JPS63221226A - Liquid leakage detecting method - Google Patents

Liquid leakage detecting method

Info

Publication number
JPS63221226A
JPS63221226A JP5457487A JP5457487A JPS63221226A JP S63221226 A JPS63221226 A JP S63221226A JP 5457487 A JP5457487 A JP 5457487A JP 5457487 A JP5457487 A JP 5457487A JP S63221226 A JPS63221226 A JP S63221226A
Authority
JP
Japan
Prior art keywords
infrared
image
temperature
leak
leakage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5457487A
Other languages
Japanese (ja)
Inventor
Kazumitsu Nukui
一光 温井
Ryuichi Ueda
植田 隆一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Tokyo Gas Co Ltd
Original Assignee
Fujitsu Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd, Tokyo Gas Co Ltd filed Critical Fujitsu Ltd
Priority to JP5457487A priority Critical patent/JPS63221226A/en
Publication of JPS63221226A publication Critical patent/JPS63221226A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily specify the leak place of liquid by monitoring an object monitor area by an infrared camera and making the variation position of its infrared-ray radiation distribution correspond to the position of an object image corresponding to a visible image. CONSTITUTION:The monitor area 2 including piping 1 to be monitored is monitored by the infrared camera 3. The signal of the camera 3 is processed by an infrared-ray radiation temperature processing part 41 and an object image (piping image) processing part 42 respectively. A variation detection part 43 compares temperature distribution images obtained by the temperature processing part 41 at different times and when variation at leak liquid temperature is detected, both images are put one over the other to specify the leak place 5 of liquid by a weight comparing part 44. Thus, the variation position of the infrared-ray radiation distribution is made to correspond to the position of the object image to easily specify the leak place 5.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は工場笠に於ける配管や各種装置等からの、低温
液化ガス、高温ガスその他の流体の漏洩検出方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for detecting leakage of low-temperature liquefied gas, high-temperature gas, and other fluids from piping and various devices in a factory shade.

〔従来の技術およびその問題点〕[Conventional technology and its problems]

工場等に於ける広い区域内の配管や各種装置等からの、
低温液化ガス、高温ガスその他の流体の漏洩を検出する
ための従来の方法としては次のようなものがある。
from piping and various equipment in large areas in factories, etc.
Conventional methods for detecting leaks of low temperature liquefied gases, hot gases and other fluids include the following.

まず、ガス検知器または温度計等のセンサーを、漏洩の
可能性のある個所毎に設置して、これらのセンサーによ
り検出する方法があるが、この方法では多大な初期費用
を必要とし、またそれらの保守に於いても多大な費用と
人員が必要であるという問題点に加えて、予測できない
個所からの低温流体の漏洩には対応できないという根本
的欠陥があり、かかる欠陥は、センサーの数を多くすれ
ば解決できるというものではない。また、他の方法とし
て、赤外線送光装置から監視区域に向けて赤外線を発し
、監視区域を経た赤外線を受光装置により受番プで、赤
外線の吸収スペクトルによってガスの存在を検出して漏
洩を検出する方法も促案されているが、この方法では監
視区域を隔てて赤外練込、受光装置または反射鏡を設置
しなければならないことに加えて、かかる方法は本質的
に、漏洩している個所を含む方向を検出するものであっ
て、漏洩個所を特定するには、送、受光装置の対を2次
元的に多数設けたり、走査するための装置の移動手段を
必要とし、またこの方法でも前述したようにセンサーを
漏洩の予測される個所に設置する場合と同様の板木的欠
陥がある。更に対象とする監視区域を、赤外線カメラと
可視光線カメラとによりとらえて監視し、それらの画像
により検出する方法も提案されているが、光軸の不一致
による両画像の不一致、夜間照明の必要性等の問題点が
ある。
First, there is a method of installing sensors such as gas detectors or thermometers at each location where there is a possibility of leakage, and using these sensors to detect the leak, but this method requires a large initial cost and is expensive. In addition to the problem that maintenance requires a large amount of money and manpower, there is a fundamental flaw in that it cannot deal with leaks of low-temperature fluid from unpredictable locations. This is not something that can be solved by adding more. Another method is to emit infrared rays from an infrared transmitting device toward a monitoring area, and then receive the infrared rays after passing through the monitoring area with a receiver, detecting the presence of gas based on the absorption spectrum of the infrared rays and detecting a leak. However, in addition to requiring the installation of an infrared receiver, receiver, or reflector across the monitored area, such methods are inherently leaky. This method detects the direction including the leakage point, and in order to identify the leakage point, it is necessary to provide a large number of two-dimensional pairs of light transmitting and receiving devices, and a means for moving the device for scanning. However, as mentioned above, there are the same board defects when installing sensors in areas where leakage is predicted. Furthermore, a method has been proposed in which the target monitoring area is captured and monitored using an infrared camera and a visible light camera, and detection is performed using these images. There are other problems.

本発明は以上の問題点を解決することを目的とするもの
である。
The present invention aims to solve the above problems.

〔問題点を解決するための手段〕[Means for solving problems]

叩ら、本充用は前述の目的を達成するために、対象とす
る監視区域を赤外線カメラによって監視して、該酪視区
域内の赤外線放射分布の変化をとらえ、該赤外線放射分
布から得られる監視区域内の物体像とから、流体の漏洩
及びその位置を検出することを要旨とするものである。
In order to achieve the above-mentioned purpose, this application monitors the target monitoring area with an infrared camera, captures changes in the infrared radiation distribution within the monitoring area, and monitors information obtained from the infrared radiation distribution. The gist of this method is to detect fluid leakage and its position from an image of an object within the area.

次に本発明を、実施例に対応する第1図〜第5図に基づ
いて説明する。
Next, the present invention will be explained based on FIGS. 1 to 5, which correspond to embodiments.

第1図は本発明方法を適用する実施例の構成を模式的に
示すものであって、符号1は液化ガス等の流体を流す配
管、また符号2で示し、2点11線で囲んだ矩形枠は漏
洩検知の対象とする監視区域を仮想的に示すものである
。符り3は赤外線カメラであり、また4は該赤外線カメ
ラ3による監視区域にii[j像に基づいて漏洩を監視
するための監視装置である。
FIG. 1 schematically shows the configuration of an embodiment to which the method of the present invention is applied, in which reference numeral 1 indicates a pipe through which fluid such as liquefied gas flows, and reference numeral 2 indicates a rectangle surrounded by 2 points and 11 lines. The frame virtually indicates the monitoring area targeted for leak detection. Reference numeral 3 is an infrared camera, and 4 is a monitoring device for monitoring leakage based on images ii[j of the area monitored by the infrared camera 3.

〔作用〕[Effect]

しかして、監視¥1t4に於いては、赤外線カメラ3か
らの信号により、監視区域2内の赤外線放射分布を二次
元像として得ることができると共に、対象となる物体1
の温度や放Q4率に基づいた固有の赤外線放射によって
、その可視像に対応する像、物体像を第2図に示すよう
に得ることができる。
Therefore, in monitoring ¥1t4, the infrared radiation distribution within the monitoring area 2 can be obtained as a two-dimensional image by the signal from the infrared camera 3, and the target object 1
An image corresponding to the visible image, an object image, can be obtained as shown in FIG. 2 by the unique infrared radiation based on the temperature and radiation Q4 rate.

この物体像は、可視光線カメラで得られる像よりも一般
的に解像度は落ちるが、後述する漏洩位置の特定に必要
な解像度は比較的容易に得ることができる。
Although the resolution of this object image is generally lower than that of an image obtained by a visible light camera, the resolution required for identifying the leak position, which will be described later, can be obtained relatively easily.

かかる構成に於いて監視区域2を監視している際に、配
管1等から液化ガス等の低温流体や高温蒸気等の高21
流体が漏洩すると、漏洩個所5付近の温度が下降または
上昇するので、監視装置4に於いて、赤外線放射分布の
変化として検出することができる。このようにして、赤
外線放射分布、即ち温度分布の変化により、漏洩を検出
することができるのであるが、これだけでは漏洩個所5
の特定が困難である場合が多い。
In such a configuration, when monitoring the monitoring area 2, high temperature 21 such as low temperature fluid such as liquefied gas or high temperature steam from the pipe 1 etc.
When the fluid leaks, the temperature near the leak point 5 decreases or increases, which can be detected by the monitoring device 4 as a change in the infrared radiation distribution. In this way, leaks can be detected based on changes in the infrared radiation distribution, that is, the temperature distribution, but this alone is not enough to detect leakage points.
is often difficult to identify.

しかして、本発明はかかる赤外線放射分布を示す像と、
前述した可視像に対応する像と物体像を比較し、赤外線
放射分布の変化位置と、該物体像の位置とを対応させる
ことにより、漏洩個所5の特定を容易に行なうことがで
きる。かかる物体像は、漏洩前に前記赤外線カメラ3を
介して得た赤外線放射分布に基づき前述したように得る
ことができる。
Therefore, the present invention provides an image showing such an infrared radiation distribution,
The leak location 5 can be easily identified by comparing the image corresponding to the visible image described above with the object image and associating the change position of the infrared radiation distribution with the position of the object image. Such an object image can be obtained as described above based on the infrared radiation distribution obtained through the infrared camera 3 before leakage.

〔実施例〕〔Example〕

以上の赤外線放射分布の変化の検出並びに物体像との比
較、そして漏洩位置の特定は例えば次のような画像処理
等によって適宜に行なうことができる。
The above-mentioned detection of changes in the infrared radiation distribution, comparison with the object image, and specification of the leakage position can be performed as appropriate by, for example, the following image processing.

例えば第3図(a)は監視装置4の構成を機能的に表わ
したものであり、この実施例では、赤外線カメラ3の信
号を、赤外線放射温度処理部41と前記物体像処理部4
2とでそれぞれ信号処理を行ない、異なる時刻に温度処
理部41で得られた温度分布映像を変化検出部43で比
較し、目標温度範囲部分く漏洩流体温度)での変化を検
出した際に両者の像を重ね合わせ処理してf畳比較部4
4で前述した比較を行なうものである。かかる変化の検
出及び比較は、第3図(b)に示すように像を多数の画
素6に分解して、夫々の画素6毎にデータを記憶し、こ
のように記憶された前回の■像時の画像と、今回の画像
とを、夫々の画素6毎に比較することにより変化を検出
し、そして人々の像を画素6毎に比較するようにして行
なう他、適宜の方法を用いることができる。
For example, FIG. 3(a) functionally represents the configuration of the monitoring device 4. In this embodiment, the signal from the infrared camera 3 is processed by the infrared radiation temperature processing section 41 and the object image processing section 4.
The temperature distribution images obtained by the temperature processing unit 41 at different times are compared by the change detection unit 43, and when a change in the target temperature range (leakage fluid temperature) is detected, both The f-tatami comparison unit 4
The comparison described above in Section 4 is made. Detection and comparison of such changes can be carried out by dividing the image into a large number of pixels 6 as shown in FIG. In addition to detecting changes by comparing the current image and the current image for each pixel 6, and comparing images of people for each pixel 6, it is also possible to use an appropriate method. can.

更に、以上に説明した監視は、画像処理によって全く自
動的に行なえるようにする他、前述した赤外線放射分布
の変化のみを自動的に検出し、この検出信号に基づいて
人間がCRT等の画像を見て最終的な漏洩の特定を行な
う、半自動的な方法としても良いし、場合によっては人
間が全てCRT等の画像で監視するべく構成しても良い
Furthermore, the above-described monitoring can be performed completely automatically by image processing, and only changes in the infrared radiation distribution mentioned above can be automatically detected, and based on this detection signal, a human can monitor the image on a CRT, etc. It may be possible to use a semi-automatic method in which leakage is finally identified by looking at the information, or in some cases, it may be configured so that the entire system is monitored by a human using images such as a CRT.

次に赤外線カメラ3の設置方法は次のようないろいろな
方法を適用することができる。まず第4図(a) 、(
b)は、監視対象が1個所で児通し可能な場合の一例で
、赤外線カメラ3は支柱7等により高所に旋回可能に設
置され、走査やズーミングによって広い全監視区域の監
視を行なえるものである。また第5図は、監視対象1@
の周囲に複数組の赤外線カメラ3を設置し、夫々の組の
赤外線カメラ3は限られた監視区域2を受は持つように
したものである。このような方法の他、赤外線カメラ3
は前述したように移動式としたり、ズーミング可能にす
ることにより、通常は広い監視区域2を監視しておき、
この状態で何らかの変化を検出した場合に、対応個所を
拡大して前述した画像処理等を行なうことができ、より
正確な漏洩の検出を行なうことができる。尚、第1図〜
第3図に於いては監視区域2が配管1の一部というよう
に非常に狭い範囲を表わしているが、これはズーミング
した状態を示しており、この池水発明は第4図、第5図
に示すように広い範囲を監視区域2とし得ることは勿論
である。
Next, the infrared camera 3 can be installed in various ways as follows. First, Figure 4(a), (
b) is an example of a case where the object to be monitored is in one place where the child can pass through, and the infrared camera 3 is installed in a rotatable position at a high place using a support 7, etc., and the entire wide monitoring area can be monitored by scanning and zooming. It is. Also, Figure 5 shows monitoring target 1@
A plurality of sets of infrared cameras 3 are installed around the area, and each set of infrared cameras 3 has a limited monitoring area 2. In addition to this method, infrared camera 3
As mentioned above, by making it mobile or capable of zooming, it usually monitors a wide monitoring area 2.
If any change is detected in this state, the corresponding location can be enlarged and the above-mentioned image processing etc. can be performed, making it possible to perform more accurate leakage detection. Furthermore, Figure 1~
In Figure 3, the monitoring area 2 is a part of the pipe 1, which is a very narrow area, but this is a zoomed state, and this pond water invention is shown in Figures 4 and 5. Of course, the monitoring area 2 can cover a wide area as shown in FIG.

(発明の効果) 本発明は以上の通り、対象とする監視区域を赤外線カメ
ラによって監視する際、該監視区域内の赤外線放射分布
と、該赤外線放射分布から得られる物体像とから漏洩を
検出するので、低温または高温流体の漏洩をその位置を
特定して検出し得るという効果がある。そして本発明は
、このように漏洩による変化を、対象とする監視区域に
対応する三次元空間を二次元像上に投影した状態で検出
するものであるので、見通し可能である限り、1組の検
出器により非常に広い空間を監視することができ、また
漏洩個所も容易に特定することができ、例えば作業員が
CRT等上の画像″で漏洩個所及び漏洩状況を確認する
等により、漏洩に対する処理を迅速に行なうことができ
るという効果がある。殊に本発明は、可視像に対応する
像、物体像を赤外線カメラにより得ているので、可視光
線カメラを使用する場合には、監視区域の照度を確保す
るために必要な監視用の光源が不要で、通常の照明で十
分であり、省エネルギ化が計れると共に、可視光線カメ
ラが不要であることから全体をコンパクトに構成し得る
し、また光軸の調整も不要であり、かくして本発明は少
ない費用で広い監視区域の漏洩を検出することかでき、
工場、プラントその他通貨の場所に於ける、配管や装置
類等からの低温または高温流体の漏洩の検出を行なえる
という効果がある。
(Effects of the Invention) As described above, the present invention detects leakage from the infrared radiation distribution within the monitoring area and the object image obtained from the infrared radiation distribution when monitoring a target monitoring area with an infrared camera. Therefore, there is an effect that leakage of low-temperature or high-temperature fluid can be detected by specifying its location. The present invention detects changes due to leakage by projecting the three-dimensional space corresponding to the target monitoring area onto a two-dimensional image, so as long as it is visible, one set of The detector can monitor a very wide space, and the location of the leak can be easily identified. For example, workers can check the location and situation of the leak using an image on a CRT, etc. to prevent leakage. This has the effect that processing can be carried out quickly.In particular, since the present invention uses an infrared camera to obtain an image corresponding to a visible image and an object image, when using a visible light camera, it is possible to There is no need for a monitoring light source to ensure the illuminance of the system, ordinary lighting is sufficient, and energy savings can be achieved.Since a visible light camera is not required, the entire system can be configured compactly. Further, there is no need to adjust the optical axis, and thus the present invention can detect leaks in a wide monitoring area at low cost.
It is effective in detecting leakage of low-temperature or high-temperature fluids from piping, equipment, etc. in factories, plants, and other currency locations.

【図面の簡単な説明】 企図は本発明の実施例に対応するもので、第1図は仝休
の模式的説明図、第2図は物体像説明図、第3図(a)
 、(b)は画像処理の説明図、第4図(a) 、(b
) 、第5図は赤外線カメラの設置方法の説明図で、第
4図(a)は側面図、第4図(b)及び第5図は平面図
である。 符号1・・・対象となる物体(配管)、2・・・監視区
域、3・・・赤外線カメラ、4・・・監視装置、5・・
・漏洩個所、6・・・画素、7・・・支柱。 第1図 第3図(a) 第3図(b) 14図(a)         第4 ff1(b )
第6図
[BRIEF DESCRIPTION OF THE DRAWINGS] The designs correspond to embodiments of the present invention, and FIG. 1 is a schematic explanatory diagram of a rest, FIG. 2 is an explanatory diagram of an object image, and FIG. 3 (a)
, (b) are explanatory diagrams of image processing, Fig. 4 (a), (b)
), FIG. 5 is an explanatory diagram of an infrared camera installation method, FIG. 4(a) is a side view, and FIGS. 4(b) and 5 are plan views. Code 1...Target object (piping), 2...Monitoring area, 3...Infrared camera, 4...Monitoring device, 5...
・Leakage location, 6...pixel, 7...support. Figure 1 Figure 3 (a) Figure 3 (b) Figure 14 (a) 4th ff1 (b)
Figure 6

Claims (1)

【特許請求の範囲】[Claims] 対象とする監視区域を赤外線カメラによつて監視して、
該監視区域内の赤外線放射分布の変化をとらえ、該赤外
線放射分布から得られる監視区域内の物体像とから、流
体の漏洩及びその位置を検出することを特徴とする流体
の漏洩検出方法
Monitor the target monitoring area with an infrared camera,
A method for detecting fluid leakage, comprising detecting fluid leakage and its position from an image of an object within the monitoring area obtained from the infrared radiation distribution by capturing changes in the infrared radiation distribution within the monitoring area.
JP5457487A 1987-03-10 1987-03-10 Liquid leakage detecting method Pending JPS63221226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5457487A JPS63221226A (en) 1987-03-10 1987-03-10 Liquid leakage detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5457487A JPS63221226A (en) 1987-03-10 1987-03-10 Liquid leakage detecting method

Publications (1)

Publication Number Publication Date
JPS63221226A true JPS63221226A (en) 1988-09-14

Family

ID=12974463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5457487A Pending JPS63221226A (en) 1987-03-10 1987-03-10 Liquid leakage detecting method

Country Status (1)

Country Link
JP (1) JPS63221226A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192469A (en) * 2008-02-18 2009-08-27 Tokyo Electric Power Co Inc:The Attachment for flange, gas leak detection system, and computer program
WO2020235165A1 (en) * 2019-05-20 2020-11-26 コニカミノルタ株式会社 Inspection data management system, inspection device, and inspection data transmission method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737817A (en) * 1980-08-19 1982-03-02 Matsushita Electric Ind Co Ltd Method of producing ceramic electronic part
JPS5858687A (en) * 1981-10-02 1983-04-07 Toshiba Corp Optical character reader

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737817A (en) * 1980-08-19 1982-03-02 Matsushita Electric Ind Co Ltd Method of producing ceramic electronic part
JPS5858687A (en) * 1981-10-02 1983-04-07 Toshiba Corp Optical character reader

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192469A (en) * 2008-02-18 2009-08-27 Tokyo Electric Power Co Inc:The Attachment for flange, gas leak detection system, and computer program
WO2020235165A1 (en) * 2019-05-20 2020-11-26 コニカミノルタ株式会社 Inspection data management system, inspection device, and inspection data transmission method

Similar Documents

Publication Publication Date Title
KR101635000B1 (en) Fire detector and system using plural cameras
KR101462247B1 (en) Smart fire detection system based on infrared thermal-image and interface platform for auto-fire extinguishing apparatus
US20160320296A1 (en) Gas detector
KR102060045B1 (en) Fire detector and system capable of measuring heat distribution
AU2010212378B2 (en) System and method of target based smoke detection
KR101904282B1 (en) Apparatus and system for detecting symptom of fire and gas leak
KR20110075798A (en) System for fire detecting of railway
CN101641586A (en) Device for the remote optical detection of gas
JPS63246638A (en) Method for wide area monitor of fluid leakage
KR101604050B1 (en) Road tunnel inspection device
JP2013036974A (en) Hydrogen flame visualization device and method
KR20150145951A (en) Sensing system for gas leakage
US6104298A (en) Roof moisture detection assembly
JP2003130752A (en) Gas leakage detector
JPS63221226A (en) Liquid leakage detecting method
JP6964030B2 (en) Monitoring system and monitoring method
RU2642931C2 (en) Diagnostics of industrial processes by measuring infrared radiation temperature
CN109974311A (en) A kind of solar energy system
Naranjo et al. IR gas cloud imaging in oil and gas applications: immunity to false stimuli
JPH0460540B2 (en)
KR20210022268A (en) Fire pre-detection device
JPS6355646B2 (en)
JPS62162939A (en) Leak detecting method for low temperature liquid
JP4038878B2 (en) Fire detection device using image processing
CN111089619A (en) Pipe gallery monitoring method, device and system and storage medium