produced by dissolving manganese ore in sulfuric acid, impurity heavy metals are removed by the sulfide method, solvent extraction method, alcoholate method, etc., and iron is oxidized and separated and removed as hydroxide. Methods are being used to recover it as various salts.

最近ては更に高純度のマンガン化合物を製造するために
マンガン鉱石より不純物元素が少ないフェロマンガン又
は金属マンガンを用い、これらを直接酸で溶解し、前記
従来法と同様重金属及び鉄を分離除去し、さらに再結晶
法を組合せることによって高純度マンガン化合物を精製
する方法がある。
Recently, in order to produce manganese compounds with even higher purity, ferromanganese or metallic manganese, which has fewer impurity elements than manganese ore, are used, which are directly dissolved in acid, and heavy metals and iron are separated and removed in the same way as in the conventional method. Furthermore, there is a method of purifying high-purity manganese compounds by combining a recrystallization method.

しかし、前記方法は数工程を要し、かつ複雑な再結晶法
による精製工程を必要とし、処理能率が悪いばかりか必
らずしも高純度のものを得ることができない。
However, the above method requires several steps and a purification step using a complicated recrystallization method, which not only has poor processing efficiency but also does not necessarily result in a product of high purity.

本出願人は前述従来法の欠点を改善するため、電解質を
含む水溶液にフェロマンガン、金属マンガンの1種又は
2種を加え攪拌しつつ酸を添加しpH2〜9に保持して
未溶解物を分離し、溶液中のマンガン及び鉄を沈澱して
回収することにより高純度のマンガン化合物を得る方法
を提案した(特願昭60−1.97246号参照)。
In order to improve the drawbacks of the conventional method described above, the present applicant added one or two of ferromanganese and metallic manganese to an aqueous solution containing an electrolyte, added acid while stirring, and maintained the pH at 2 to 9 to remove undissolved substances. He proposed a method for obtaining high-purity manganese compounds by separating, precipitating and recovering manganese and iron in solution (see Japanese Patent Application No. 1972-1972).

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

前記特願昭60−197246号に記載されている発明
(以下先行技術という)は、処理工程が従来法に比較し
て簡単で、しかもCr、 Co、 Ni等の重金属のほ
かP、 Si 、 A7!、V等の不純物を除去できる
という効果がある。
The invention described in the above-mentioned Japanese Patent Application No. 1972-1988 (hereinafter referred to as the prior art) has a simpler treatment process compared to the conventional method, and furthermore, in addition to heavy metals such as Cr, Co, and Ni, P, Si, and A7 can be removed. ! , V, and the like can be removed.

しかし、前記先行技術は不純物の除去に有効であるけれ
ども、不純物の除去効率にかなりのバラツキがあり、従
って使用に当り不純物の含有量ごとに仕分けしなければ
ならず、安定した品質のものを大量に供給することは困
難である。
However, although the above-mentioned prior art is effective in removing impurities, there is considerable variation in impurity removal efficiency, and therefore, it is necessary to sort by impurity content before use, and products of stable quality must be produced in large quantities. It is difficult to supply

本発明は前述先行技術の欠点を改善するため研究の結果
、フェライト用原料として使用するマンガン化合物の不
純物が極低含有量で、かつバラツキの少ない高純度マン
ガン化合物を安定して製造する方法を提供することにあ
る。
As a result of research to improve the drawbacks of the prior art described above, the present invention provides a method for stably producing a high-purity manganese compound used as a raw material for ferrite, which has an extremely low content of impurities and has little variation. It's about doing.

〔問題点を解決するための手段〕[Means for solving problems]

本出願の第1の発明は電解質を含む水溶液にフェロマン
ガン、金属マンガンの1種又は2種を加えて攪拌しつつ
酸を添加し、温度20〜60℃、pH2〜9に保持して
マンガン及び鉄を溶解した後、未溶解物を分離除去し、
溶液中のマンガン及び鉄を沈澱して回収するという構成
からなる高純度マンガン化合物の製造方法である。
The first invention of the present application is to add one or two of ferromanganese and metallic manganese to an aqueous solution containing an electrolyte, add an acid while stirring, maintain the temperature at 20 to 60°C and pH 2 to 9, and then add manganese and manganese. After dissolving the iron, undissolved matter is separated and removed,
This is a method for producing a high-purity manganese compound, which consists of precipitating and recovering manganese and iron in a solution.

また、第2の発明は電解質を含む水溶液にフェロマンガ
ン、金属マンガンの1種又は2種を加えて攪拌しつつ、
かつ空気を吹込みながら酸を添加し、温度20〜60℃
、pH2〜9に保持してマンガン及び鉄を溶解した後、
未溶解物を分離除去し、溶液中のマンガン及び鉄を沈澱
して回収するという構成からなる高純度マンガン化合物
の製造方法である。
Further, the second invention adds one or two of ferromanganese and metallic manganese to an aqueous solution containing an electrolyte, and while stirring,
Add acid while blowing air, and maintain the temperature at 20-60°C.
, after dissolving manganese and iron by maintaining it at pH 2-9,
This is a method for producing a high-purity manganese compound, which consists of separating and removing undissolved substances, and precipitating and recovering manganese and iron in the solution.

〔作   用〕[For production]

本発明は以上の如き構成のものからなり、蕊に使用する
電解質は塩化アンモニウム、硝酸アンモニウム、 酢酸
アンモニウム又はアルカリ金属塩等の1種又は2種以上
である。
The present invention has the above structure, and the electrolyte used in the stamen is one or more of ammonium chloride, ammonium nitrate, ammonium acetate, or an alkali metal salt.

また、本発明に言うマンガン化合物とはマンガン化合物
単独のもののほか、マンガン化合物と鉄化合物との混合
物を含むものとする。
Furthermore, the manganese compound referred to in the present invention includes not only a manganese compound alone but also a mixture of a manganese compound and an iron compound.

本発明の原料たるフェロマンガン、金属マンガンは粉砕
しく好ましくは60メツシユ下)、これを電解質溶液中
へ添加する。
Ferromanganese and metallic manganese, which are the raw materials of the present invention, are pulverized (preferably less than 60 mesh) and added to the electrolyte solution.

前記の如きフェロマンガン、金属マンガンヲ水に添加す
ると、マンガン、鉄は一部水と反応して水酸化物を生成
し、その液のpHは9,7前後まで」二昇する。
When ferromanganese and metallic manganese as described above are added to water, some of the manganese and iron react with the water to form hydroxides, and the pH of the liquid rises to around 9.7.

一方、塩化アンモニウム等の電解質を含む溶液に、前記
フェロマンガン、金属マンガンを添加すると、マンガン
、鉄は同様に水酸化物を生成するが、前記電解質の緩衝
作用によって溶液のpHが低下する。そのpHの低下す
る程度は電解質の濃度によって異なるが、例えば塩化ア
ンモニウムの2%溶液の場合p)(= 9.0種度、2
0%溶液では7.8程度となる。
On the other hand, when the ferromanganese and metal manganese are added to a solution containing an electrolyte such as ammonium chloride, manganese and iron similarly produce hydroxides, but the buffering action of the electrolyte lowers the pH of the solution. The degree to which the pH decreases depends on the concentration of the electrolyte, but for example, in the case of a 2% solution of ammonium chloride, p) (= 9.0 species, 2
In a 0% solution, it is about 7.8.

茸で水酸化マンガン(II)又は水酸化鉄(ltl)が
完全に沈澱するpHは夫々9以上、8以上程度であるか
ら、生成した水酸化マンガン及び水酸化鉄は一部溶解し
、他の部分は沈澱した状態となり、他方マンガン、鉄よ
りイオン化傾向の責なる元素、即ち重金属元素は未反応
のまま残存する。
The pH at which manganese (II) hydroxide or iron hydroxide (LTL) completely precipitates in mushrooms is approximately 9 or higher and 8 or higher, respectively. The parts become precipitated, while the elements that are more likely to ionize than manganese and iron, ie, heavy metal elements, remain unreacted.

また、この方法によると、フェロマンガン。Also according to this method, ferromanganese.

金属マンガンに含まれているCaO,SiO2,AJa
 203+Mg○等の酸化物を主体とする非金属介在物
(スラグ成分)は殆んど溶解せず、はぼ完全に分離でき
る。
CaO, SiO2, AJa contained in metal manganese
Nonmetallic inclusions (slag components) mainly composed of oxides such as 203+Mg○ are hardly dissolved and can be almost completely separated.

前記のようにして生成した水酸化マンガン。Manganese hydroxide produced as described above.

水酸化鉄に酸を添加すれば水酸化マンガン、水酸化鉄は
塩となって溶解し、重金属元素を完全に分離できる。こ
こで使用する酸は、塩酸、硫酸、酢酸又は硝酸の何れで
もよい。
When acid is added to iron hydroxide, manganese hydroxide and iron hydroxide become salts and dissolve, making it possible to completely separate heavy metal elements. The acid used here may be any of hydrochloric acid, sulfuric acid, acetic acid, or nitric acid.

而して、電解質を含む溶液では前記電解質の緩衝作用に
よって塩酸の添加によるpH変化が小さくなる。そして
、このようなpH領域(少なくともp+−(=2以上)
では未反応物は酸による影響を受けず、従って何等溶解
せず、不純物を完全に分離することができる。
Therefore, in a solution containing an electrolyte, the pH change due to the addition of hydrochloric acid is reduced due to the buffering effect of the electrolyte. Then, in such a pH range (at least p + - (= 2 or more)
In this case, unreacted substances are not affected by the acid and therefore do not dissolve at all, allowing complete separation of impurities.

前記の方法によってP、 AI 、 Vその他各種の元
素が可成りの程度除去できるが、その除去率にバラツキ
がある。特にCo、 Ca等のように溶解速度の温度依
存性が大ぎいものとか、P、Si。
Although P, AI, V and various other elements can be removed to a considerable extent by the above method, the removal rate varies. In particular, materials such as Co and Ca, whose dissolution rate is highly dependent on temperature, as well as P and Si.

A1等のように反応系中の未反応物又は沈澱に吸着して
除去されるものはその影響が大きい。
The effect is large on substances such as A1 that are adsorbed and removed by unreacted substances or precipitates in the reaction system.

そのため、第1の発明は前記反応系において攪拌しつつ
酸を添加して溶解する際、反応等の温度を20〜60″
Cに保持することによって不純物の除去率、特にCo、
 Caの除去率を大きく、かつバラツキを少なくするこ
とができた。
Therefore, in the first invention, when adding and dissolving an acid while stirring in the reaction system, the temperature of the reaction etc. is set to 20 to 60''.
By holding C, the removal rate of impurities, especially Co,
It was possible to increase the Ca removal rate and reduce variation.

蕊に、温度20°C未満では、マンガン及び鉄の溶解反
応速度が遅いため好ましくなく、また60°Cを越える
とCo、 Ca等の溶解速度が大きくなってその除去率
が小さくなるためである。
On the other hand, if the temperature is less than 20°C, it is undesirable because the dissolution reaction rate of manganese and iron is slow, and if it exceeds 60°C, the dissolution rate of Co, Ca, etc. increases and the removal rate becomes small. .

また、前記のように温度を20〜60°Cとすることに
よってP、Al、V等の不純物の除去率もCo、Ca等
と同様に向上し、かつそのバラツキも少ない。
Further, by setting the temperature to 20 to 60°C as described above, the removal rate of impurities such as P, Al, and V is improved similarly to that of Co, Ca, etc., and the variation thereof is also small.

また、第2の発明は、前述筒1の発明の反応系に、さら
に空気を吹込みながら溶解するものテする。即ち、第1
の発明はフェロマンガン。
Moreover, the second invention is one in which the reaction system of the invention in the cylinder 1 is dissolved while further air is blown thereinto. That is, the first
The invention was ferromanganese.

金属マンガンを電解質を含む水溶液中に添加すること、
攪拌しつつ酸を添加すること、その際、温度20〜60
°C及びpH2〜9に調整することによって、不純物の
極めて少ないマンガン化合物を得ることができるが、さ
らに第1の発明に、反応系内に空気を吹き込む手段を組
合せることによって不純物をさらに低下させることがで
きる。
adding metallic manganese to an aqueous solution containing an electrolyte;
Add the acid with stirring, at a temperature of 20-60°C.
By adjusting the temperature and pH to 2 to 9, it is possible to obtain a manganese compound with extremely low impurities, but by combining the first invention with a means of blowing air into the reaction system, impurities can be further reduced. be able to.

即チ、フェロマンガン、金属マンガンラミ解質を含む水
溶液中に添加し、攪拌しながら20〜60’Cで酸を添
加してpH2〜9とする場合、これに空気を吹込むと、
水酸化鉄(n)が酸化されて水酸化鉄(lit)を生成
する。この水酸化鉄(Ill)は、水酸化鉄(II)に
比較して低pHで容易に沈澱するが、特にpH3以上で
ほぼ完全に沈澱する。
When added to an aqueous solution containing solute, ferromanganese, and metal manganese laminate and adjusted to pH 2 to 9 by adding acid at 20 to 60'C with stirring, air is blown into the solution.
Iron hydroxide (n) is oxidized to produce iron hydroxide (lit). This iron hydroxide (Ill) precipitates more easily at low pH than iron (II) hydroxide, but in particular, it precipitates almost completely at pH 3 or higher.

従って、高純度マンガン化合物の目的がらFe含有量を
極力低下する必要がある場合にはpH5〜9とすればよ
い。また、水酸化鉄(III)の沈澱は、溶液中に尚微
量に存在しているP、Si、Al。
Therefore, if it is necessary to reduce the Fe content as much as possible for the purpose of producing a high-purity manganese compound, the pH may be adjusted to 5 to 9. In addition, the precipitation of iron (III) hydroxide is due to the presence of trace amounts of P, Si, and Al in the solution.

Cr等の不純物を吸着するため、それを濾過分離するこ
とによって不純物含有量を著るしく低下させることがで
き、従って第1の発明に比較してさらに不純物の低いも
のを得ることができる。
Since impurities such as Cr are adsorbed, the impurity content can be significantly reduced by filtering and separating them, and therefore a product with even lower impurities than the first invention can be obtained.

前述の如き手段によって水溶液中には、実質的にマンガ
ン及び鉄のみが溶解抽出された状態として得られる。
Substantially only manganese and iron are dissolved and extracted in the aqueous solution by the above-mentioned means.

前記水溶液からマンガン及び鉄を回収するには、前記溶
液中のマンガン及び鉄を例えば炭酸塩として沈澱せI−
めた後、炭酸塩を回収すれば、不純物の含有量の極めて
少ないマンガン化合物を回収することができる。
To recover manganese and iron from the aqueous solution, the manganese and iron in the solution are precipitated, e.g. as carbonates.I-
By collecting the carbonate and recovering the carbonate, a manganese compound with extremely low impurity content can be recovered.

また、前記炭酸塩は必要によってはこれを800°Cに
焼成すれば簡単にマンカン及0・鉄を含む高純度の酸化
物又は高純度マンガン酸化物を得るとがてきる。
Further, if the carbonate is calcined at 800° C. if necessary, a high purity oxide containing mankanium and iron or a high purity manganese oxide can be easily obtained.

尚、溶液中からマンガン化合物を回収するに当り、必ら
ずしも炭酸塩として回収する必要はなく、溶液から容易
に沈澱分離てきるものてあればよい。
In recovering the manganese compound from the solution, it is not necessarily necessary to recover it as a carbonate, but any compound that can be easily precipitated and separated from the solution is sufficient.

〔実 施 例〕〔Example〕

以下本発明を下記の実施例に基づいて具体的に説明する
The present invention will be specifically explained below based on the following examples.

実施例1 10%塩化アンモニウム溶液150m1に、60メツシ
ー以下に粉砕したフェロマンガン粉末15Iヲ加えて前
記溶液を攪拌しながら6M塩酸を逐次添加してフェロマ
ンガン中のマンガン及び鉄を溶解抽出した。
Example 1 To 150 ml of a 10% ammonium chloride solution was added 15 I of ferromanganese powder crushed to 60 mcs or less, and while stirring the solution, 6M hydrochloric acid was successively added to dissolve and extract manganese and iron in the ferromanganese.

6M塩酸の添加によって前記溶液のpHは8.5から逐
次低下するが、所定のpHになったとき、6M塩酸の添
加を中止し、反応を終了させた。
The pH of the solution was gradually lowered from 8.5 by the addition of 6M hydrochloric acid, but when the predetermined pH was reached, the addition of 6M hydrochloric acid was stopped to terminate the reaction.

この際、最終製品中の微量元素含量に及ぼす抽出温度に
よる影響を調べるため恒温槽により、前記溶液を10°
Cから90’Cに保持して反応させプこ。
At this time, in order to investigate the effect of extraction temperature on the trace element content in the final product, the solution was heated at 10°C in a constant temperature bath.
Keep it at 90'C and let it react.

反応時間は、2〜5時間、6M塩酸の消費量は76〜8
0m1であり、前記塩酸の消費量から計算したフェロマ
ンガン中のマンガン及び鉄の含量の反応率(溶解率)は
88〜92%であった。
The reaction time was 2 to 5 hours, and the amount of 6M hydrochloric acid consumed was 76 to 8 hours.
The reaction rate (dissolution rate) of manganese and iron content in ferromanganese calculated from the consumption amount of hydrochloric acid was 88 to 92%.

つぎに、反応を終了した前記溶液を濾過して未溶解物を
分離除去した後、炭酸アンモニウム22gを加え、さら
にアンモニア水て溶液のpHを7.8とし、溶液中のマ
ンガンを炭酸塩とじて沈澱させ、該炭酸塩を濾過分離し
て回収した。
Next, the reaction-completed solution was filtered to separate and remove undissolved substances, and then 22 g of ammonium carbonate was added, and the pH of the solution was adjusted to 7.8 with aqueous ammonia to remove the manganese in the solution as carbonate. After precipitation, the carbonate was collected by filtration.

前記炭酸塩の精製効果を確認するために、回収した炭酸
塩を110°Cて乾燥後、800°Cて90分間焼成し
てマンガン酸化物(Mn 203が主体)とし、このマ
ンガン酸化物中のCo及びCaについて分析した処、夫
々第1図及び第2図に示す通りであり、温度が60″C
を越えると、Co及び0ともにその溶出量が増大し、精
製効果が低減するのが認められる。また、温度が60°
C以下てはCo。
In order to confirm the purification effect of the carbonate, the recovered carbonate was dried at 110°C and then calcined at 800°C for 90 minutes to form manganese oxide (mainly Mn 203). The analysis of Co and Ca was as shown in Figures 1 and 2, respectively, and the temperature was 60''C.
It is observed that when the amount exceeds 100%, the elution amount of both Co and O increases, and the purification effect decreases. Also, the temperature is 60°
Below C is Co.

Caの除去率のバラツキも少なく安定している。There is little variation in the Ca removal rate and it is stable.

実施例2 10%塩化アンモニウム溶液150 mlに、60メツ
シユ以下に粉砕したフェロマンガン粉末15!yを加え
て、前記溶液を攪拌しながら、前記溶液内に挿入されて
いるテフロンチューブによって毎分約11の空気を吹込
み、6M塩酸を逐次添加シテフエロマンガン中のマンガ
ン及び鉄ヲ溶解抽出した。このときの温度は20〜60
6Cの範囲に保持する。
Example 2 Into 150 ml of 10% ammonium chloride solution, 15 ml of ferromanganese powder ground to 60 mesh or less was added. While stirring the solution, about 11 air per minute was blown through the Teflon tube inserted into the solution, and 6M hydrochloric acid was sequentially added to dissolve and extract the manganese and iron in the ferromanganese. . The temperature at this time is 20-60
Keep within 6C range.

6M塩酸の添加によって前記溶液のpHは、8.5から
逐次低下するが、pHが5になったとき、6M塩酸の添
加を中止し反応を終了させた。この除鉄は、いったん抽
出溶解され、空気により酸化を受けて水酸化鉄(III
)を生じ、沈澱する。反応時間は約2時間、6M塩酸の
消費量は72m/てあり、前記塩酸の消費量がら計算し
たフェロマンガン中のマンガンの反応率(溶解率)は9
9%であった。
The pH of the solution gradually decreased from 8.5 by adding 6M hydrochloric acid, but when the pH reached 5, the addition of 6M hydrochloric acid was stopped to terminate the reaction. This removed iron is once extracted and dissolved, and oxidized by air to form iron hydroxide (III).
) and precipitate. The reaction time was about 2 hours, the consumption of 6M hydrochloric acid was 72 m/h, and the reaction rate (dissolution rate) of manganese in ferromanganese calculated from the consumption of hydrochloric acid was 9.
It was 9%.

次に、反応を終了した前記溶液を濾過して未溶解物及び
水酸化鉄(1)等を分離除去した後、炭酸アンモニア水
22gを加え、さらにアンモニア水で溶液のpHを7,
8とし、溶液中のマンガンを炭酸塩として沈澱させ、該
炭酸塩を濾過分即fして回収した。
Next, the reaction-completed solution was filtered to separate and remove undissolved substances, iron hydroxide (1), etc., and then 22 g of aqueous ammonia carbonate was added, and the pH of the solution was adjusted to 7.
8, the manganese in the solution was precipitated as a carbonate, and the carbonate was immediately collected by filtration.

前記炭酸塩の精製効果を確認するために、回収した炭酸
塩を110″Cて乾燥後、s o o’cて90分間焼
成してマンガン酸化物(M n 203が主体)とし、
P、 Si、 Cr、 A7!、 V及びFeの分析を
行った処、表−1の通りである。尚、比較のため表−1
に空気を吹き込まないて溶解した場合の結果を併記する
In order to confirm the purification effect of the carbonate, the recovered carbonate was dried at 110"C and then calcined for 90 minutes to form manganese oxide (mainly Mn 203).
P, Si, Cr, A7! , V and Fe were analyzed as shown in Table 1. For comparison, Table 1
The results are also shown when the sample was dissolved without blowing air into it.

〔発明の効果〕〔Effect of the invention〕

−16= 以上の如く第1の発明はフェロマンガン、金属マンガン
を電解質溶液に添加し、pHを調整すると共に温度を保
持することによって原料中の各種不純物を簡単に除去す
ることができ、特にCo、 Ca等の元素を安定して低
減する三七ができる。
-16= As described above, the first invention can easily remove various impurities in raw materials by adding ferromanganese or metal manganese to an electrolyte solution, adjusting the pH and maintaining the temperature. , it is possible to stably reduce elements such as Ca.

また、第2の発明は第1の発明にさらに空気を吹き込む
という簡単な手段を組合せることによって各種不純物を
除去できると共に、鉄も除去することができるから、フ
ェライト用としてより幅の広い原料を提供することがで
きる。
In addition, the second invention can remove various impurities and iron by combining the first invention with a simple method of further blowing air, so a wider range of raw materials can be used for ferrite. can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は温度に対するCo含有量の関係を示すグラフ、
第2図は温度に対するCa含有量の関係を示すグラフで
ある。 特許出願人 日本重化学工業株式会社 代  理  人  市    川    理    吉
dぐドパ(匙) 郡=*i(’) 手続補正書(方式) %式% 2、発明の名称 高純度マンガン化合物の製造方法 3、補正をする者 事件との関係 特許出願人 日本重化学工業株式会社 4、代理人 5、 補正命令の日付 7、補正の内容 願書に最初に添付した明細書の浄書・別紙のとおり(内
容に変更なし) 以  上
Figure 1 is a graph showing the relationship between Co content and temperature;
FIG. 2 is a graph showing the relationship between Ca content and temperature. Patent applicant: Japan Heavy and Chemical Industry Co., Ltd. Representative: Osamu Ichikawa 3. Relationship with the case of the person making the amendment Patent applicant Japan Heavy and Chemical Industry Co., Ltd. 4, Agent 5, Date of amendment order 7, Contents of the amendment As per the engraving and attached sheet of the specification originally attached to the application (contents not included) (no change)

Claims (2)

【特許請求の範囲】[Claims] (1)電解質を含む水溶液にフェロマンガン、金属マン
ガンの1種又は2種を加えて攪拌しつつ酸を添加し、温
度20〜60℃、pH2〜9に保持してマンガン及び鉄
を溶解した後、未溶解物を分離除去し、溶液中のマンガ
ン及び鉄を沈澱して回収することを特徴とする高純度マ
ンガン化合物の製造方法。
(1) Add one or both of ferromanganese and metallic manganese to an aqueous solution containing an electrolyte, add acid while stirring, and maintain the temperature at 20-60°C and pH 2-9 to dissolve manganese and iron. A method for producing a high-purity manganese compound, which comprises separating and removing undissolved substances, and precipitating and recovering manganese and iron in a solution.
(2)電解質を含む水溶液にフェロマンガン、金属マン
ガンの1種又は2種を加えて攪拌しつつ、かつ空気を吹
込みながら酸を添加し、温度20〜60℃、pH2〜9
に保持してマンガン及び鉄を溶解した後、未溶解物を分
離除去し、溶液中のマンガン及び鉄を沈澱して回収する
ことを特徴とする高純度マンガン化合物の製造方法。
(2) Add one or two of ferromanganese and metallic manganese to an aqueous solution containing an electrolyte, add acid while stirring and blowing air, and then add acid at a temperature of 20 to 60°C and a pH of 2 to 9.
1. A method for producing a high-purity manganese compound, which comprises dissolving manganese and iron by holding the solution in water, separating and removing undissolved substances, and precipitating and recovering manganese and iron in the solution.
JP5487187A 1987-03-10 1987-03-10 Production of high-purity manganese compound Granted JPS63222016A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP5487187A JPS63222016A (en) 1987-03-10 1987-03-10 Production of high-purity manganese compound
FR878717776A FR2612173B1 (en) 1987-03-10 1987-12-18 PROCESS FOR THE PREPARATION OF HIGH PURITY MANGANESE COMPOUNDS
NL8703098A NL8703098A (en) 1987-03-10 1987-12-22 PROCESS FOR PREPARING HIGH PURITY MANGANES.
DE3805797A DE3805797A1 (en) 1987-03-10 1988-02-24 METHOD FOR PRODUCING HIGHLY PURE MANGANE CONNECTIONS
GB8805418A GB2204029B (en) 1987-03-10 1988-03-08 A method of preparing high-purity manganese compounds
US07/361,757 US4943418A (en) 1987-03-10 1989-05-30 Method of preparing high-purity manganese compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5487187A JPS63222016A (en) 1987-03-10 1987-03-10 Production of high-purity manganese compound

Publications (2)

Publication Number Publication Date
JPS63222016A true JPS63222016A (en) 1988-09-14
JPH0455133B2 JPH0455133B2 (en) 1992-09-02

Family

ID=12982653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5487187A Granted JPS63222016A (en) 1987-03-10 1987-03-10 Production of high-purity manganese compound

Country Status (1)

Country Link
JP (1) JPS63222016A (en)

Also Published As

Publication number Publication date
JPH0455133B2 (en) 1992-09-02

Similar Documents

Publication Publication Date Title
JP3385997B2 (en) Method of recovering valuable metals from oxide ore
JP6336469B2 (en) Method for producing scandium-containing solid material with high scandium content
US2876065A (en) Process for producing pure ammonium perrhenate and other rhenium compounds
JPS63502890A (en) Production of ultra-pure silver nitrate
Mukherjee et al. Recovery of pure vanadium oxide from bayer sludge
JPH11277075A (en) Method for removing/fixing arsenic existing in iron sulfate solution
CA1147970A (en) Process for cobalt recovery from mixed sulfides
JP5200588B2 (en) Method for producing high purity silver
JPH0681050A (en) Method for recovering nickel and cobalt
WO1999041417B1 (en) Method for producing high-purity molybdenum chemicals from molybdenum sulfides
JPS63222016A (en) Production of high-purity manganese compound
CN113621835A (en) Method for efficiently removing molybdenum based on extraction-precipitation combination
JP2009097024A (en) Method for refining rhodium
US3980752A (en) Precipitation of nickel, cobalt, lead sulphides in presence of iron oxides or hydroxides
JPH04198017A (en) Purification of scandium oxide
JPS6345130A (en) Removal of zinc from aqueous solution acidified with sulfuric acid
US4482377A (en) Separation of zinc from a zinc-copper alloy
US3127264A (en) Non-ferrous recovery process
US3658475A (en) Method of preparing pure nickel carbonyl from impure nickel compounds
JPH07224334A (en) Separating and recovering method of copper
US3720750A (en) Selective recovery of cobalt from an ammoniacal carbonate solution containing cobalt and nickel
JPS63222017A (en) Production of high-purity manganese compound
US5173276A (en) Method for recovery of copper from copper-containing materials
US4943418A (en) Method of preparing high-purity manganese compounds
JPH0256289B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees