JPS6322136B2 - - Google Patents

Info

Publication number
JPS6322136B2
JPS6322136B2 JP56184461A JP18446181A JPS6322136B2 JP S6322136 B2 JPS6322136 B2 JP S6322136B2 JP 56184461 A JP56184461 A JP 56184461A JP 18446181 A JP18446181 A JP 18446181A JP S6322136 B2 JPS6322136 B2 JP S6322136B2
Authority
JP
Japan
Prior art keywords
generators
power generation
combination
command value
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56184461A
Other languages
Japanese (ja)
Other versions
JPS5889040A (en
Inventor
Masaki Shinozuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56184461A priority Critical patent/JPS5889040A/en
Publication of JPS5889040A publication Critical patent/JPS5889040A/en
Publication of JPS6322136B2 publication Critical patent/JPS6322136B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

【発明の詳細な説明】 (a) 発明の分野 本発明は同一水系に位置する二箇所以上の水力
発電所の出力を制御する水力発電所の制御方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of the Invention The present invention relates to a method for controlling a hydroelectric power plant that controls the output of two or more hydroelectric power plants located in the same water system.

(b) 技術の背景 一般に水力発電所においては、水系や地形によ
り種々の発電所群形態が存在する。たとえば同一
水系の上流と下流に2つの池を持ち、上の池の水
を使用し下の池に水を落とす上側発電所と、更に
下の池の水を使用しその下の河川に水を落とす下
側発電所とがあり、このような2ケ所の発電所を
合わせ3台以上の発電機を有するという発電所群
形態がある。そして、この場合、発電所群を一括
管理し、中給からの発電スケジユール指令を受け
て集中制御する水力発電所の制御が必要となる。
(b) Technical background In general, hydroelectric power plants come in various forms depending on the water system and topography. For example, if there are two ponds upstream and downstream of the same water system, an upper power plant uses water from the upper pond and drops it into the lower pond, and an upper power plant uses water from the lower pond and sends water to the river below. There is a power plant group configuration in which two such power plants have a total of three or more generators. In this case, it is necessary to centrally manage a group of power plants and centrally control the hydroelectric power plants in response to power generation schedule commands from central suppliers.

従来、このような発電所を制御するにあたつて
は、給電指令所からの発電出力スケジユールがあ
ると、運転員が経験やその時の実態に応じて、運
転台数あるいは出力を決め運転するという方法を
とつていた。最近では、計算機を使用し、発電所
群の総合出力を指令通り出す方法もとられてい
る。しかし、池の水を計画水位に納め、かつ水を
最大限有効に電力に変換する発電効率を最大にし
続けて運転を続けるためには、落差、発電機個々
の特性、水位、河川からの流入量、その他数多く
のパラメータをもとに演算しなければならず、早
い応答性を期待できない。又池の容積が大きいた
め河川からの流入量を精度良く計ることが難かし
く、複雑な演算をするわりには、それによつて限
られる効果は比較的少ない。
Conventionally, when controlling such power plants, when there is a power generation output schedule from the power dispatch center, operators decide on the number of units to be operated or the output according to their experience and the actual situation at the time. I was taking it. Recently, a method has been adopted that uses computers to calculate the total output of a group of power plants according to the command. However, in order to keep the water in the pond at the planned water level and continue to operate while maximizing the power generation efficiency that converts water into electricity as effectively as possible, it is necessary to consider the head, the characteristics of each generator, the water level, and the inflow from the river. It must be calculated based on the amount and many other parameters, and quick response cannot be expected. Also, since the volume of the pond is large, it is difficult to accurately measure the amount of inflow from the river, and although complex calculations are required, the effect of this is relatively small.

(c) 発明の目的 本発明の目的は、発電出力スケジユールで定ま
る発電指令値を満足した出力値を得るにあたり、
比較的簡単な演算によつて、発電効率が良く、か
つ上池,下池の水位を所定の運用水位に納めるこ
とができ、しかも機械寿命をも考慮した発電機の
組合せを選択して、総合的に効率のよい運転がで
きる水力発電所の制御方法を得ることにある。
(c) Purpose of the Invention The purpose of the present invention is to obtain an output value that satisfies the power generation command value determined by the power generation output schedule.
By using relatively simple calculations, we can select a combination of generators that has good power generation efficiency, can keep the water levels of the upper and lower reservoirs within the specified operating water level, and also takes machine life into account, and generates a comprehensive The objective is to obtain a control method for a hydroelectric power plant that enables efficient operation.

(d) 発明の構成 以下、図面に示す一実施例を参照して本発明を
説明する。第1図は本発明の制御方法が適用され
る水力発電所の構成図である。上池1,下池2は
同一水系にあり、上流側から上池1の水を使つて
発電する発電所3と、下池2の水を使つて発電す
る発電所4,5とからなる。便宜上、上側発電所
の発電機台数が1台、下側の発電機台数が2台と
する。通常、発電所を作るにあたつては河川から
池に入る水がバランス良く使われて、定格運転時
に上の池も同水位となるよう設計されている。
(d) Structure of the Invention The present invention will be described below with reference to an embodiment shown in the drawings. FIG. 1 is a block diagram of a hydroelectric power plant to which the control method of the present invention is applied. Upper pond 1 and lower pond 2 are located in the same water system, and from the upstream side, power plant 3 uses water from upper pond 1 to generate power, and power plants 4 and 5 use water from lower pond 2 to generate power. For convenience, it is assumed that the number of generators in the upper power plant is one, and the number of generators in the lower power plant is two. Normally, when building a power plant, water from a river into a pond is used in a well-balanced manner, and the design is such that the water level in the upper pond is the same during rated operation.

本発明の制御方法を実現するための計算機のシ
ステム構成を第2図に示す。すなわち、制御する
にあたつて最低限必要な情報である水位や発電電
力を読み取るプロセス入力部11を設け、中給か
らの一括発電スケジユール、あるいは制御に必要
な情報を運転員が投入する入力部12を設け、プ
ロセス入力部11と入力部12とから取り入れた
情報をもとに発電機個別の発電出力スケジユール
に分配する演算制御部10を設け、及び演算制御
部10の結果に基づきALR装置14に指令値を
出す出力部13を設けてなる。
FIG. 2 shows the system configuration of a computer for implementing the control method of the present invention. That is, a process input section 11 is provided to read the water level and generated power, which are the minimum necessary information for control, and an input section is provided in which the operator inputs the lump-sum power generation schedule from the intermediate supply or the information necessary for control. 12, and an arithmetic control section 10 that distributes the power generation output schedule to each generator based on the information taken in from the process input section 11 and the input section 12, and an ALR device 14 based on the results of the arithmetic control section 10. An output section 13 for outputting a command value is provided.

次に本発明の制御方法を主とし演算制御部の動
作とともに説明する。発電するにあたつては、毎
日、中給から制御所に対し2ケ所の発電所の出力
を合計した一括発電出力スケジユールを連絡して
くる。この一括発電出力スケジユールを運転員が
入力部12から投入する。投入された一括発電ス
ケジユールは演算制御部10で以下のように個別
スケジユールに分配する。
Next, the control method of the present invention will be mainly explained along with the operation of the arithmetic control section. When generating power, the central power supply informs the control center every day of a lump-sum power generation output schedule that is the sum of the outputs of the two power plants. The operator inputs this batch power generation output schedule from the input section 12. The input batch power generation schedule is distributed to individual schedules by the arithmetic and control unit 10 as follows.

発電機の出力は水系の形状落差、流入量によつ
て異なるが、仮に上側の発電所の発電機定格が
G1下側発電所の発電機定格がG2,G3とし、その
大小関係が、いまG2=G3,G1>G2,(G2+G3)>
G1の関係にあるとし説明する。この場合、運転
する発電機の組合は色々でき、第3図のごとく定
格出力の和の最大出力が変つていく。発電機は水
車形式によつても異なるが第4図に示すごとく一
般に定格値付近で効率が最大となり、出力値が下
がるほど効率は落ちていく。従つて同じ出力を出
す場合には定格出力の合計がその発電スケジユー
ルでの発電要求量と合致する組合せで運転する方
が効率が良い。又、落差が大きいほど発電電力量
は多くなる。
The output of the generator varies depending on the shape of the water system and the amount of inflow, but if the generator rating of the upper power station is
The generator ratings of the lower power plant in G1 are G 2 and G 3 , and their magnitude relationship is now G 2 = G 3 , G 1 > G 2 , (G 2 + G 3 ) >
Let us explain by assuming that there is a relationship of G 1 . In this case, various combinations of generators can be operated, and the maximum output of the sum of the rated outputs changes as shown in Figure 3. The efficiency of generators varies depending on the type of water turbine, but as shown in Figure 4, the efficiency generally reaches its maximum near the rated value, and the efficiency decreases as the output value decreases. Therefore, when producing the same output, it is more efficient to operate in a combination in which the total rated output matches the required amount of power generation in the power generation schedule. Also, the larger the head difference, the greater the amount of power generated.

一方、第3図から見てもわかる通り、運転され
る発電機の台数、あるいは出力は、上側発電所が
多い場合と、下側発電所が多い場合とがある。す
なわち、イ,ロ,ニ,トの場合は下側が多く、
ハ,ホ,トの場合が上側が多い。つまり、合計出
力が増すに従がい交互に変る。従つてやむを得な
い時は効率を犠性にし定格出力の和の大きな組合
せで効率をおとして発電することになる。この場
合、上池と下池との水の使用する量を変えること
となるので、水位にアンバランスが生じたとき、
このような効率を悪くした運転をし、水位調整を
することが可能となる。
On the other hand, as can be seen from FIG. 3, there are cases in which the number of generators operated or the output thereof is large in the upper power plant and in other cases in which the lower power plant is large. In other words, in the case of A, B, D, and G, it is mostly on the lower side;
Cases of C, H, and G are often on the upper side. That is, they alternate as the total output increases. Therefore, when it is unavoidable, efficiency is sacrificed and power is generated by using a combination with a large sum of rated outputs. In this case, the amount of water used in the upper and lower ponds will be changed, so if an imbalance occurs in the water level,
It becomes possible to perform such inefficient operation and adjust the water level.

次に発電機を発電する場合について説明する。
まず始めに停止状態から発電を始める場合、一括
発電出力スケジユールの指令値gを見て、この値
を出力することができる発電機の組合せのうち、
定格出力の和の一番小さくなる組合せをさがす。
たとえば、第3図に示す場合はニの組み合せが選
ばれる。しかるのち、発電機G2,G3を起動し、
出力指令値を出す。この出力指令値は、第5図に
示すL1,L1′の内側の運用水位の間にある場合は
前述の値を選択し出力できるが、L1,L1′の外へ
出た場合はそれ以前の時点で上下、いずれかの発
電所の発電台数をアンバランスな状態で運転をし
ていたためであり、水位をL1,L1′の中心へ移し
ていくことのできる発電機の組合せで、かつ定格
出力の合計が1番小さい組合せを選択する。たと
えば下池が第5図のL1′以下であつたとすると、
発電機G2,G3は運用できないので、やむなくホ
の組み合せを選ぶ。しかるのち、各発電機の出す
べき出力値を決定する。かくのごとくすることに
よつて水位は相対的にL1,L1′の中心へ移つてい
くようになる。つまり、上池から下池へ発電機
G1の運用により水が供給されるからである。
Next, the case where the generator generates electricity will be explained.
First, when starting power generation from a stopped state, look at the command value g of the batch power generation output schedule, and choose among the combinations of generators that can output this value.
Find the combination that gives the smallest sum of rated outputs.
For example, in the case shown in FIG. 3, combination (d) is selected. Afterwards, start generators G 2 and G 3 ,
Issue an output command value. If this output command value is between the operating water levels inside L 1 and L 1 ' shown in Figure 5, the above-mentioned value can be selected and output, but if it goes outside L 1 and L 1 ' This is because the number of power generating units in either the upper or lower power stations had been operating in an unbalanced state before that, and the generators that can move the water level to the center of L 1 and L 1 ' Select the combination with the smallest total rated output. For example, if the lower pond is below L 1 ' in Figure 5, then
Since generators G 2 and G 3 cannot be operated, we have no choice but to choose combination E. After that, the output value that each generator should output is determined. By doing this, the water level will move relatively to the center of L 1 and L 1 '. In other words, the generator is transferred from the upper pond to the lower pond.
This is because water is supplied by the operation of G1 .

次に発電中にスケジユール値を変える負荷変更
点時刻になつた場合には、上述のようにL1
L1′の内側へ水位が移つていく発電台数を選択す
ることはもちろんであるが、発電機を頻繁に起動
停止をするのは機械の寿命を配慮すると望ましい
ことではないので、それまでに動いていた発電機
のいずれかでも運転し続けていく組合せを選択す
る。たとえばホの組合せで運転中に下げ指令がき
たときは、イ,ハ,ニのいずれかが選ばれるわけ
で、運用されていない発電機G3が選ばれること
はない。又、同じ指令値が長時間続く場合には、
発電台数の変更がなされないので、片方の池の水
が余分に使われる結果となり、水位にアンバラン
スが生じてくる。これを防ぐため、運用水位L1
L1′の外側にはL2,L2′を設け水位バランスが異常
にずれたことをチエツクする為の水位を設け運転
員に注意を喚起する。
Next, when the load change point time comes to change the schedule value during power generation, L 1 ,
Of course, it is necessary to select the number of generators that will cause the water level to move inside L 1 ′, but it is not desirable to start and stop the generators frequently from the viewpoint of the lifespan of the machine, so it is necessary to Select a combination that will continue to operate any of the generators that were in use. For example, if a lowering command is received during operation with combination E, either A, C, or D will be selected, and generator G 3 , which is not in operation, will not be selected. Also, if the same command value continues for a long time,
Since the number of power generators is not changed, water from one pond will be used excessively, resulting in an imbalance in the water level. To prevent this, the operational water level L 1 ,
L 2 and L 2 ′ are provided outside of L 1 ′ to provide a water level to check if the water level balance has deviated abnormally to alert the operator.

水位変化は増方向あるいは減方向であるかは片
方が増、他方が減であれば明確であるが、両方と
も増、あるいは減となることもあり、相対的にど
ちらが増、減となつているか判断すると良い。
It is clear whether the water level is increasing or decreasing if one side is increasing and the other is decreasing, but both may be increasing or decreasing, so it is difficult to determine which is increasing or decreasing relatively. It's good to judge.

以上のようにして演算制御部10で決定された
各発電機毎の指令値は出力部13からALR装置
14に伝えられる。ALR装置14は発電電力と
指令値とを常に一定に保つ装置であり自動負荷調
整装置のことである。
The command value for each generator determined by the arithmetic control unit 10 as described above is transmitted from the output unit 13 to the ALR device 14. The ALR device 14 is a device that always keeps the generated power and the command value constant, and is an automatic load adjustment device.

(e) 発明の効果 以上のように本発明によれば発電指令値に対
し、定格出力の和がその発電指令値を満足するも
ののうち最小のものを選ぶので、定格出力近傍で
の運転が可能となり、発電効率が良い状態で運転
できる。また池の水位にアンバランスが生じたと
きは、池の水位のアンバランスを修復するような
組合せで運用するので、上下の池の水位をバラン
ス良く使用できる。また、発電指令値が変更した
ときは、それまで運転していた発電機が運転継続
できる発電機の組合せを選択して運転するので、
水車および発電機等の機械の起動停止回数を最小
限におさえることができ、機械の寿命も長くな
る。本発明の水力発電所の制御方法が効果的に適
用できる発電所は、池の容量が河川からの流入量
0であつたときでも半日ないし1週間程度発電で
きる大きさである発電所の場合に特に有効であ
る。
(e) Effects of the invention As described above, according to the present invention, for a power generation command value, the smallest sum of rated outputs that satisfies the power generation command value is selected, so operation near the rated output is possible. Therefore, it can be operated with high power generation efficiency. In addition, when an imbalance occurs in the water level of the pond, a combination is used to correct the imbalance in the water level of the pond, so the water levels of the upper and lower ponds can be used in a well-balanced manner. Additionally, when the power generation command value changes, the generators that were previously operating will select a combination of generators that will allow them to continue operating.
The number of starts and stops of machines such as water turbines and generators can be kept to a minimum, and the life of the machines can be extended. The hydroelectric power plant control method of the present invention can be effectively applied to power plants whose pond capacity is large enough to generate power for about half a day to a week even when the inflow from the river is zero. Particularly effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は発電所の位置関係を示す説明図、第2
図は本発明の水力制御装置概略を示すブロツク
図、第3図は発電機の組合せに合計出力値の異な
るのを示す説明図、第4図は発電機の特性を説明
する特性図、第5図は運転水位を説明する説明図
である。 10……演算制御部、11……プロセス入力
部、12……入力部、13……出力部、14……
ALR装置、15……発電機。
Figure 1 is an explanatory diagram showing the positional relationship of the power plants, Figure 2
The figure is a block diagram showing the outline of the hydraulic control device of the present invention, Figure 3 is an explanatory diagram showing that the total output value differs depending on the combination of generators, Figure 4 is a characteristic diagram explaining the characteristics of the generator, and Figure 5 is a diagram showing the difference in total output value depending on the combination of generators. The figure is an explanatory diagram illustrating the operating water level. 10... Arithmetic control section, 11... Process input section, 12... Input section, 13... Output section, 14...
ALR device, 15... generator.

Claims (1)

【特許請求の範囲】[Claims] 1 同一水系の上流と下流に上池および下池を設
け、上池に設けられた上側発電所と下池に設けら
れた下側発電所との発電機台数和が3台以上であ
るこれら2ケ所の水力発電所を一括制御する方法
において、給電指令所からこれら2ケ所の水力発
電所に一括発電指令値が与えられたとき、定格出
力の和が前記一括発電指令値を満足する前記発電
機の組合せのうち、該当の発電機を運転した場合
に前記上池および前記下池の水位を所定の運用水
位に納めることのできる前記発電機の組合せであ
つて前記定格出力の和が最小である前記発電機の
組合せを選択し、その選択した発電機の出力値の
和が前記一括発電指令値を満足するように制御
し、一方前記一括発電指令値の変更により前記発
電機の組合せの変更が生じた場合にはそれまで運
転していた発電機が運転継続できる前記発電機の
組合せを選択して、前記一括発電指令値を満足す
る出力値を出力できるようにした水力発電所の制
御方法。
1 Upper and lower ponds are installed upstream and downstream of the same water system, and the sum of the number of generators in the upper power plant installed in the upper pond and the lower power plant installed in the lower pond is 3 or more. In a method for collectively controlling hydroelectric power plants, when a collective power generation command value is given to these two hydropower plants from a dispatch center, the combination of the generators whose sum of rated outputs satisfies the collective power generation command value Among them, the generator is a combination of the generators that can keep the water level of the upper reservoir and the lower reservoir at a predetermined operational water level when the generator is operated, and the generator has the minimum sum of the rated outputs. When a combination of generators is selected and the sum of output values of the selected generators is controlled so as to satisfy the collective power generation command value, and on the other hand, a change in the combination of generators occurs due to a change in the collective power generation command value. A method for controlling a hydroelectric power plant, which selects a combination of generators that allows the generators that have been operating until then to continue operating, and outputs an output value that satisfies the collective power generation command value.
JP56184461A 1981-11-19 1981-11-19 Method of controlling hydraulic power plant Granted JPS5889040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56184461A JPS5889040A (en) 1981-11-19 1981-11-19 Method of controlling hydraulic power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56184461A JPS5889040A (en) 1981-11-19 1981-11-19 Method of controlling hydraulic power plant

Publications (2)

Publication Number Publication Date
JPS5889040A JPS5889040A (en) 1983-05-27
JPS6322136B2 true JPS6322136B2 (en) 1988-05-10

Family

ID=16153552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56184461A Granted JPS5889040A (en) 1981-11-19 1981-11-19 Method of controlling hydraulic power plant

Country Status (1)

Country Link
JP (1) JPS5889040A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008099373A (en) * 2006-10-06 2008-04-24 Furukawa Co Ltd Hydraulic power generating system
JP5235922B2 (en) * 2010-02-22 2013-07-10 中国電力株式会社 Water storage facility operation support system, operation support method and program
JP5153805B2 (en) * 2010-02-22 2013-02-27 中国電力株式会社 Water storage facility operation support system, operation support method and program
JP5235923B2 (en) * 2010-02-22 2013-07-10 中国電力株式会社 Water storage facility operation support system, operation support method and program
CN104392142B (en) * 2014-12-05 2017-04-12 武汉大学 Generation method of power generation scheme for preventing sustained damage of hydropower station group

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4926372A (en) * 1972-05-15 1974-03-08
JPS5195233A (en) * 1975-02-19 1976-08-20

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4926372A (en) * 1972-05-15 1974-03-08
JPS5195233A (en) * 1975-02-19 1976-08-20

Also Published As

Publication number Publication date
JPS5889040A (en) 1983-05-27

Similar Documents

Publication Publication Date Title
US3932735A (en) Method of controlling supply of power
US7531911B2 (en) Reactive power control for operating a wind farm
US9716384B2 (en) System and method for controlling a wind farm
Bechert et al. Area automatic generation control by multi-pass dynamic programming
JP6892349B2 (en) Power supply and demand control device, power supply and demand control system, computer program for power supply and demand control, and power supply and demand control method
CN103745023A (en) Coupling modeling method for hydropower station power generated output scheme making and optimal load distribution
Saarinen et al. Allocation of frequency control reserves and its impact on wear and tear on a hydropower fleet
JP2001086649A (en) Load frequency controlling method in power system
EP3579369B1 (en) Method and arrangement for using hydroelectric power as a power reserve
US20220294231A1 (en) Hybrid power plant architecture and method of control
JPS6322136B2 (en)
Bhatti et al. Dynamics and control of isolated wind‐diesel power systems
CN110994639A (en) Simulation constant volume method, device and equipment for power plant energy storage auxiliary frequency modulation
JP2020022320A (en) Power supply-demand control device, power supply-demand control system, computer program for power supply-demand control, and power supply-demand control method
JP2004048961A (en) Apparatus, method, and program for computing cost for generator operation
CN113131531B (en) Adjustment standby sharing method and system suitable for different operation conditions of power grid
Tokumitsu et al. Improved load frequency controller for reduction of both area control error and automatic frequency restoration reserve energy cost
Murali et al. A novel operating strategy for unscheduled interchange price-based automatic generation control
CN104933534A (en) A two-phase system standby optimization assessment method with consideration of wind electricity active power load shedding capability
JP2005065426A (en) Apparatus and program for controlling generated output in electric power consignment
JPH09144645A (en) Water tank level control device for hydraulic power plant
JP7379062B2 (en) Power control device and power control system
JP7210197B2 (en) power supply system
JP2877563B2 (en) Automatic load distribution device
JP2645000B2 (en) Hydroelectric power plant load regulator