JPS63221905A - Cutters - Google Patents

Cutters

Info

Publication number
JPS63221905A
JPS63221905A JP5766387A JP5766387A JPS63221905A JP S63221905 A JPS63221905 A JP S63221905A JP 5766387 A JP5766387 A JP 5766387A JP 5766387 A JP5766387 A JP 5766387A JP S63221905 A JPS63221905 A JP S63221905A
Authority
JP
Japan
Prior art keywords
carbon
base material
ion
protective film
cutter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5766387A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ogata
潔 緒方
Yasunori Ando
靖典 安東
Eiji Kamijo
栄治 上條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP5766387A priority Critical patent/JPS63221905A/en
Publication of JPS63221905A publication Critical patent/JPS63221905A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PURPOSE:To invest a cutter with wear and abrasion resistance, thermal stabilization, and lublicity for improving the machinability of the cutter by coating the surface of cutting edge section and rake face of base metal with carbonaceneous protective coat including diamond crystals and amolphous carbon. CONSTITUTION:In vacuum container, an evaporation source 8 and ion source 16 are arranged facing toward the base metals 4 made of high speed steel, for example, attached to a holder 15. In the next step, when the container is vacuumized to a required deglee, carbon 12 is deposited on the base metals 4 from the evaporation source 8 and at the same time, an ion amount of ion beams 18 of the specified rate will be irradiated. As a result a carbonaceous protective coat mixed with diamond crystals and amolphous carbon is formed on the surface of the base metal 4. The formation of the coat 6 can invest a cutter made of material of broad range of from soft to hard material with excellent machinability and long life.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えばドリル、超硬チップ、鋏、包丁、鋸
等のように、部材の切削加工、切断加工等に用いられる
刃物類に関し、特にその保護膜の改良に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to cutlery used for cutting, cutting, etc. of members, such as drills, carbide tips, scissors, kitchen knives, saws, etc. In particular, it relates to improvements in the protective film.

〔従来の技術〕[Conventional technology]

従来、この種の刃物類の加工性向上および長寿命化等の
ための保護膜としては、炭化チタン(Tic)や窒化チ
タン(TiN)等が用いられていた。
Conventionally, titanium carbide (Tic), titanium nitride (TiN), or the like has been used as a protective film for improving workability and extending the life of this type of cutlery.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、例えば切削工具を例に取ると、炭化チタンは
、高硬度物質であるため高硬度材に対しては切削性が良
いが、耐摩耗性が小さい(即ち熱的に安定ではない)た
めに、ニッケル等の軟削材の切削の場合は切粉がすくい
面(第2図のすくい面4S参照)にまつわりついてそれ
で加熱され、脱炭が起きて切削性等がすぐに悪くなると
いう問題があり、逆に窒化チタンは、硬度が炭化チタン
の約半分であるため高硬度材の切削に不向きであるいう
問題がある。これらは他の刃物類についてもほぼ同様の
問題がある。
However, if we take cutting tools as an example, titanium carbide is a highly hard material and has good cutting properties against hard materials, but its wear resistance is low (that is, it is not thermally stable), so it When cutting soft materials such as nickel, the problem is that chips cling to the rake face (see rake face 4S in Figure 2) and are heated, causing decarburization and immediately deteriorating machinability. On the other hand, titanium nitride has a hardness that is approximately half that of titanium carbide, making it unsuitable for cutting high-hardness materials. Almost similar problems exist with other cutlery.

そこでこの発明は、保護膜を改良することによって、硬
材から軟材まで幅広い材料に対して加工性が良好でしか
も長寿命の刃物類を提供することを目的とする。
Therefore, an object of the present invention is to provide cutlery that has good workability for a wide range of materials from hard to soft materials and has a long life by improving the protective film.

〔実施例〕〔Example〕

第1図は、この発明に係る刃物類の基本構成を示す概略
断面図である。母材4の表面に、ダイヤモンド結晶とア
モルファス炭素とを含む炭素系の保護膜6を形成してい
る。
FIG. 1 is a schematic sectional view showing the basic structure of cutlery according to the present invention. A carbon-based protective film 6 containing diamond crystals and amorphous carbon is formed on the surface of the base material 4.

母材4の材質は、用途等に応じて、例えば高速皮調、超
硬材等の種々のものが採り得る。
The base material 4 may be made of various materials, such as high-speed skin tone, super hard material, etc., depending on the purpose.

また母材4の形状も、用途等に応じて、例えばドリル、
超硬チップ、鋏、包丁、鋸等のための種々のものが採り
得る。
The shape of the base material 4 also varies depending on the application, such as a drill,
Various types can be used for carbide tips, scissors, knives, saws, etc.

炭素系の保護膜6を表面に形成する領域も、用途等に応
じて、例えば刃先部およびすくい面等の種々のものが採
り得る。
The area where the carbon-based protective film 6 is formed on the surface may be various, such as a cutting edge portion or a rake face, depending on the application.

例えば第2図は、切削工具刃先のすくい面4Sに炭素系
の保護膜6を被覆した例である。
For example, FIG. 2 shows an example in which the rake face 4S of the cutting tool edge is coated with a carbon-based protective film 6.

上記炭素系の保護膜6は、そこに含まれるダイヤモンド
結晶が高硬度で熱的にも安定なため、耐摩耗性かつ熱的
安定性に優れている。しかも、そこに含まれるアモルフ
ァス炭素の粒子が細かいため、表面の潤滑性(この明細
書では、表面がなめらかで滑りが良好なことを意味する
。)にも優れており、従って軟削材の切削等の場合にも
切粉の離れが良く、従来のように切粉がまつわりつくこ
とによって加熱されて切削性等が悪くなるという問題も
起こらない。
The carbon-based protective film 6 has excellent wear resistance and thermal stability because the diamond crystals contained therein are highly hard and thermally stable. Furthermore, because the amorphous carbon particles contained in it are fine, it has excellent surface lubricity (in this specification, it means a smooth surface with good sliding properties), which makes it suitable for cutting soft materials. Even in such cases, the chips are easily separated, and there is no problem of the chips clinging together and heating up, resulting in poor cutting performance, etc., as in the past.

それゆえ、上記刃物類は、硬材から軟材まで幅広い材料
に対して加工性が良好でしかも長寿命となる。
Therefore, the above-mentioned cutlery has good workability on a wide range of materials, from hardwood to softwood, and has a long life.

次に、上記のような炭素系の保護膜6の形成方法の一例
を第3図を参照して説明する。
Next, an example of a method for forming the carbon-based protective film 6 as described above will be explained with reference to FIG.

真空容器(図示省略)内に、例えばホルダ15に取り付
けられて前述したような母材4 (図は切削工具の場合
の例を示す)が収納されており、当該母材4に向けて蒸
発源8およびイオンtX16が配置されている。
In a vacuum container (not shown), a base material 4 (the figure shows an example of a cutting tool) as described above attached to a holder 15 is housed, and an evaporation source is directed toward the base material 4. 8 and ion tX16 are arranged.

蒸発源8は、図示例のものは電子ビーム蒸発源であり、
蒸発材料10として炭素ベレットを有しており、それを
電子ビームによって加熱蒸気化して得られる炭素12を
母材4の表面に蒸着させることができる。もっとも、炭
素は昇華性であるため電子ビーム蒸発源では膜形成速度
が遅い場合もあり、その場合は蒸発源8として、炭素か
ら成るターゲットを不活性ガスイオンの照射やマグネト
ロン放電によってスパッタさせる方式のもの、あるいは
炭素から成るカソードにおける真空アーク放電によって
炭素を蒸発させる方式のもの等としても良く、更にはこ
れらを併用しても良い。
The evaporation source 8 in the illustrated example is an electron beam evaporation source,
A carbon pellet is used as the evaporation material 10, and carbon 12 obtained by heating and vaporizing it with an electron beam can be evaporated onto the surface of the base material 4. However, since carbon is sublimable, the film formation rate may be slow when using an electron beam evaporation source. It is also possible to use a method in which carbon is evaporated by vacuum arc discharge at a cathode made of carbon, or a combination of these may be used.

イオン源16としても特定の方式のものに限定されるも
のではないが、例えばプラズマ閉込めにカスプ磁場を用
いるバケット型イオン源が好ましく、それによれば供給
されたガスGをイオン化して均一で大面積のイオンビー
ム1Bを母材4の表面に向けて照射することができるの
で、一度に大面積の処理が可能になる。尚、14は母材
4上に形成される膜の膜厚モニタである。
Although the ion source 16 is not limited to a specific type, for example, a bucket type ion source that uses a cusp magnetic field for plasma confinement is preferable. Since the surface of the base material 4 can be irradiated with the ion beam 1B having a large area, a large area can be treated at one time. In addition, 14 is a film thickness monitor of the film formed on the base material 4.

イオン源16に供給するガスGとしては、後述するよう
な理由から、不活性ガス(例えばヘリウムガス、アルゴ
ンガス等)、炭化水素系ガス(例えばメタンガス、エタ
ンガス等)および有機化合物系ガス(例えばアセトン等
)の内の少なくとも一種、即ちこれらの単一ガスまたは
混合ガスを用いる。
The gas G supplied to the ion source 16 may include inert gas (for example, helium gas, argon gas, etc.), hydrocarbon gas (for example, methane gas, ethane gas, etc.), and organic compound gas (for example, acetone gas, etc.) for the reasons described later. etc.), i.e., a single gas or a mixture thereof.

膜形成に際しては、真空容器内を例えば10−5〜1O
−7Torr程度にまで排気した後、蒸発源8からの炭
素12を母材4上に蒸着させるのと同時に、またはそれ
と交互に、あるいは間歇的に、イオン源工6からのイオ
ンビームI8を母材4に向けて照射する。その際、母材
4に蒸着させる炭素量に対する照射イオン量の割合、即
ちイオン/炭素は、例えば0.1%〜100%程度の範
囲内にする。
When forming a film, the temperature inside the vacuum container is, for example, 10-5 to 1O.
After evacuation to about -7 Torr, the ion beam I8 from the ion source 6 is applied to the base material simultaneously with, alternately with, or intermittently depositing the carbon 12 from the evaporation source 8 onto the base material 4. Irradiate toward 4. At this time, the ratio of the amount of irradiated ions to the amount of carbon deposited on the base material 4, ie, ions/carbon, is set within a range of, for example, about 0.1% to 100%.

その結果、例えば第1図あるいは第2図に示すように、
母材4の表面に、ダイヤモンド結晶とアモルファス炭素
とがほぼ偏在することなく混在した炭素系の保護膜6が
形成される。これは、イオン照射によって、母材4に蒸
着された炭素がアモルファス化する一方、照射イオンが
、母材4に蒸着されたグラフプイト構造の炭素をダイヤ
モンドに結晶成長させるための核形成エネルギー供給源
として作用するからであると考えられる。
As a result, for example, as shown in Figure 1 or Figure 2,
A carbon-based protective film 6 is formed on the surface of the base material 4, in which diamond crystals and amorphous carbon are mixed without being unevenly distributed. This is because the ion irradiation causes the carbon deposited on the base material 4 to become amorphous, while the irradiated ions act as a nucleation energy supply source to crystallize the graphite-structured carbon deposited on the base material 4 into diamond. This is thought to be because it works.

その場合、母材4の表面の所定領域のみに炭素系の保護
膜6を形成する必要がある場合には、その領域のみが露
出するようなマスクを用いる等すれば良い。
In that case, if it is necessary to form the carbon-based protective film 6 only on a predetermined region of the surface of the base material 4, a mask that exposes only that region may be used.

尚、ガスGに上記のような種類のものを用いるのは、不
活性ガスを用いれば、イオンビーム18として照射され
る不活性元素は反応性が乏しいため、不純物混入の無い
良質の炭素系の保護膜6が得られるからであり、炭化水
素系ガスや有機化合物系ガスを用いれば、蒸着炭素にそ
れと同系の、即ち炭素系のイオンビーム18が照射され
るため、それによって蒸着炭素をより励起し易くなるか
らであり、またこれらの混合ガスを用いれば、上記のよ
うな各作用を併合した結果を得ることができるからであ
る。
The reason why the above-mentioned gas G is used is because if an inert gas is used, the inert element irradiated as the ion beam 18 has poor reactivity. This is because a protective film 6 can be obtained, and if a hydrocarbon-based gas or an organic compound-based gas is used, the vapor-deposited carbon is irradiated with an ion beam 18 of the same type as that, that is, a carbon-based ion beam 18, thereby further exciting the vapor-deposited carbon. This is because it becomes easier to perform the operation, and also because if these mixed gases are used, a result that combines the above-mentioned effects can be obtained.

また、ガスGとして、上記のような単一ガスまたは混合
ガスに、ケイ素系ガス(例えばモノシランガス、ジシラ
ンガス等)および水素ガスの内の少なくとも一方を混合
したガスを用いても良く、そのようにすれば、イオンビ
ーム18として照射されたケイ素はSP3混成軌道しか
取らず、蒸着炭素中におけるグラファイトの析出を抑制
すると共にダイヤモンド形成に有効に作用するため、ま
たイオンビーム18として照射された水素は、蒸着炭素
中のグラファイトをメタン、エタン等の炭化水素系のガ
スとして取り除く作用をするため、ダイヤモンド結晶が
より効果的に形成されるようになる。
Further, as the gas G, a gas obtained by mixing at least one of a silicon-based gas (for example, monosilane gas, disilane gas, etc.) and hydrogen gas with the above-mentioned single gas or mixed gas may be used. For example, silicon irradiated as the ion beam 18 takes only SP3 hybrid orbits, which suppresses the precipitation of graphite in the vapor-deposited carbon and effectively acts on diamond formation. Since it acts to remove graphite from carbon as a hydrocarbon gas such as methane or ethane, diamond crystals can be formed more effectively.

上記の場合、炭素系の保護膜6中におけるダイヤモンド
結晶とアモルファス炭素との割合は、前述した母材4に
入射させるイオン/炭素の割合、イオン源16に供給す
る上記のような各種ガスの混合比、イオンビーム18の
エネルギー等ノ条件によって変化するので、これらの条
件によって所望のものに制御することができる。
In the above case, the ratio of diamond crystals to amorphous carbon in the carbon-based protective film 6 is determined by the ratio of ions/carbon incident on the base material 4 described above, and the mixture of various gases as described above supplied to the ion source 16. Since it changes depending on conditions such as the ratio and the energy of the ion beam 18, it can be controlled to a desired value based on these conditions.

尚、イオンビーム18のエネルギーは、その照射によっ
て炭素系の保護膜6や母材4の内部にダメージ(欠陥部
)が発生するのを極力少なくする観点から、10KeV
程度以下の低エネルギー、より好ましくは数百eV程度
以下にするのが良く、またその下限は特にないが、イオ
ン源16からイオンビーム18を引き出せる限度から、
現実的には10eV程度以上になる。
Note that the energy of the ion beam 18 is set to 10 KeV from the viewpoint of minimizing damage (defects) caused inside the carbon-based protective film 6 and base material 4 due to the irradiation.
It is preferable to set the energy to a level lower than the ion source 16, more preferably a few hundred eV or lower, and there is no particular lower limit, but from the limit that the ion beam 18 can be extracted from the ion source 16,
In reality, it will be about 10 eV or more.

また、母材4に対するイオンビーム18の照射角度(即
ち母材4の表面に対する垂線との間の角度)は、0°〜
50°程度の範囲内にするのが好ましく、そのようにす
れば、イオンビーム18の照射に伴う蒸着炭素のスパッ
タを小さく抑えることができる。この角度は、例えば図
示例のような切削工具では刃先のすくい面4Sに対する
角度θとする。
Further, the irradiation angle of the ion beam 18 to the base material 4 (that is, the angle between the perpendicular to the surface of the base material 4) is 0° to
It is preferable to set the angle within a range of about 50°, and by doing so, it is possible to suppress sputtering of the vapor deposited carbon due to irradiation with the ion beam 18. This angle is, for example, the angle θ of the cutting edge with respect to the rake surface 4S in a cutting tool like the illustrated example.

また、膜形成時には、必要に応じて母材4を加熱手段(
図示省略)によって例えば数百℃程度まで加熱、あるい
は冷却手段(図示省略)によって例えば室温〜100℃
程度以内になるように冷却しても良く、加熱すれば熱励
起によってダイヤモンド形成の反応を促進することがで
きると共に、炭素系の保護膜6中に発生する欠陥部を成
膜中に除去することができ、また冷却すればイオンビー
ム18の照射による母材4への熱的影響を防止すること
ができる。
In addition, during film formation, the base material 4 may be heated by heating means (
heating the temperature to, for example, several hundred degrees Celsius by using a cooling means (not shown), or heating it to a temperature ranging from room temperature to 100 degrees Celsius by cooling means (not shown).
The carbon-based protective film 6 may be cooled to within a certain range, or heated to promote the reaction of diamond formation through thermal excitation, and to remove defects occurring in the carbon-based protective film 6 during film formation. In addition, cooling can prevent thermal effects on the base material 4 due to irradiation with the ion beam 18.

上記方法の特徴を列挙すれば次の通りである。The features of the above method are listed below.

■ CVD法のように母材4を高温(例えば800℃〜
1000°C程度)に加熱する必要がなく、低温処理が
可能であるため、母材4が脆性素化を起こす恐れがない
■ As in the CVD method, the base material 4 is heated to a high temperature (e.g. 800℃~
Since there is no need to heat the base material 4 to a temperature of about 1000° C. and low-temperature treatment is possible, there is no fear that the base material 4 will become brittle.

■ イオンビーム照射を併用するため、イオンの押込み
(ノックオン)作用により母材と炭素系保護膜との混合
層の形成が期待でき、母材4に対する密着性の良い炭素
系の保護膜6が得られる。
■ Since ion beam irradiation is used in combination, a mixed layer of the base material and carbon-based protective film can be expected to be formed due to the knock-on effect of the ions, resulting in a carbon-based protective film 6 with good adhesion to the base material 4. It will be done.

■ 炭素系の保護膜6中のダイヤモンド結晶とアモルフ
ァス炭素との割合が、前述したイオン/炭素の割合等の
条件によって制御可能であり、しかもそのような条件の
制御は容易であるので、被覆する炭素系の保護膜6の耐
摩耗性、潤滑性等の機械的特性を目的等に応じて容易に
変えることができる。
■ The ratio of diamond crystals to amorphous carbon in the carbon-based protective film 6 can be controlled by conditions such as the ion/carbon ratio mentioned above, and since such conditions are easy to control, the coating is Mechanical properties such as wear resistance and lubricity of the carbon-based protective film 6 can be easily changed depending on the purpose.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明に係る刃物類は、母材の表面に、
ダイヤモンド結晶とアモルファス炭素とを含む炭素系の
保護膜を形成しているため、耐摩耗性、熱的安定性およ
び潤滑性に優れており、硬材から軟材まで幅広い材料に
対して加工性が良好でしかも長寿命となる。
As described above, the cutlery according to the present invention has
Because it forms a carbon-based protective film containing diamond crystals and amorphous carbon, it has excellent wear resistance, thermal stability, and lubricity, and can process a wide range of materials from hard to soft materials. It is good and has a long life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明に係る刃物類の基本構成を示す概略
断面図である。第2図は、この発明の一実施例に係る切
削工具の刃先を部分的に示す概略断面図である。第3図
は、ダイヤモンド結晶とアモルファス炭素とを含む炭素
系の保護膜の形成に用いられる装置の一例を示す概略図
である。 4・・・母材、6・・・ダイヤモンド結晶とアモルファ
ス炭素とを含む炭素系の保護膜。
FIG. 1 is a schematic sectional view showing the basic structure of cutlery according to the present invention. FIG. 2 is a schematic sectional view partially showing the cutting edge of a cutting tool according to an embodiment of the present invention. FIG. 3 is a schematic diagram showing an example of an apparatus used for forming a carbon-based protective film containing diamond crystals and amorphous carbon. 4... Base material, 6... Carbon-based protective film containing diamond crystals and amorphous carbon.

Claims (1)

【特許請求の範囲】[Claims] (1)母材の表面に、ダイヤモンド結晶とアモルファス
炭素とを含む炭素系の保護膜を形成していることを特徴
とする刃物類。
(1) Cutlery characterized by forming a carbon-based protective film containing diamond crystals and amorphous carbon on the surface of the base material.
JP5766387A 1987-03-11 1987-03-11 Cutters Pending JPS63221905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5766387A JPS63221905A (en) 1987-03-11 1987-03-11 Cutters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5766387A JPS63221905A (en) 1987-03-11 1987-03-11 Cutters

Publications (1)

Publication Number Publication Date
JPS63221905A true JPS63221905A (en) 1988-09-14

Family

ID=13062141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5766387A Pending JPS63221905A (en) 1987-03-11 1987-03-11 Cutters

Country Status (1)

Country Link
JP (1) JPS63221905A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020069625A (en) * 2001-02-27 2002-09-05 프리시젼다이아몬드 주식회사 CVD (chemical vapor deposition) diamond pencil and cutter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147903A (en) * 1984-08-16 1986-03-08 Furukawa Electric Co Ltd:The Optical fiber surplus length containing tool
JPS61109628A (en) * 1984-10-29 1986-05-28 Toshiba Tungaloy Co Ltd Diamond coated tool

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147903A (en) * 1984-08-16 1986-03-08 Furukawa Electric Co Ltd:The Optical fiber surplus length containing tool
JPS61109628A (en) * 1984-10-29 1986-05-28 Toshiba Tungaloy Co Ltd Diamond coated tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020069625A (en) * 2001-02-27 2002-09-05 프리시젼다이아몬드 주식회사 CVD (chemical vapor deposition) diamond pencil and cutter

Similar Documents

Publication Publication Date Title
EP0363648B1 (en) Method and apparatus for forming or modifying cutting edges
US5488774A (en) Cutting edges
EP0474369B1 (en) Diamond-like carbon coatings
JPH0352433B2 (en)
KR20170138444A (en) A coated cutting tool and a method for coating the cutting tool
US4264682A (en) Surface hafnium-titanium compound coated hard alloy material and method of producing the same
JPH08118106A (en) Cutting tool coated with hard layer
US6200649B1 (en) Method of making titanium boronitride coatings using ion beam assisted deposition
JPH0356675A (en) Coating of ultrahard alloy base and ultrahard tool manufactured by means of said coating
JPH06183890A (en) Artificial diamond-coated material
JPS63221905A (en) Cutters
JP2535886B2 (en) Carbon-based film coating method
JPS61195971A (en) Formation of wear resisting film
JPH07268607A (en) Article having diamondlike carbon thin film and its production
JPH04337064A (en) Boron nitride coating member
JPH05263251A (en) Coated and sintered body
JP2593441B2 (en) High-hardness film-coated tool material and its manufacturing method
JP2875892B2 (en) Method of forming cubic boron nitride film
JPH03295552A (en) Dental cutting tool and its manufacture
JP4257425B2 (en) Novel inorganic compound, superhard material using the same, and method for producing the same
JP2611633B2 (en) Method for producing chromium nitride film-coated substrate
JP3898622B2 (en) Carbon film forming method and apparatus, and carbon film and product coated with the carbon film
JPH0649637B2 (en) High hardness boron nitride synthesis method
JPS5918475B2 (en) coated high speed steel
JP2003013200A (en) Hard carbon film and manufacturing method therefor