WO2020235165A1 - Inspection data management system, inspection device, and inspection data transmission method - Google Patents

Inspection data management system, inspection device, and inspection data transmission method Download PDF

Info

Publication number
WO2020235165A1
WO2020235165A1 PCT/JP2020/007411 JP2020007411W WO2020235165A1 WO 2020235165 A1 WO2020235165 A1 WO 2020235165A1 JP 2020007411 W JP2020007411 W JP 2020007411W WO 2020235165 A1 WO2020235165 A1 WO 2020235165A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
inspection
inspection data
unit
image data
Prior art date
Application number
PCT/JP2020/007411
Other languages
French (fr)
Japanese (ja)
Inventor
伸吾 金沢
紗織 平田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2020235165A1 publication Critical patent/WO2020235165A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum

Definitions

  • the present invention relates to an inspection data management system, an inspection device, and an inspection data transmission method.
  • gas leak detector that detects a gas leak in a monitored target (for example, a gas production facility) by using an infrared camera that is sensitive to the wavelength band of light absorbed by the gas to be inspected (for example, methane).
  • a monitored target for example, a gas production facility
  • infrared camera that is sensitive to the wavelength band of light absorbed by the gas to be inspected (for example, methane).
  • Patent Document 1 describes an infrared camera and a visible light camera that capture an image (moving image) of an inspection area including an inspection target, an image processing unit that processes infrared image data captured by the infrared camera, and a display unit.
  • the inspection device to have is described.
  • the image processing unit extracts an image of fluctuation due to gas leakage from the image data in the inspection area.
  • the display unit displays an inspection image in which the image data of the fluctuation is superimposed on the image data of the inspection area captured by the visible light camera.
  • an inspector can visit a place where a monitoring target is located and perform a gas leak inspection. Specifically, the inspector can easily visually identify the location of the gas leak in the inspection area by visually recognizing the inspection image displayed on the display unit.
  • the infrared image data captured by the infrared camera, the imaging location, the imaging date and time, and the like are recorded in the inspection apparatus as inspection data.
  • the inspection data recorded in the inspection device is uploaded to the management server on the cloud, and the uploaded inspection data is analyzed. It is being considered to build a data analysis system.
  • the communication load on the network line used for uploading increases, and there is a problem that costs such as line cost also increase.
  • An object of the present invention is to provide an inspection data management system, an inspection device, and an inspection data transmission method capable of reducing the communication load when uploading inspection data as much as possible and reducing the cost.
  • the inspection data management system is An inspection data management system including an inspection device and a management device capable of communicating with the inspection device.
  • the inspection device An image data acquisition unit that acquires image data obtained by imaging a gas production facility, Based on the image data acquired by the image data acquisition unit, inspection data relating to gas leakage inspection for the gas production facility is generated according to the level of the data amount of the inspection data specified by the user.
  • Inspection data generation unit and An inspection data transmission unit that transmits the inspection data generated by the inspection data generation unit to the management device, Have,
  • the management device An inspection data receiving unit that receives the inspection data transmitted from the inspection data transmitting unit, and an inspection data receiving unit.
  • An inspection data storage unit that stores the inspection data received by the inspection data receiving unit, and an inspection data storage unit. Have.
  • the inspection device is An inspection device that can communicate with the management device An image data acquisition unit that acquires image data obtained by imaging a gas production facility, Based on the image data acquired by the image data acquisition unit, inspection data relating to gas leakage inspection for the gas production facility is generated according to the level of the data amount of the inspection data specified by the user. Inspection data generation unit and An inspection data transmission unit that transmits the inspection data generated by the inspection data generation unit to the management device, To be equipped.
  • the inspection data transmission method is Acquire the image data obtained by imaging the gas production facility, Based on the acquired image data, inspection data relating to gas leak inspection for the gas production facility is generated according to the level of the data amount of the inspection data specified by the user. The generated inspection data is transmitted to the management device.
  • the communication load when uploading inspection data can be reduced as much as possible and the cost can be suppressed.
  • FIG. 1 is a block diagram showing a functional configuration of an inspection data management system according to the present embodiment.
  • FIG. 2 is a flowchart showing an operation example of the inspection device according to the present embodiment.
  • FIG. 3 is a flowchart showing an operation example of the management server according to the present embodiment.
  • FIG. 1 is a block diagram showing a functional configuration of the inspection data management system 10 according to the present embodiment.
  • the inspection data management system 10 includes a portable imaging device 100, an inspection device 120, a management server 140 (functioning as the “management device” of the present invention), and a terminal device 160 (the present invention). It has a function as an "external device").
  • the image pickup device 100 and the inspection device 120 are connected by a communication cable (not shown).
  • the image pickup device 100 may be connected to the inspection device 120 via wireless communication, or the image pickup device 100 and the inspection device 120 may be integrated. Further, the imaging device 100 may be connected to the inspection device 120 via a network line such as the Internet.
  • the inspection device 120 and the management server 140, and the management server 140 and the terminal device 160 are connected via a network line such as the Internet.
  • the communication between the inspection device 120 and the management server 140 and the communication between the management server 140 and the terminal device 160 are performed by the management server 140 as an HTTP (Hypertext Transfer Protocol) server based on the HTTP protocol. It may be.
  • HTTP Hypertext Transfer Protocol
  • the image pickup device 100 is, for example, a portable camera device that captures an inspection area (subject) including a gas production facility (for example, a tank, a plant, etc.) to be inspected, and generates infrared image data of the inspection area. ..
  • the image pickup device 100 may be a camera device fixed at a predetermined position.
  • the image pickup apparatus 100 includes an infrared image pickup unit 102, a visible light image pickup unit 104, a position detection unit 106, and an angle detection unit 108.
  • the image pickup apparatus 100 includes, for example, a CPU (Central Processing Unit) as a processor, a storage medium such as a ROM (Read Only Memory) storing a control program, a working memory such as a RAM (Random Access Memory), and a working memory. It has a communication circuit. In this case, the functions of the above-mentioned parts are realized by the CPU executing the control program.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the infrared imaging unit 102 includes a first optical system (not shown), a first optical filter (not shown), an infrared sensor (not shown), and the like.
  • the first optical system forms an image of infrared rays incident from an inspection area including a gas production facility to be inspected on an infrared sensor.
  • the first optical filter is a bandpass filter or the like arranged on the optical path connecting the first optical system and the infrared sensor.
  • the first optical filter allows only infrared rays included in a predetermined wavelength band to pass among the infrared rays that have passed through the first optical system.
  • the passing wavelength band of the first optical filter is substantially set to the absorption wavelength band of the gas to be detected. For example, when the passing wavelength band is set to a medium wavelength range of 3.2 to 3.4 ⁇ m, methane gas or the like can be detected.
  • the infrared sensor is, for example, a CMOS image sensor that receives infrared rays and generates infrared image data.
  • CMOS image sensor that receives infrared rays and generates infrared image data.
  • an infrared imaging unit 102 images, for example, an inspection region including a gas production facility to be inspected, and sequentially transmits infrared image data to the inspection device 120.
  • the infrared image data generated by the infrared imaging unit 102 is a still image or a moving image. Such infrared image data shows the temperature distribution in the inspection area.
  • the visible light imaging unit 104 includes a second optical system (not shown), a second optical filter (not shown), a visible light sensor (not shown), and the like.
  • the second optical system forms an image of visible light incident from the inspection area to be a subject on the visible light sensor.
  • the second optical filter is an infrared cut filter or the like arranged on the optical path connecting the second optical system and the visible light sensor.
  • the infrared cut filter cuts infrared rays from the light that has passed through the second optical system.
  • the visible light sensor is, for example, a CMOS image sensor that receives visible light of black and white BW or visible light of color RGB to generate visible image data.
  • Such a visible light imaging unit 104 images an inspection area in synchronization with the infrared imaging unit 102, and sequentially transmits visible image data to the inspection device 120.
  • the visible image data generated by the visible light imaging unit 104 is a still image or a moving image.
  • the position detection unit 106 receives, for example, a GPS (Global Positioning System) signal, and detects the current position of the image pickup apparatus 100 based on the received GPS signal. Then, the position detection unit 106 transmits the position information indicating the current position of the detected imaging device 100 to the inspection device 120.
  • GPS Global Positioning System
  • the angle detection unit 108 detects, for example, a composite value of acceleration in the three axial directions generated in the image pickup device 100 main body based on a detection signal of an acceleration sensor (not shown) of the image pickup device 100, and uses the composite value as the composite value. Based on this, the imaging angle (imaging direction) imaged by the imaging device 100 is detected. Then, the angle detection unit 108 transmits the image pickup angle information indicating the image pickup angle of the detected image pickup apparatus 100 to the inspection apparatus 120.
  • the inspection device 120 visualizes the gas generated in the inspection area by using the image data (infrared image data, visible image data) received from the image pickup device 100.
  • image data infrared image data, visible image data
  • Such an inspection device 120 is a mobile terminal such as a tablet terminal, a smartphone, a laptop terminal, or a wearable terminal that is communication-connected to the image pickup device 100.
  • the inspection device 120 includes an image processing unit 122, a display control unit 124, a display unit 126, an input reception unit 128, and an inspection data generation / transmission unit 130.
  • the image processing unit 122 functions as the "image data acquisition unit” of the present invention. Further, the image processing unit 122 and the inspection data generation transmission unit 130 function as the "inspection data generation unit” of the present invention. Further, the inspection data generation transmission unit 130 functions as the "inspection data transmission unit” of the present invention.
  • the inspection device 120 includes, for example, a CPU (Central Processing Unit) as a processor, a storage medium such as a ROM (Read Only Memory) storing a control program, a working memory such as a RAM (Random Access Memory), and a working memory. It has a communication circuit. In this case, the functions of the above-mentioned parts are realized by the CPU executing the control program.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the image processing unit 122 acquires infrared image data (hereinafter, also referred to as "infrared image data before image processing") of the inspection region transmitted from the infrared imaging unit 102. Then, the image processing unit 122 performs predetermined image processing on the infrared image data in the inspection region, detects a portion where gas is present in the infrared image data, and visualizes the detected portion (hereinafter, “gas”). Visualization process "). The image processing unit 122 adds a specific color (for example, red) to a portion where gas exists in the infrared image data before image processing.
  • the infrared image data after the gas visualization processing is performed is referred to as "infrared image data after image processing”.
  • a method of detecting gas from infrared image data in the inspection area will be briefly described.
  • a temperature change that is, a change in brightness in the infrared image data of the inspection area
  • the image processing unit 122 detects a portion where the gas is present based on such a temperature change. Since the gas detection method is a known image processing method, detailed description thereof will be omitted.
  • the image processing unit 122 acquires the visible image data (hereinafter, referred to as "visible image data before image processing") transmitted from the visible light imaging unit 104. Then, the image processing unit 122 generates inspection image data in which the infrared image data after the image processing is combined with the visible image data before the image processing.
  • visible image data before image processing the visible image data transmitted from the visible light imaging unit 104.
  • the inspection image data is displayed on the display unit 126 as an inspection image under the control of the display control unit 124.
  • the gas image corresponding to the gas in the inspection image is given the above-mentioned specific color.
  • the infrared image data after the above-mentioned image processing may be used as inspection image data without being combined with the visible image data.
  • the infrared image data corresponds to the "image data" of the present invention.
  • the image processing unit 122 outputs the inspection image data to the display control unit 124. Further, the image processing unit 122 outputs the infrared image data before the image processing and the infrared image data after the image processing to the inspection data generation transmission unit 130.
  • the display control unit 124 converts the inspection image data output from the image processing unit 122 into a display signal corresponding to the display unit 126, and displays the converted display signal as an inspection image on the display unit 126.
  • the display unit 126 is, for example, a display constituting the inspection device 120.
  • a liquid crystal display, an organic EL display, or the like can be used.
  • the display is a flat panel display with a touch panel.
  • the display unit 126 displays various images such as an inspection image for performing a gas leak inspection by being visually recognized by a user (for example, an inspector) based on a display signal from the display control unit 124.
  • a user for example, an inspector
  • the display unit 126 displays various images such as an inspection image for performing a gas leak inspection by being visually recognized by a user (for example, an inspector) based on a display signal from the display control unit 124.
  • the input receiving unit 128 receives various inputs (information input, instruction input) by the user via an operation unit (touch panel) (not shown).
  • the inspection data generation transmission unit 130 performs a gas leak inspection for a gas production facility based on the infrared image data before image processing and the infrared image data after image processing output from the image processing unit 122.
  • the inspection data related to is generated according to the level of the data amount of the inspection data specified by the user.
  • the inspection data is imaging status information (also referred to as incidental information) indicating the imaging status (for example, the inspector who is the photographer, the imaging location, the imaging date and time, the temperature, and the weather) when the gas production facility to be inspected is imaged. Including.
  • the imaging status information is received as user input by the input receiving unit 128.
  • the imaging status information may include position information transmitted from the position detection unit 106, imaging angle information transmitted from the angle detection unit 108, and the like.
  • the inspection data generation transmission unit 130 corresponds to the infrared image data before image processing (corresponding to the "first image data" of the present invention) when the level 1 having the largest amount of data is specified as the level of the data amount of the inspection data. ) Is included, and inspection data for which data thinning processing has not been performed (that is, a large amount of data) is generated as the first inspection data.
  • the inspection data generation transmission unit 130 includes the infrared image data before the image processing, and the data is thinned out.
  • the inspection data (that is, the amount of data is small) is generated as the second inspection data.
  • the first inspection data and the second inspection data correspond to the "first inspection data" of the present invention.
  • the inspection data generation transmission unit 130 specifies level 3 having the third largest amount of data as the level of the amount of inspection data, the infrared image data after image processing (“second image data” of the present invention”.
  • the inspection data in which the data thinning process is not performed is generated as the third inspection data.
  • the inspection data generation transmission unit 130 includes infrared image data after image processing when level 4 having the fourth largest amount of data (that is, the smallest amount of data) is specified as the level of the amount of inspection data.
  • the inspection data in which the data thinning process is performed (that is, the amount of data is small) is generated as the fourth inspection data.
  • the data thinning process performed when generating the second inspection data or the fourth inspection data reduces the pixel density (resolution), frame rate, dynamic range, imaging period, etc. of the infrared image data before image processing. It is a process of changing the level of image processing (for example, noise removal processing) for the infrared image data, or reducing the amount of image pickup status information.
  • the third inspection data and the fourth inspection data correspond to the "second inspection data" of the present invention.
  • the inspection data generation transmission unit 130 When the inspection data generation transmission unit 130 generates inspection data (first inspection data, second inspection data, third inspection data or fourth inspection data), the inspection data generation transmission unit 130 logs in and accesses the management server 140 to perform the inspection. Send the data to the management server 140.
  • the management server 140 is provided on the cloud and has a function of transmitting and receiving various data to and from other devices (inspection device 120 and terminal device 160).
  • the management server 140 is operated and managed by a third party other than, for example, the manager and the inspector of the gas production facility.
  • the management server 140 includes an inspection data receiving unit 142, a storage unit 144 (functioning as the "inspection data storage unit” of the present invention), a data analysis unit 146, and a data transmitting unit 148.
  • the management server 140 includes, for example, a CPU (Central Processing Unit) as a processor, a storage medium such as a ROM (Read Only Memory) storing a control program, a working memory such as a RAM (Random Access Memory), and a working memory. It has a communication circuit. In this case, the functions of the above-mentioned parts are realized by the CPU executing the control program.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the inspection data receiving unit 142 receives the inspection data transmitted from the inspection data generation transmitting unit 130 of the inspection device 120. Then, the inspection data receiving unit 142 registers (uploads) the inspection data by storing the received inspection data in the storage unit 144. Further, the inspection data receiving unit 142 outputs the received inspection data to the data analysis unit 146.
  • the storage unit 144 stores the inspection data received by the inspection data receiving unit 142.
  • the storage unit 144 is composed of, for example, a non-volatile semiconductor memory (so-called flash memory) or a hard disk drive.
  • the data analysis unit 146 uses, for example, an advanced AI from the viewpoint of predicting the possibility of future gas leakage in the long term and with high accuracy. (Artificial Intelligence) is used to analyze the first inspection data (particularly, infrared image data before image processing). Then, the data analysis unit 146 outputs the first analysis data indicating the analysis result of the first inspection data to the data transmission unit 148.
  • an advanced AI from the viewpoint of predicting the possibility of future gas leakage in the long term and with high accuracy.
  • the data analysis unit 146 outputs the first analysis data indicating the analysis result of the first inspection data to the data transmission unit 148.
  • the data analysis unit 146 executes, for example, complicated statistical processing from the viewpoint of predicting the possibility of future gas leakage with high accuracy. By doing so, the second inspection data (particularly, the infrared image data before image processing) is analyzed. Then, the data analysis unit 146 outputs the second analysis data indicating the analysis result of the second inspection data to the data transmission unit 148.
  • the data analysis unit 146 executes, for example, simple statistical processing from the viewpoint of easily predicting the possibility of future gas leakage. This analyzes the third inspection data (particularly, the infrared image data after image processing). Then, the data analysis unit 146 outputs the third analysis data indicating the analysis result of the third inspection data to the data transmission unit 148.
  • the data analysis unit 146 When the inspection data output from the inspection data receiving unit 142 is the fourth inspection data, the data analysis unit 146 outputs the fourth inspection data to the data transmitting unit 148 without performing any particular processing.
  • the data transmission unit 148 transmits the first analysis data to the terminal device 160.
  • the data transmission unit 148 transmits the second analysis data to the terminal device 160.
  • the data transmission unit 148 transmits the first analysis data to the terminal device 160.
  • the data transmission unit 148 transmits the fourth analysis data to the terminal device 160.
  • the terminal device 160 logs in and accesses the management server 140, receives analysis data or inspection data from the management server 140, and displays the data.
  • the terminal device 160 is, for example, a laptop terminal.
  • the terminal device 160 includes a data receiving unit 162, a display control unit 164, a display unit 166, and an input receiving unit 168.
  • the terminal device 160 includes, for example, a CPU (Central Processing Unit) as a processor, a storage medium such as a ROM (Read Only Memory) storing a control program, a working memory such as a RAM (Random Access Memory), and a working memory. It has a communication circuit. In this case, the functions of the above-mentioned parts are realized by the CPU executing the control program.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the data receiving unit 162 receives analysis data (first analysis data, second analysis data or third analysis data) or inspection data (fourth inspection data) transmitted from the data transmission unit 148 of the management server 140. To receive. Then, the data receiving unit 162 outputs the received analysis data or inspection data to the display control unit 164.
  • the display control unit 164 controls the display unit 166 to display the analysis data or the inspection data output from the data reception unit 162.
  • the display unit 166 is, for example, a liquid crystal display provided in the terminal device 160, and displays analysis data or inspection data under the control of the display control unit 164.
  • the user can easily grasp the possibility of future gas leakage in the inspection area by visually recognizing the analysis data displayed on the display unit 166.
  • the user can create an analysis result report (report) using the first analysis data displayed on the display unit 166.
  • the user can create a statistical analysis report (detailed version) using the second analysis data displayed on the display unit 166.
  • the user can create a statistical analysis report (simplified version) using the third analysis data displayed on the display unit 166.
  • the user can create a short-term inspection report (report) using the inspection data (fourth inspection data) displayed on the display unit 166.
  • the input reception unit 168 receives various inputs (information input, instruction input) by the viewer via an operation unit (not shown).
  • FIG. 2 is a flowchart showing an operation example of the inspection device 120 according to the present embodiment. Each process in FIG. 2 is executed, for example, when the input receiving unit 128 receives the input instructing the upload of the inspection data.
  • the input reception unit 128 accepts selection input for the purpose (also referred to as a service plan) for the user to use the management server 140 (step S100).
  • the user uses the management server 140 for the purpose of predicting the possibility of future gas leaks in a long-term and highly accurate manner (first prediction purpose, expert analysis plan), and future gas.
  • the purpose of predicting the possibility of leaks with high accuracy (second prediction purpose), the purpose of easily predicting the possibility of future gas leaks (third prediction purpose), and the purpose of managing inspection data (management purpose, Text report plan) can be selected. This is because the data desired from the management server 140 differs depending on the user who uses the terminal device 160, and the purpose of using the management server 140 differs depending on the desired data.
  • the inspection data generation transmission unit 130 determines the level of the data amount of the inspection data according to the selection input in step S100 (step S120).
  • the inspection data generation transmission unit 130 when the first prediction purpose is selected and input in step S100, specifies to the user level 1 having the largest amount of data as the level of the amount of inspection data. to decide. Further, when the second prediction purpose is selected and input in step S100, the inspection data generation transmission unit 130 determines that the user has designated level 2 having the second largest amount of data as the level of the amount of inspection data. ..
  • the inspection data generation transmission unit 130 determines that the user has designated level 3 having the third largest amount of data as the level of the amount of inspection data. .. Further, when the management purpose is selected and input in step S100, the inspection data generation transmission unit 130 gives the user level 4 which has the fourth largest amount of data (the smallest amount of data) as the level of the amount of inspection data. Judge as specified.
  • the display control unit 124 causes the display unit 126 to display the communication load prediction (per image data) and the cost when uploading the inspection data according to the level determined to be specified in step S120 (step).
  • the cost includes a monthly line usage cost, a management cost of inspection data according to the amount of data in the management server 140, and the like.
  • the display control unit 124 displays the communication load prediction (for example, 100 Mbps) and the cost at the time of uploading the inspection data. Further, when the designated level is level 2, the display control unit 124 displays the communication load prediction (for example, 50 Mbps) and the cost (for example, 100,000 yen) when uploading the inspection data.
  • the communication load prediction for example, 100 Mbps
  • the cost for example, 100,000 yen
  • the display control unit 124 displays the communication load prediction (for example, 10 Mbps) and the cost when uploading the inspection data. Further, when the designated level is level 4, the display control unit 124 displays the communication load prediction (for example, 5 Mbps) and the cost (for example, 50,000 yen) when uploading the inspection data.
  • the inspection data generation and transmission unit 130 supplies gas to the gas production facility based on the infrared image data before image processing and the infrared image data after image processing output from the image processing unit 122.
  • the inspection data (first inspection data, second inspection data, third inspection data or fourth inspection data) related to the leakage inspection is generated according to the level of the data amount of the inspection data specified by the user. (Step S160).
  • the inspection data generation transmission unit 130 logs in and accesses the management server 140, and the inspection data generated in step S160 (first inspection data, second inspection data, third inspection data, or fourth inspection). Data) is transmitted to the management server 140 (step S180).
  • the inspection device 120 ends the process in FIG.
  • the input receiving unit 128 may accept selection input for a plurality of purposes for the purpose of using the management server 140 by the user.
  • the inspection data generation transmission unit 130 generates the inspection data having the largest amount of data among the inspection data corresponding to the plurality of selected purposes and transmits the inspection data to the management server 140.
  • FIG. 3 is a flowchart showing an operation example of the management server 140 according to the present embodiment. Each process in FIG. 3 is executed, for example, when the input receiving unit 168 of the terminal device 160 receives an input instructing data transmission.
  • the data analysis unit 146 determines whether or not the inspection data received by the inspection data receiving unit 142 needs to be analyzed (step S300). In the present embodiment, the data analysis unit 146 determines that the inspection data needs to be analyzed when the received inspection data is the first inspection data, the second inspection data, or the third inspection data. .. On the other hand, when the received inspection data is the fourth inspection data, the data analysis unit 146 determines that the inspection data does not need to be analyzed.
  • the data analysis unit 146 analyzes the inspection data output from the inspection data receiving unit 142 (step S300, YES). Step S320).
  • the data analysis unit 146 uses, for example, advanced AI to perform the first inspection data (particularly, image processing). Analyze the previous infrared image data). Then, the data analysis unit 146 outputs the first analysis data indicating the analysis result of the first inspection data to the data transmission unit 148.
  • the data analysis unit 146 may perform the second inspection data (particularly, before image processing) by executing complicated statistical processing, for example. Infrared image data) is analyzed. Then, the data analysis unit 146 outputs the second analysis data indicating the analysis result of the second inspection data to the data transmission unit 148.
  • the data analysis unit 146 may perform the third inspection data (particularly after image processing) by executing a simple statistical process, for example. Infrared image data) is analyzed. Then, the data analysis unit 146 outputs the third analysis data indicating the analysis result of the third inspection data to the data transmission unit 148.
  • the data transmission unit 148 transmits the analysis data (first analysis data, second analysis data, or third analysis data) output from the data analysis unit 146 to the terminal device 160 (step S340).
  • the inspection device 120 ends the process in FIG.
  • the data analysis unit 146 transmits the fourth inspection data to the data transmitting unit 148 without performing any special processing. Output.
  • the data transmission unit 148 transmits the fourth inspection data output from the data analysis unit 146 to the terminal device 160 (step S360).
  • the inspection device 120 ends the process in FIG.
  • the inspection data management system 10 in the present embodiment includes an inspection device 120 and a management device (management server 140) capable of communicating with the inspection device 120.
  • the inspection device 120 is based on an image data acquisition unit (image processing unit 122) that acquires image data (infrared image data) obtained by imaging a gas production facility and an image data acquired by the image data acquisition unit.
  • An inspection data generation unit (inspection data generation transmission unit 130) that generates inspection data related to gas leakage inspection for a gas production facility according to the level of the data amount of the inspection data specified by the user. It has an inspection data transmission unit (inspection data generation transmission unit 130) that transmits the inspection data generated by the inspection data generation unit to the management device.
  • the management device has an inspection data receiving unit 142 that receives inspection data transmitted from the inspection data transmitting unit, and an inspection data storage unit (storage unit 144) that stores the inspection data received by the inspection data receiving unit 142. ..
  • the level of the amount of data is specified according to the difference in the purpose for which the user uses the management server 140, and the inspection data is generated according to the specified level of the management server. It is transmitted to 140.
  • the inspection data is uploaded to the management server 140 at a level of the amount of data suitable for the purpose of using the management server 140. Therefore, for example, when the user desires a management purpose for the purpose of using the management server 140, the inspection data is generated with the amount of data corresponding to the first prediction purpose, the second prediction purpose, or the third prediction purpose. When this is done, it is possible to prevent uploading inspection data having an unnecessarily large amount of data to the management server 140. Therefore, the communication load when uploading the inspection data can be reduced as much as possible and the cost can be suppressed.
  • Inspection data management system 100 Imaging device 102 Infrared imaging unit 104 Visible light imaging unit 106 Position detection unit 108 Angle detection unit 120 Inspection device 122 Image processing unit 124 Display control unit 126 Display unit 128 Input reception unit 130 Inspection data generation and transmission unit 140 Management server 142 Inspection data reception unit 144 Storage unit 146 Data analysis unit 148 Data transmission unit 160 Terminal device 162 Data reception unit 164 Display control unit 166 Display unit 168 Input reception unit

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

This inspection data management system comprises an inspection device and a management device capable of communicating with the inspection device. The inspection device comprises: an image data acquisition unit for acquiring image data obtained by imaging a gas production facility; an inspection data generation unit for using the image data acquired by the image data acquisition unit to generate, according to an inspection data amount level specified by a user, inspection data relating to gas leakage inspection of the gas production facility; and an inspection data transmission unit for transmitting the inspection data generated by the inspection data generation unit to the management device. The management device comprises an inspection data reception unit for receiving the inspection data transmitted from the inspection data transmission unit and an inspection data storage unit for storing the inspection data received by the inspection data reception unit.

Description

検査データ管理システム、検査装置および検査データ送信方法Inspection data management system, inspection equipment and inspection data transmission method
 本発明は、検査データ管理システム、検査装置および検査データ送信方法に関する。 The present invention relates to an inspection data management system, an inspection device, and an inspection data transmission method.
 検査対象となるガス(例えば、メタン)が吸収する光の波長帯に感度を持つ赤外線カメラを利用して、監視対象(例えば、ガス生産施設)におけるガス漏れを検出するガス漏れ検出装置(以下、「検査装置」と言う)が知られている(例えば、特許文献1を参照)。 A gas leak detector (hereinafter referred to as “gas leak detector”) that detects a gas leak in a monitored target (for example, a gas production facility) by using an infrared camera that is sensitive to the wavelength band of light absorbed by the gas to be inspected (for example, methane). (Refer to "inspection device") is known (see, for example, Patent Document 1).
 特許文献1には、検査対象を含む検査領域の画像(動画)を撮像する赤外線カメラおよび可視光カメラと、赤外線カメラにより撮像された赤外画像データを処理する画像処理部と、表示部とを有する検査装置が記載されている。画像処理部は、検査領域の画像データからガス漏れによるゆらぎの画像を抽出する。そして、表示部は、可視光カメラにより撮像された検査領域の画像データにゆらぎの画像データを重ね合わせた検査画像を表示する。 Patent Document 1 describes an infrared camera and a visible light camera that capture an image (moving image) of an inspection area including an inspection target, an image processing unit that processes infrared image data captured by the infrared camera, and a display unit. The inspection device to have is described. The image processing unit extracts an image of fluctuation due to gas leakage from the image data in the inspection area. Then, the display unit displays an inspection image in which the image data of the fluctuation is superimposed on the image data of the inspection area captured by the visible light camera.
 特許文献1に記載された検査装置によれば、検査者は、監視対象がある場所を訪れて、ガス漏洩検査を行うことができる。具体的には、検査者は、表示部に表示された検査画像を視認することにより、検査領域におけるガス漏れの場所を視覚的に容易に特定することができる。上記ガス漏洩検査においては、赤外線カメラにより撮像された赤外画像データ、撮像場所および撮像日時等は、検査データとして検査装置に記録される。 According to the inspection device described in Patent Document 1, an inspector can visit a place where a monitoring target is located and perform a gas leak inspection. Specifically, the inspector can easily visually identify the location of the gas leak in the inspection area by visually recognizing the inspection image displayed on the display unit. In the gas leak inspection, the infrared image data captured by the infrared camera, the imaging location, the imaging date and time, and the like are recorded in the inspection apparatus as inspection data.
特開2012-58093号公報Japanese Unexamined Patent Publication No. 2012-58093
 ところで、監視対象のガス生産施設について今後のガス漏れの可能性を予測するために、例えばクラウド上の管理サーバーに対して検査装置に記録された検査データをアップロードし、アップロードされた検査データを解析するデータ解析システムを構築することが検討されている。ここで、検査データのデータ量が増大すると、アップロードに使用されるネットワーク回線への通信負荷が増大し、回線コスト等のコストも増大するという問題があった。 By the way, in order to predict the possibility of future gas leaks in the gas production facility to be monitored, for example, the inspection data recorded in the inspection device is uploaded to the management server on the cloud, and the uploaded inspection data is analyzed. It is being considered to build a data analysis system. Here, when the amount of inspection data increases, the communication load on the network line used for uploading increases, and there is a problem that costs such as line cost also increase.
 本発明の目的は、検査データをアップロードする際における通信負荷を出来るだけ低減するとともにコストを抑えることが可能な検査データ管理システム、検査装置および検査データ送信方法を提供することである。 An object of the present invention is to provide an inspection data management system, an inspection device, and an inspection data transmission method capable of reducing the communication load when uploading inspection data as much as possible and reducing the cost.
 本発明に係る検査データ管理システムは、
 検査装置と、前記検査装置と通信可能な管理装置とを備える検査データ管理システムであって、
 前記検査装置は、
 ガス生産施設を撮像して得られた画像データを取得する画像データ取得部と、
 前記画像データ取得部により取得された前記画像データに基づいて、前記ガス生産施設に対してのガスの漏洩検査に関する検査データを、ユーザーに指定された当該検査データのデータ量のレベルに応じて生成する検査データ生成部と、
 前記検査データ生成部により生成された前記検査データを前記管理装置に送信する検査データ送信部と、
 を有し、
 前記管理装置は、
 前記検査データ送信部から送信された前記検査データを受信する検査データ受信部と、
 前記検査データ受信部により受信された前記検査データを記憶する検査データ記憶部と、
 を有する。
The inspection data management system according to the present invention is
An inspection data management system including an inspection device and a management device capable of communicating with the inspection device.
The inspection device
An image data acquisition unit that acquires image data obtained by imaging a gas production facility,
Based on the image data acquired by the image data acquisition unit, inspection data relating to gas leakage inspection for the gas production facility is generated according to the level of the data amount of the inspection data specified by the user. Inspection data generation unit and
An inspection data transmission unit that transmits the inspection data generated by the inspection data generation unit to the management device,
Have,
The management device
An inspection data receiving unit that receives the inspection data transmitted from the inspection data transmitting unit, and an inspection data receiving unit.
An inspection data storage unit that stores the inspection data received by the inspection data receiving unit, and an inspection data storage unit.
Have.
 本発明に係る検査装置は、
 管理装置と通信可能な検査装置であって、
 ガス生産施設を撮像して得られた画像データを取得する画像データ取得部と、
 前記画像データ取得部により取得された前記画像データに基づいて、前記ガス生産施設に対してのガスの漏洩検査に関する検査データを、ユーザーに指定された当該検査データのデータ量のレベルに応じて生成する検査データ生成部と、
 前記検査データ生成部により生成された前記検査データを前記管理装置に送信する検査データ送信部と、
 を備える。
The inspection device according to the present invention is
An inspection device that can communicate with the management device
An image data acquisition unit that acquires image data obtained by imaging a gas production facility,
Based on the image data acquired by the image data acquisition unit, inspection data relating to gas leakage inspection for the gas production facility is generated according to the level of the data amount of the inspection data specified by the user. Inspection data generation unit and
An inspection data transmission unit that transmits the inspection data generated by the inspection data generation unit to the management device,
To be equipped.
 本発明に係る検査データ送信方法は、
 ガス生産施設を撮像して得られた画像データを取得し、
 取得された前記画像データに基づいて、前記ガス生産施設に対してのガスの漏洩検査に関する検査データを、ユーザーに指定された当該検査データのデータ量のレベルに応じて生成し、
 生成された前記検査データを管理装置に送信する。
The inspection data transmission method according to the present invention is
Acquire the image data obtained by imaging the gas production facility,
Based on the acquired image data, inspection data relating to gas leak inspection for the gas production facility is generated according to the level of the data amount of the inspection data specified by the user.
The generated inspection data is transmitted to the management device.
 本発明によれば、検査データをアップロードする際における通信負荷を出来るだけ低減するとともにコストを抑えることができる。 According to the present invention, the communication load when uploading inspection data can be reduced as much as possible and the cost can be suppressed.
図1は、本実施の形態における検査データ管理システムの機能構成を示すブロック図である。FIG. 1 is a block diagram showing a functional configuration of an inspection data management system according to the present embodiment. 図2は、本実施の形態における検査装置の動作例を示すフローチャートである。FIG. 2 is a flowchart showing an operation example of the inspection device according to the present embodiment. 図3は、本実施の形態における管理サーバーの動作例を示すフローチャートである。FIG. 3 is a flowchart showing an operation example of the management server according to the present embodiment.
 図1は、本実施の形態における検査データ管理システム10の機能構成を示すブロック図である。図1に示すように、検査データ管理システム10は、ポータブル型の撮像装置100と、検査装置120と、管理サーバー140(本発明の「管理装置」として機能)と、端末装置160(本発明の「外部装置」として機能)とを備える。 FIG. 1 is a block diagram showing a functional configuration of the inspection data management system 10 according to the present embodiment. As shown in FIG. 1, the inspection data management system 10 includes a portable imaging device 100, an inspection device 120, a management server 140 (functioning as the “management device” of the present invention), and a terminal device 160 (the present invention). It has a function as an "external device").
 撮像装置100と検査装置120との間は、通信ケーブル(図示しない)によって接続される。なお、撮像装置100は、検査装置120と無線通信を介して接続されても良いし、撮像装置100と検査装置120とが一体でも良い。また、撮像装置100は、インターネットなどのネットワーク回線を介して、検査装置120と接続されても良い。 The image pickup device 100 and the inspection device 120 are connected by a communication cable (not shown). The image pickup device 100 may be connected to the inspection device 120 via wireless communication, or the image pickup device 100 and the inspection device 120 may be integrated. Further, the imaging device 100 may be connected to the inspection device 120 via a network line such as the Internet.
 検査装置120と管理サーバー140との間、および、管理サーバー140と端末装置160との間は、インターネットなどのネットワーク回線を介して接続される。なお、検査装置120と管理サーバー140との間の通信、および、管理サーバー140と端末装置160との間の通信は、HTTP(Hypertext  Transfer  Protocol)サーバーとしての管理サーバー140によりHTTPプロトコルに基づいて行なわれても良い。 The inspection device 120 and the management server 140, and the management server 140 and the terminal device 160 are connected via a network line such as the Internet. The communication between the inspection device 120 and the management server 140 and the communication between the management server 140 and the terminal device 160 are performed by the management server 140 as an HTTP (Hypertext Transfer Protocol) server based on the HTTP protocol. It may be.
 まず、撮像装置100の構成について説明する。撮像装置100は、例えば、携帯可能なカメラ装置であり、検査対象であるガス生産施設(例えば、タンク、プラントなど)を含む検査領域(被写体)を撮像し、検査領域の赤外線画像データを生成する。なお、撮像装置100は、所定位置に固定されたカメラ装置であっても良い。 First, the configuration of the image pickup apparatus 100 will be described. The image pickup device 100 is, for example, a portable camera device that captures an inspection area (subject) including a gas production facility (for example, a tank, a plant, etc.) to be inspected, and generates infrared image data of the inspection area. .. The image pickup device 100 may be a camera device fixed at a predetermined position.
 図1に示すように、撮像装置100は、赤外線撮像部102と、可視光撮像部104と、位置検出部106と、角度検出部108とを有する。 As shown in FIG. 1, the image pickup apparatus 100 includes an infrared image pickup unit 102, a visible light image pickup unit 104, a position detection unit 106, and an angle detection unit 108.
 撮像装置100は、図示しないが、例えば、プロセッサとしてのCPU(Central Processing Unit)、制御プログラムを格納したROM(Read Only Memory)等の記憶媒体、RAM(Random Access Memory)等の作業用メモリ、および通信回路を有する。この場合、上記した各部の機能は、CPUが制御プログラムを実行することにより実現される。 Although not shown, the image pickup apparatus 100 includes, for example, a CPU (Central Processing Unit) as a processor, a storage medium such as a ROM (Read Only Memory) storing a control program, a working memory such as a RAM (Random Access Memory), and a working memory. It has a communication circuit. In this case, the functions of the above-mentioned parts are realized by the CPU executing the control program.
 赤外線撮像部102は、第一光学系(図示せず)、第一光学フィルター(図示せず)および赤外線センサー(図示せず)などを有する。第一光学系は、検査対象であるガス生産施設を含む検査領域から入射した赤外線を、赤外線センサーに結像させる。 The infrared imaging unit 102 includes a first optical system (not shown), a first optical filter (not shown), an infrared sensor (not shown), and the like. The first optical system forms an image of infrared rays incident from an inspection area including a gas production facility to be inspected on an infrared sensor.
 第一光学フィルターは、第一光学系と赤外線センサーとを結ぶ光路上に配置されたバンドパスフィルターなどである。第一光学フィルターは、第一光学系を通過した赤外線のうち、所定波長帯に含まれる赤外線のみを通過させる。第一光学フィルターの通過波長帯は、実質的に、被検出ガスの吸収波長帯域に設定される。例えば、通過波長帯を3.2~3.4μmの中波長域にした場合、メタンガスなどを検出することができる。 The first optical filter is a bandpass filter or the like arranged on the optical path connecting the first optical system and the infrared sensor. The first optical filter allows only infrared rays included in a predetermined wavelength band to pass among the infrared rays that have passed through the first optical system. The passing wavelength band of the first optical filter is substantially set to the absorption wavelength band of the gas to be detected. For example, when the passing wavelength band is set to a medium wavelength range of 3.2 to 3.4 μm, methane gas or the like can be detected.
 赤外線センサーは、例えば、CMOSイメージセンサーであって、赤外線を受光して赤外画像データを生成する。このような赤外線撮像部102は、可視光撮像部104と同期した状態で、例えば、検査対象であるガス生産施設を含む検査領域を撮像し、赤外画像データを検査装置120に順次送信する。 The infrared sensor is, for example, a CMOS image sensor that receives infrared rays and generates infrared image data. In a state synchronized with the visible light imaging unit 104, such an infrared imaging unit 102 images, for example, an inspection region including a gas production facility to be inspected, and sequentially transmits infrared image data to the inspection device 120.
 赤外線撮像部102により生成される赤外画像データは、静止画または動画である。このような赤外画像データは、検査領域の温度分布を示す。 The infrared image data generated by the infrared imaging unit 102 is a still image or a moving image. Such infrared image data shows the temperature distribution in the inspection area.
 可視光撮像部104は、第二光学系(図示せず)、第二光学フィルター(図示せず)および可視光センサー(図示せず)などを有する。第二光学系は、被写体となる検査領域から入射した可視光を可視光センサーに結像させる。 The visible light imaging unit 104 includes a second optical system (not shown), a second optical filter (not shown), a visible light sensor (not shown), and the like. The second optical system forms an image of visible light incident from the inspection area to be a subject on the visible light sensor.
 第二光学フィルターは、第二光学系と可視光センサーとを結ぶ光路上に配置された赤外線カットフィルターなどである。赤外線カットフィルターは、第二光学系を通過した光から赤外線をカットする。 The second optical filter is an infrared cut filter or the like arranged on the optical path connecting the second optical system and the visible light sensor. The infrared cut filter cuts infrared rays from the light that has passed through the second optical system.
 可視光センサーは、例えばCMOSイメージセンサーであって、白黒BWの可視光、または、カラーRGBの可視光をそれぞれ受光して可視画像データを生成する。 The visible light sensor is, for example, a CMOS image sensor that receives visible light of black and white BW or visible light of color RGB to generate visible image data.
 このような可視光撮像部104は、赤外線撮像部102と同期した状態で、検査領域を撮像し、可視画像データを検査装置120に順次送信する。可視光撮像部104により生成される可視画像データは、静止画または動画である。 Such a visible light imaging unit 104 images an inspection area in synchronization with the infrared imaging unit 102, and sequentially transmits visible image data to the inspection device 120. The visible image data generated by the visible light imaging unit 104 is a still image or a moving image.
 位置検出部106は、例えば、GPS(Global Positioning System)信号を受信し、受信したGPS信号に基づいて、撮像装置100の現在位置を検出する。そして、位置検出部106は、検出した撮像装置100の現在位置を示す位置情報を検査装置120に送信する。 The position detection unit 106 receives, for example, a GPS (Global Positioning System) signal, and detects the current position of the image pickup apparatus 100 based on the received GPS signal. Then, the position detection unit 106 transmits the position information indicating the current position of the detected imaging device 100 to the inspection device 120.
 角度検出部108は、例えば、撮像装置100が有する加速度センサー(図示せず)の検出信号に基づいて、撮像装置100本体に生じた3軸方向の加速度の合成値を検出し、その合成値に基づいて、撮像装置100が撮像している撮像角度(撮像方向)を検出する。そして、角度検出部108は、検出した撮像装置100の撮像角度を示す撮像角度情報を検査装置120に送信する。 The angle detection unit 108 detects, for example, a composite value of acceleration in the three axial directions generated in the image pickup device 100 main body based on a detection signal of an acceleration sensor (not shown) of the image pickup device 100, and uses the composite value as the composite value. Based on this, the imaging angle (imaging direction) imaged by the imaging device 100 is detected. Then, the angle detection unit 108 transmits the image pickup angle information indicating the image pickup angle of the detected image pickup apparatus 100 to the inspection apparatus 120.
 次に、検査装置120の構成について説明する。検査装置120は、撮像装置100から受信した画像データ(赤外画像データ、可視画像データ)を用いて、検査領域に発生したガスを可視化する。このような検査装置120は、撮像装置100に通信接続されたタブレット端末、スマートフォン、ラップトップ型端末、または、ウェアラブル端末などの携帯端末である。 Next, the configuration of the inspection device 120 will be described. The inspection device 120 visualizes the gas generated in the inspection area by using the image data (infrared image data, visible image data) received from the image pickup device 100. Such an inspection device 120 is a mobile terminal such as a tablet terminal, a smartphone, a laptop terminal, or a wearable terminal that is communication-connected to the image pickup device 100.
 検査装置120は、画像処理部122と、表示制御部124と、表示部126と、入力受付部128と、検査データ生成送信部130とを有する。なお、画像処理部122は、本発明の「画像データ取得部」として機能する。また、画像処理部122および検査データ生成送信部130は、本発明の「検査データ生成部」として機能する。また、検査データ生成送信部130は、本発明の「検査データ送信部」として機能する。 The inspection device 120 includes an image processing unit 122, a display control unit 124, a display unit 126, an input reception unit 128, and an inspection data generation / transmission unit 130. The image processing unit 122 functions as the "image data acquisition unit" of the present invention. Further, the image processing unit 122 and the inspection data generation transmission unit 130 function as the "inspection data generation unit" of the present invention. Further, the inspection data generation transmission unit 130 functions as the "inspection data transmission unit" of the present invention.
 検査装置120は、図示しないが、例えば、プロセッサとしてのCPU(Central Processing Unit)、制御プログラムを格納したROM(Read Only Memory)等の記憶媒体、RAM(Random Access Memory)等の作業用メモリ、および通信回路を有する。この場合、上記した各部の機能は、CPUが制御プログラムを実行することにより実現される。 Although not shown, the inspection device 120 includes, for example, a CPU (Central Processing Unit) as a processor, a storage medium such as a ROM (Read Only Memory) storing a control program, a working memory such as a RAM (Random Access Memory), and a working memory. It has a communication circuit. In this case, the functions of the above-mentioned parts are realized by the CPU executing the control program.
 画像処理部122は、赤外線撮像部102から送信された検査領域の赤外画像データ(以下、「画像処理前の赤外画像データ」ともいう。)を取得する。そして、画像処理部122は、検査領域の赤外画像データに所定の画像処理を施して、当該赤外画像データにおいてガスが存在する部分を検出し、検出した部分を可視化する(以下、「ガスの可視化処理」という)。画像処理部122は、画像処理前の赤外画像データにおいてガスが存在する部分に、特定の色(例えば、赤色など)を付す。ガスの可視化処理が施された後の赤外画像データを、「画像処理後の赤外画像データ」と呼ぶ。 The image processing unit 122 acquires infrared image data (hereinafter, also referred to as "infrared image data before image processing") of the inspection region transmitted from the infrared imaging unit 102. Then, the image processing unit 122 performs predetermined image processing on the infrared image data in the inspection region, detects a portion where gas is present in the infrared image data, and visualizes the detected portion (hereinafter, “gas”). Visualization process "). The image processing unit 122 adds a specific color (for example, red) to a portion where gas exists in the infrared image data before image processing. The infrared image data after the gas visualization processing is performed is referred to as "infrared image data after image processing".
 ここで、検査領域の赤外画像データからガスを検出する方法について簡単に説明する。検査領域においてガス漏れが発生すると、検査領域の赤外画像データにおいてガスが存在する部分に、温度変化(つまり、検査領域の赤外画像データにおいて輝度の変化)が生じる。画像処理部122は、このような温度変化に基づいて、ガスが存在する部分を検出する。なお、ガスの検出方法は、公知の画像処理方法であるため、詳細な説明は省略する。 Here, a method of detecting gas from infrared image data in the inspection area will be briefly described. When a gas leak occurs in the inspection area, a temperature change (that is, a change in brightness in the infrared image data of the inspection area) occurs in a portion where gas exists in the infrared image data of the inspection area. The image processing unit 122 detects a portion where the gas is present based on such a temperature change. Since the gas detection method is a known image processing method, detailed description thereof will be omitted.
 また、画像処理部122は、可視光撮像部104から送信された可視画像データ(以下、「画像処理前の可視画像データ」という。)を取得する。そして、画像処理部122は、画像処理前の可視画像データに、画像処理後の赤外画像データを合成した検査画像データを生成する。 Further, the image processing unit 122 acquires the visible image data (hereinafter, referred to as "visible image data before image processing") transmitted from the visible light imaging unit 104. Then, the image processing unit 122 generates inspection image data in which the infrared image data after the image processing is combined with the visible image data before the image processing.
 検査画像データは、表示制御部124の制御を受けて、検査画像として表示部126に表示される。検査画像においてガスに対応するガス画像は、上記特定の色が付されている。なお、上述の画像処理後の赤外画像データを、可視画像データと合成することなく、検査画像データとしても良い。赤外画像データは、本発明の「画像データ」に対応する。 The inspection image data is displayed on the display unit 126 as an inspection image under the control of the display control unit 124. The gas image corresponding to the gas in the inspection image is given the above-mentioned specific color. The infrared image data after the above-mentioned image processing may be used as inspection image data without being combined with the visible image data. The infrared image data corresponds to the "image data" of the present invention.
 画像処理部122は、検査画像データを表示制御部124に出力する。また、画像処理部122は、画像処理前の赤外画像データ、および、画像処理後の赤外画像データを検査データ生成送信部130に出力する。 The image processing unit 122 outputs the inspection image data to the display control unit 124. Further, the image processing unit 122 outputs the infrared image data before the image processing and the infrared image data after the image processing to the inspection data generation transmission unit 130.
 表示制御部124は、画像処理部122から出力された検査画像データを表示部126に対応する表示信号に変換し、変換された表示信号を検査画像として表示部126に表示させる。 The display control unit 124 converts the inspection image data output from the image processing unit 122 into a display signal corresponding to the display unit 126, and displays the converted display signal as an inspection image on the display unit 126.
 表示部126は、例えば、検査装置120を構成するディスプレイである。ディスプレイとしては、液晶ディスプレイ、有機ELディスプレイなどを用いることができる。本実施の形態では、ディスプレイは、タッチパネル付きのフラットパネルディスプレイである。 The display unit 126 is, for example, a display constituting the inspection device 120. As the display, a liquid crystal display, an organic EL display, or the like can be used. In the present embodiment, the display is a flat panel display with a touch panel.
 表示部126は、表示制御部124からの表示信号に基づいて、ユーザー(例えば、検査者)が視認することによりガス漏洩検査を行うための検査画像等、各種画像を表示する。ユーザーは、表示部126に表示された検査画像を視認することにより、検査領域におけるガス漏れの場所を視覚的に容易に特定することができる。 The display unit 126 displays various images such as an inspection image for performing a gas leak inspection by being visually recognized by a user (for example, an inspector) based on a display signal from the display control unit 124. By visually recognizing the inspection image displayed on the display unit 126, the user can easily visually identify the location of the gas leak in the inspection area.
 入力受付部128は、図示しない操作部(タッチパネル)を介してユーザーによる各種の入力(情報入力、指示入力)を受け付ける。 The input receiving unit 128 receives various inputs (information input, instruction input) by the user via an operation unit (touch panel) (not shown).
 検査データ生成送信部130は、画像処理部122から出力された画像処理前の赤外画像データ、および、画像処理後の赤外画像データに基づいて、ガス生産施設に対してのガスの漏洩検査に関する検査データを、ユーザーに指定された当該検査データのデータ量のレベルに応じて生成する。 The inspection data generation transmission unit 130 performs a gas leak inspection for a gas production facility based on the infrared image data before image processing and the infrared image data after image processing output from the image processing unit 122. The inspection data related to is generated according to the level of the data amount of the inspection data specified by the user.
 検査データは、検査対象であるガス生産施設を撮像した際の撮像状況(例えば、撮影者である検査者、撮像場所、撮像日時、気温、天候)を示す撮像状況情報(付帯情報とも言う)を含む。撮像状況情報は、入力受付部128によりユーザーの入力として受け付けられる。なお、撮像状況情報は、位置検出部106から送信された位置情報や、角度検出部108から送信された撮像角度情報等を含んでも良い。 The inspection data is imaging status information (also referred to as incidental information) indicating the imaging status (for example, the inspector who is the photographer, the imaging location, the imaging date and time, the temperature, and the weather) when the gas production facility to be inspected is imaged. Including. The imaging status information is received as user input by the input receiving unit 128. The imaging status information may include position information transmitted from the position detection unit 106, imaging angle information transmitted from the angle detection unit 108, and the like.
 検査データ生成送信部130は、検査データのデータ量のレベルとして最もデータ量が多いレベル1が指定された場合、画像処理前の赤外画像データ(本発明の「第1の画像データ」に対応)を含み、データの間引き処理が行われていない(すなわちデータ量が多い)検査データを第1の検査データとして生成する。 The inspection data generation transmission unit 130 corresponds to the infrared image data before image processing (corresponding to the "first image data" of the present invention) when the level 1 having the largest amount of data is specified as the level of the data amount of the inspection data. ) Is included, and inspection data for which data thinning processing has not been performed (that is, a large amount of data) is generated as the first inspection data.
 検査データ生成送信部130は、検査データのデータ量のレベルとして2番目にデータ量が多いレベル2が指定された場合、画像処理前の赤外画像データを含み、データの間引き処理が行われた(すなわちデータ量が少ない)検査データを第2の検査データとして生成する。なお、第1の検査データおよび第2の検査データは、本発明の「第1の検査データ」に対応する。 When level 2 having the second largest amount of data is specified as the level of the amount of data of the inspection data, the inspection data generation transmission unit 130 includes the infrared image data before the image processing, and the data is thinned out. The inspection data (that is, the amount of data is small) is generated as the second inspection data. The first inspection data and the second inspection data correspond to the "first inspection data" of the present invention.
 検査データ生成送信部130は、検査データのデータ量のレベルとして3番目にデータ量が多いレベル3が指定された場合、画像処理後の赤外画像データ(本発明の「第2の画像データ」に対応)を含み、データの間引き処理が行われていない(すなわちデータ量が多い)検査データを第3の検査データとして生成する。 When the inspection data generation transmission unit 130 specifies level 3 having the third largest amount of data as the level of the amount of inspection data, the infrared image data after image processing (“second image data” of the present invention”. The inspection data in which the data thinning process is not performed (that is, the amount of data is large) is generated as the third inspection data.
 検査データ生成送信部130は、検査データのデータ量のレベルとして4番目にデータ量が多い(すなわち1番データ量が少ない)レベル4が指定された場合、画像処理後の赤外画像データを含み、データの間引き処理が行われた(すなわちデータ量が少ない)検査データを第4の検査データとして生成する。第2の検査データまたは第4の検査データを生成する際に行われるデータの間引き処理は、画像処理前の赤外画像データについて画素密度(解像度)、フレームレート、ダイナミックレンジ、撮像期間などを減らしたり、当該赤外画像データに対する画像処理(例えば、ノイズ除去処理)のレベルを変更したり、撮像状況情報の情報量を減らしたりする処理である。なお、第3の検査データおよび第4の検査データは、本発明の「第2の検査データ」に対応する。 The inspection data generation transmission unit 130 includes infrared image data after image processing when level 4 having the fourth largest amount of data (that is, the smallest amount of data) is specified as the level of the amount of inspection data. , The inspection data in which the data thinning process is performed (that is, the amount of data is small) is generated as the fourth inspection data. The data thinning process performed when generating the second inspection data or the fourth inspection data reduces the pixel density (resolution), frame rate, dynamic range, imaging period, etc. of the infrared image data before image processing. It is a process of changing the level of image processing (for example, noise removal processing) for the infrared image data, or reducing the amount of image pickup status information. The third inspection data and the fourth inspection data correspond to the "second inspection data" of the present invention.
 検査データ生成送信部130は、検査データ(第1の検査データ、第2の検査データ、第3の検査データまたは第4の検査データ)を生成した場合、管理サーバー140にログインアクセスし、当該検査データを管理サーバー140に送信する。 When the inspection data generation transmission unit 130 generates inspection data (first inspection data, second inspection data, third inspection data or fourth inspection data), the inspection data generation transmission unit 130 logs in and accesses the management server 140 to perform the inspection. Send the data to the management server 140.
 次に、管理サーバー140の機能構成について説明する。管理サーバー140は、クラウド上に設けられており、他の装置(検査装置120や端末装置160)との間で各種のデータを送受信する機能を備えている。管理サーバー140は、例えばガス生産施設の管理者および検査者以外の第三者によって運用管理されている。 Next, the functional configuration of the management server 140 will be described. The management server 140 is provided on the cloud and has a function of transmitting and receiving various data to and from other devices (inspection device 120 and terminal device 160). The management server 140 is operated and managed by a third party other than, for example, the manager and the inspector of the gas production facility.
 管理サーバー140は、検査データ受信部142、記憶部144(本発明の「検査データ記憶部」として機能)、データ解析部146およびデータ送信部148を備える。 The management server 140 includes an inspection data receiving unit 142, a storage unit 144 (functioning as the "inspection data storage unit" of the present invention), a data analysis unit 146, and a data transmitting unit 148.
 管理サーバー140は、図示しないが、例えば、プロセッサとしてのCPU(Central Processing Unit)、制御プログラムを格納したROM(Read Only Memory)等の記憶媒体、RAM(Random Access Memory)等の作業用メモリ、および通信回路を有する。この場合、上記した各部の機能は、CPUが制御プログラムを実行することにより実現される。 Although not shown, the management server 140 includes, for example, a CPU (Central Processing Unit) as a processor, a storage medium such as a ROM (Read Only Memory) storing a control program, a working memory such as a RAM (Random Access Memory), and a working memory. It has a communication circuit. In this case, the functions of the above-mentioned parts are realized by the CPU executing the control program.
 検査データ受信部142は、検査装置120の検査データ生成送信部130から送信された検査データを受信する。そして、検査データ受信部142は、受信した検査データを記憶部144に記憶させることによって当該検査データを登録(アップロード)する。また、検査データ受信部142は、受信した検査データをデータ解析部146に出力する。 The inspection data receiving unit 142 receives the inspection data transmitted from the inspection data generation transmitting unit 130 of the inspection device 120. Then, the inspection data receiving unit 142 registers (uploads) the inspection data by storing the received inspection data in the storage unit 144. Further, the inspection data receiving unit 142 outputs the received inspection data to the data analysis unit 146.
 記憶部144は、検査データ受信部142により受信された検査データを記憶する。なお、記憶部144は、例えば不揮発性の半導体メモリ(いわゆるフラッシュメモリ)やハードディスクドライブで構成される。 The storage unit 144 stores the inspection data received by the inspection data receiving unit 142. The storage unit 144 is composed of, for example, a non-volatile semiconductor memory (so-called flash memory) or a hard disk drive.
 データ解析部146は、検査データ受信部142から出力された検査データが第1の検査データである場合、今後のガス漏れの可能性を長期的かつ高精度に予測する観点から、例えば高度なAI(Artificial Intelligence)を用いて第1の検査データ(特に、画像処理前の赤外画像データ)を解析する。そして、データ解析部146は、第1の検査データの解析結果を示す第1の解析データをデータ送信部148に出力する。 When the inspection data output from the inspection data receiving unit 142 is the first inspection data, the data analysis unit 146 uses, for example, an advanced AI from the viewpoint of predicting the possibility of future gas leakage in the long term and with high accuracy. (Artificial Intelligence) is used to analyze the first inspection data (particularly, infrared image data before image processing). Then, the data analysis unit 146 outputs the first analysis data indicating the analysis result of the first inspection data to the data transmission unit 148.
 データ解析部146は、検査データ受信部142から出力された検査データが第2の検査データである場合、今後のガス漏れの可能性を高精度に予測する観点から、例えば複雑な統計処理を実行することによって第2の検査データ(特に、画像処理前の赤外画像データ)を解析する。そして、データ解析部146は、第2の検査データの解析結果を示す第2の解析データをデータ送信部148に出力する。 When the inspection data output from the inspection data receiving unit 142 is the second inspection data, the data analysis unit 146 executes, for example, complicated statistical processing from the viewpoint of predicting the possibility of future gas leakage with high accuracy. By doing so, the second inspection data (particularly, the infrared image data before image processing) is analyzed. Then, the data analysis unit 146 outputs the second analysis data indicating the analysis result of the second inspection data to the data transmission unit 148.
 データ解析部146は、検査データ受信部142から出力された検査データが第3の検査データである場合、今後のガス漏れの可能性を簡易に予測する観点から、例えば簡単な統計処理を実行することによって第3の検査データ(特に、画像処理後の赤外画像データ)を解析する。そして、データ解析部146は、第3の検査データの解析結果を示す第3の解析データをデータ送信部148に出力する。 When the inspection data output from the inspection data receiving unit 142 is the third inspection data, the data analysis unit 146 executes, for example, simple statistical processing from the viewpoint of easily predicting the possibility of future gas leakage. This analyzes the third inspection data (particularly, the infrared image data after image processing). Then, the data analysis unit 146 outputs the third analysis data indicating the analysis result of the third inspection data to the data transmission unit 148.
 データ解析部146は、検査データ受信部142から出力された検査データが第4の検査データである場合、特に処理を行うことなく、第4の検査データをデータ送信部148に出力する。 When the inspection data output from the inspection data receiving unit 142 is the fourth inspection data, the data analysis unit 146 outputs the fourth inspection data to the data transmitting unit 148 without performing any particular processing.
 データ送信部148は、データ解析部146から第1の解析データが出力された場合、当該第1の解析データを端末装置160に送信する。 When the first analysis data is output from the data analysis unit 146, the data transmission unit 148 transmits the first analysis data to the terminal device 160.
 データ送信部148は、データ解析部146から第2の解析データが出力された場合、当該第2の解析データを端末装置160に送信する。 When the second analysis data is output from the data analysis unit 146, the data transmission unit 148 transmits the second analysis data to the terminal device 160.
 データ送信部148は、データ解析部146から第3の解析データが出力された場合、当該第1の解析データを端末装置160に送信する。 When the data analysis unit 146 outputs the third analysis data, the data transmission unit 148 transmits the first analysis data to the terminal device 160.
 データ送信部148は、データ解析部146から第4の検査データが出力された場合、当該第4の解析データを端末装置160に送信する。 When the fourth inspection data is output from the data analysis unit 146, the data transmission unit 148 transmits the fourth analysis data to the terminal device 160.
 次に、端末装置160の構成について説明する。端末装置160は、管理サーバー140にログインアクセスし、管理サーバー140から解析データまたは検査データを受信して表示する。端末装置160は例えば、ラップトップ型端末である。 Next, the configuration of the terminal device 160 will be described. The terminal device 160 logs in and accesses the management server 140, receives analysis data or inspection data from the management server 140, and displays the data. The terminal device 160 is, for example, a laptop terminal.
 端末装置160は、データ受信部162、表示制御部164、表示部166および入力受付部168を備える。 The terminal device 160 includes a data receiving unit 162, a display control unit 164, a display unit 166, and an input receiving unit 168.
 端末装置160は、図示しないが、例えば、プロセッサとしてのCPU(Central Processing Unit)、制御プログラムを格納したROM(Read Only Memory)等の記憶媒体、RAM(Random Access Memory)等の作業用メモリ、および通信回路を有する。この場合、上記した各部の機能は、CPUが制御プログラムを実行することにより実現される。 Although not shown, the terminal device 160 includes, for example, a CPU (Central Processing Unit) as a processor, a storage medium such as a ROM (Read Only Memory) storing a control program, a working memory such as a RAM (Random Access Memory), and a working memory. It has a communication circuit. In this case, the functions of the above-mentioned parts are realized by the CPU executing the control program.
 データ受信部162は、管理サーバー140のデータ送信部148から送信された解析データ(第1の解析データ、第2の解析データまたは第3の解析データ)、または検査データ(第4の検査データ)を受信する。そして、データ受信部162は、受信した解析データまたは検査データを表示制御部164に出力する。 The data receiving unit 162 receives analysis data (first analysis data, second analysis data or third analysis data) or inspection data (fourth inspection data) transmitted from the data transmission unit 148 of the management server 140. To receive. Then, the data receiving unit 162 outputs the received analysis data or inspection data to the display control unit 164.
 表示制御部164は、データ受信部162から出力された解析データまたは検査データを表示部166に表示させる制御を行う。 The display control unit 164 controls the display unit 166 to display the analysis data or the inspection data output from the data reception unit 162.
 表示部166は、例えば端末装置160に設けられた液晶ディスプレイであり、表示制御部164の制御を受けて解析データまたは検査データを表示する。 The display unit 166 is, for example, a liquid crystal display provided in the terminal device 160, and displays analysis data or inspection data under the control of the display control unit 164.
 ユーザー(例えば、検査者またはガス生産施設の管理者)は、表示部166に表示された解析データを視認することにより、検査領域における今後のガス漏れの可能性を容易に把握することができる。この場合、ユーザーは、表示部166に表示された第1の解析データを用いて、解析結果レポート(報告書)を作成することができる。また、ユーザーは、表示部166に表示された第2の解析データを用いて、統計解析レポート(詳細版)を作成することができる。また、ユーザーは、表示部166に表示された第3の解析データを用いて、統計解析レポート(簡易版)を作成することができる。また、ユーザーは、表示部166に表示された検査データ(第4の検査データ)を用いて、短期の検査レポート(報告書)を作成することができる。 The user (for example, an inspector or a manager of a gas production facility) can easily grasp the possibility of future gas leakage in the inspection area by visually recognizing the analysis data displayed on the display unit 166. In this case, the user can create an analysis result report (report) using the first analysis data displayed on the display unit 166. In addition, the user can create a statistical analysis report (detailed version) using the second analysis data displayed on the display unit 166. In addition, the user can create a statistical analysis report (simplified version) using the third analysis data displayed on the display unit 166. In addition, the user can create a short-term inspection report (report) using the inspection data (fourth inspection data) displayed on the display unit 166.
 入力受付部168は、図示しない操作部を介して閲覧者による各種の入力(情報入力、指示入力)を受け付ける。 The input reception unit 168 receives various inputs (information input, instruction input) by the viewer via an operation unit (not shown).
 図2は、本実施の形態における検査装置120の動作例を示すフローチャートである。図2における各処理は、例えば、入力受付部128において検査データのアップロードを指示する入力が受け付けられた場合に実行される。 FIG. 2 is a flowchart showing an operation example of the inspection device 120 according to the present embodiment. Each process in FIG. 2 is executed, for example, when the input receiving unit 128 receives the input instructing the upload of the inspection data.
 まず、入力受付部128は、ユーザーが管理サーバー140を利用する目的(サービスプランとも言う)の選択入力を受け付ける(ステップS100)。本実施の形態では、ユーザーは、管理サーバー140を利用する目的として、今後のガス漏れの可能性を長期的かつ高精度に予測させる目的(第1の予測目的、エキスパート解析プラン)、今後のガス漏れの可能性を高精度に予測させる目的(第2の予測目的)、今後のガス漏れの可能性を簡易に予測させる目的(第3の予測目的)、検査データを管理させる目的(管理目的、テキストレポートプラン)の何れかを選択することができる。端末装置160を使用するユーザーによって管理サーバー140から欲しいデータは異なり、その欲しいデータに応じて管理サーバー140を利用する目的が異なるからである。 First, the input reception unit 128 accepts selection input for the purpose (also referred to as a service plan) for the user to use the management server 140 (step S100). In the present embodiment, the user uses the management server 140 for the purpose of predicting the possibility of future gas leaks in a long-term and highly accurate manner (first prediction purpose, expert analysis plan), and future gas. The purpose of predicting the possibility of leaks with high accuracy (second prediction purpose), the purpose of easily predicting the possibility of future gas leaks (third prediction purpose), and the purpose of managing inspection data (management purpose, Text report plan) can be selected. This is because the data desired from the management server 140 differs depending on the user who uses the terminal device 160, and the purpose of using the management server 140 differs depending on the desired data.
 次に、検査データ生成送信部130は、ステップS100における選択入力に応じて、検査データのデータ量のレベルを決定する(ステップS120)。 Next, the inspection data generation transmission unit 130 determines the level of the data amount of the inspection data according to the selection input in step S100 (step S120).
 本実施の形態では、検査データ生成送信部130は、ステップS100において第1の予測目的が選択入力された場合、検査データのデータ量のレベルとして最もデータ量が多いレベル1がユーザーに指定されたと判断する。また、検査データ生成送信部130は、ステップS100において第2の予測目的が選択入力された場合、検査データのデータ量のレベルとして2番目にデータ量が多いレベル2がユーザーに指定されたと判断する。 In the present embodiment, when the first prediction purpose is selected and input in step S100, the inspection data generation transmission unit 130 specifies to the user level 1 having the largest amount of data as the level of the amount of inspection data. to decide. Further, when the second prediction purpose is selected and input in step S100, the inspection data generation transmission unit 130 determines that the user has designated level 2 having the second largest amount of data as the level of the amount of inspection data. ..
 また、検査データ生成送信部130は、ステップS100において第3の予測目的が選択入力された場合、検査データのデータ量のレベルとして3番目にデータ量が多いレベル3がユーザーに指定されたと判断する。また、検査データ生成送信部130は、ステップS100において管理目的が選択入力された場合、検査データのデータ量のレベルとして4番目にデータ量が多い(1番データ量が少ない)レベル4がユーザーに指定されたと判断する。 Further, when the third prediction purpose is selected and input in step S100, the inspection data generation transmission unit 130 determines that the user has designated level 3 having the third largest amount of data as the level of the amount of inspection data. .. Further, when the management purpose is selected and input in step S100, the inspection data generation transmission unit 130 gives the user level 4 which has the fourth largest amount of data (the smallest amount of data) as the level of the amount of inspection data. Judge as specified.
 次に、表示制御部124は、ステップS120において指定されたと判断されたレベルに応じて、検査データをアップロードする際における通信負荷予測(1画像データあたり)およびコストを表示部126に表示させる(ステップS140)。ここで、コストには、月ごとに発生する回線使用コスト、管理サーバー140におけるデータ量に応じた検査データの管理コストなどが含まれる。 Next, the display control unit 124 causes the display unit 126 to display the communication load prediction (per image data) and the cost when uploading the inspection data according to the level determined to be specified in step S120 (step). S140). Here, the cost includes a monthly line usage cost, a management cost of inspection data according to the amount of data in the management server 140, and the like.
 本実施の形態では、表示制御部124は、指定されたレベルがレベル1である場合、検査データをアップロードする際における通信負荷予測(例えば、100Mbps)およびコストを表示させる。また、表示制御部124は、指定されたレベルがレベル2である場合、検査データをアップロードする際における通信負荷予測(例えば、50Mbps)およびコスト(例えば、10万円)を表示させる。 In the present embodiment, when the designated level is level 1, the display control unit 124 displays the communication load prediction (for example, 100 Mbps) and the cost at the time of uploading the inspection data. Further, when the designated level is level 2, the display control unit 124 displays the communication load prediction (for example, 50 Mbps) and the cost (for example, 100,000 yen) when uploading the inspection data.
 また、表示制御部124は、指定されたレベルがレベル3である場合、検査データをアップロードする際における通信負荷予測(例えば、10Mbps)およびコストを表示させる。また、表示制御部124は、指定されたレベルがレベル4である場合、検査データをアップロードする際における通信負荷予測(例えば、5Mbps)およびコスト(例えば、5万円)を表示させる。 Further, when the designated level is level 3, the display control unit 124 displays the communication load prediction (for example, 10 Mbps) and the cost when uploading the inspection data. Further, when the designated level is level 4, the display control unit 124 displays the communication load prediction (for example, 5 Mbps) and the cost (for example, 50,000 yen) when uploading the inspection data.
 次に、検査データ生成送信部130は、画像処理部122から出力された画像処理前の赤外画像データ、および、画像処理後の赤外画像データに基づいて、ガス生産施設に対してのガスの漏洩検査に関する検査データ(第1の検査データ、第2の検査データ、第3の検査データまたは第4の検査データ)を、ユーザーに指定された当該検査データのデータ量のレベルに応じて生成する(ステップS160)。 Next, the inspection data generation and transmission unit 130 supplies gas to the gas production facility based on the infrared image data before image processing and the infrared image data after image processing output from the image processing unit 122. The inspection data (first inspection data, second inspection data, third inspection data or fourth inspection data) related to the leakage inspection is generated according to the level of the data amount of the inspection data specified by the user. (Step S160).
 最後に、検査データ生成送信部130は、管理サーバー140にログインアクセスし、ステップS160において生成された検査データ(第1の検査データ、第2の検査データ、第3の検査データまたは第4の検査データ)を管理サーバー140に送信する(ステップS180)。ステップS180の処理が完了することによって、検査装置120は、図2における処理を終了する。 Finally, the inspection data generation transmission unit 130 logs in and accesses the management server 140, and the inspection data generated in step S160 (first inspection data, second inspection data, third inspection data, or fourth inspection). Data) is transmitted to the management server 140 (step S180). When the process of step S180 is completed, the inspection device 120 ends the process in FIG.
 なお、ステップS100において、入力受付部128は、ユーザーが管理サーバー140を利用する目的として、複数の目的の選択入力を受け付けても良い。この場合、検査データ生成送信部130は、選択入力された複数の目的に対応する検査データのうち、最もデータ量が多い検査データを生成して管理サーバー140に送信する。 Note that in step S100, the input receiving unit 128 may accept selection input for a plurality of purposes for the purpose of using the management server 140 by the user. In this case, the inspection data generation transmission unit 130 generates the inspection data having the largest amount of data among the inspection data corresponding to the plurality of selected purposes and transmits the inspection data to the management server 140.
 図3は、本実施の形態における管理サーバー140の動作例を示すフローチャートである。図3における各処理は、例えば、端末装置160の入力受付部168においてデータの送信を指示する入力が受け付けられた場合に実行される。 FIG. 3 is a flowchart showing an operation example of the management server 140 according to the present embodiment. Each process in FIG. 3 is executed, for example, when the input receiving unit 168 of the terminal device 160 receives an input instructing data transmission.
 データ解析部146は、検査データ受信部142において受信された検査データについて解析が必要であるか否かについて判定する(ステップS300)。本実施の形態では、データ解析部146は、受信された検査データが第1の検査データ、第2の検査データまたは第3の検査データである場合、検査データについて解析が必要であると判定する。その一方、データ解析部146は、受信された検査データが第4の検査データである場合、検査データについて解析が必要でないと判定する。 The data analysis unit 146 determines whether or not the inspection data received by the inspection data receiving unit 142 needs to be analyzed (step S300). In the present embodiment, the data analysis unit 146 determines that the inspection data needs to be analyzed when the received inspection data is the first inspection data, the second inspection data, or the third inspection data. .. On the other hand, when the received inspection data is the fourth inspection data, the data analysis unit 146 determines that the inspection data does not need to be analyzed.
 判定の結果、検査データ受信部142において受信された検査データについて解析が必要である場合(ステップS300、YES)、データ解析部146は、検査データ受信部142から出力された検査データを解析する(ステップS320)。 As a result of the determination, when the inspection data received by the inspection data receiving unit 142 needs to be analyzed (step S300, YES), the data analysis unit 146 analyzes the inspection data output from the inspection data receiving unit 142 (step S300, YES). Step S320).
 本実施の形態では、データ解析部146は、検査データ受信部142から出力された検査データが第1の検査データである場合、例えば高度なAIを用いて第1の検査データ(特に、画像処理前の赤外画像データ)を解析する。そして、データ解析部146は、第1の検査データの解析結果を示す第1の解析データをデータ送信部148に出力する。 In the present embodiment, when the inspection data output from the inspection data receiving unit 142 is the first inspection data, the data analysis unit 146 uses, for example, advanced AI to perform the first inspection data (particularly, image processing). Analyze the previous infrared image data). Then, the data analysis unit 146 outputs the first analysis data indicating the analysis result of the first inspection data to the data transmission unit 148.
 また、データ解析部146は、検査データ受信部142から出力された検査データが第2の検査データである場合、例えば複雑な統計処理を実行することによって第2の検査データ(特に、画像処理前の赤外画像データ)を解析する。そして、データ解析部146は、第2の検査データの解析結果を示す第2の解析データをデータ送信部148に出力する。 Further, when the inspection data output from the inspection data receiving unit 142 is the second inspection data, the data analysis unit 146 may perform the second inspection data (particularly, before image processing) by executing complicated statistical processing, for example. Infrared image data) is analyzed. Then, the data analysis unit 146 outputs the second analysis data indicating the analysis result of the second inspection data to the data transmission unit 148.
 また、データ解析部146は、検査データ受信部142から出力された検査データが第3の検査データである場合、例えば簡単な統計処理を実行することによって第3の検査データ(特に、画像処理後の赤外画像データ)を解析する。そして、データ解析部146は、第3の検査データの解析結果を示す第3の解析データをデータ送信部148に出力する。 Further, when the inspection data output from the inspection data receiving unit 142 is the third inspection data, the data analysis unit 146 may perform the third inspection data (particularly after image processing) by executing a simple statistical process, for example. Infrared image data) is analyzed. Then, the data analysis unit 146 outputs the third analysis data indicating the analysis result of the third inspection data to the data transmission unit 148.
 最後に、データ送信部148は、データ解析部146から出力された解析データ(第1の解析データ、第2の解析データまたは第3の解析データ)を端末装置160に送信する(ステップS340)。ステップS340の処理が完了することによって、検査装置120は、図3における処理を終了する。 Finally, the data transmission unit 148 transmits the analysis data (first analysis data, second analysis data, or third analysis data) output from the data analysis unit 146 to the terminal device 160 (step S340). When the process of step S340 is completed, the inspection device 120 ends the process in FIG.
 一方、検査データ受信部142において受信された検査データについて解析が必要でない場合(ステップS300、NO)、データ解析部146は、特に処理を行うことなく、第4の検査データをデータ送信部148に出力する。 On the other hand, when the inspection data received by the inspection data receiving unit 142 does not need to be analyzed (step S300, NO), the data analysis unit 146 transmits the fourth inspection data to the data transmitting unit 148 without performing any special processing. Output.
 最後に、データ送信部148は、データ解析部146から出力された第4の検査データを端末装置160に送信する(ステップS360)。ステップS360の処理が完了することによって、検査装置120は、図3における処理を終了する。 Finally, the data transmission unit 148 transmits the fourth inspection data output from the data analysis unit 146 to the terminal device 160 (step S360). When the process of step S360 is completed, the inspection device 120 ends the process in FIG.
 以上詳しく説明したように、本実施の形態における検査データ管理システム10は、検査装置120と、検査装置120と通信可能な管理装置(管理サーバー140)とを備える。検査装置120は、ガス生産施設を撮像して得られた画像データ(赤外画像データ)を取得する画像データ取得部(画像処理部122)と、画像データ取得部により取得された画像データに基づいて、ガス生産施設に対してのガスの漏洩検査に関する検査データを、ユーザーに指定された当該検査データのデータ量のレベルに応じて生成する検査データ生成部(検査データ生成送信部130)と、検査データ生成部により生成された検査データを管理装置に送信する検査データ送信部(検査データ生成送信部130)とを有する。管理装置は、検査データ送信部から送信された検査データを受信する検査データ受信部142と、検査データ受信部142により受信された検査データを記憶する検査データ記憶部(記憶部144)とを有する。 As described in detail above, the inspection data management system 10 in the present embodiment includes an inspection device 120 and a management device (management server 140) capable of communicating with the inspection device 120. The inspection device 120 is based on an image data acquisition unit (image processing unit 122) that acquires image data (infrared image data) obtained by imaging a gas production facility and an image data acquired by the image data acquisition unit. An inspection data generation unit (inspection data generation transmission unit 130) that generates inspection data related to gas leakage inspection for a gas production facility according to the level of the data amount of the inspection data specified by the user. It has an inspection data transmission unit (inspection data generation transmission unit 130) that transmits the inspection data generated by the inspection data generation unit to the management device. The management device has an inspection data receiving unit 142 that receives inspection data transmitted from the inspection data transmitting unit, and an inspection data storage unit (storage unit 144) that stores the inspection data received by the inspection data receiving unit 142. ..
 このように構成した本実施の形態によれば、ユーザーが管理サーバー140を利用する目的の違いに応じてデータ量のレベルが指定され、指定されたレベルに応じて検査データが生成されて管理サーバー140に送信される。これにより、管理サーバー140を利用する目的に適合するデータ量のレベルで検査データが管理サーバー140にアップロードされる。そのため、例えば、ユーザーが管理サーバー140を利用する目的として管理目的を所望している場合、第1の予測目的、第2の予測目的または第3の予測目的に対応するデータ量で検査データが生成される場合、管理サーバー140に対して不必要にデータ量が多い検査データのアップロードを防止することができる。したがって、検査データをアップロードする際における通信負荷を出来るだけ低減するとともにコストを抑えることができる。 According to the present embodiment configured in this way, the level of the amount of data is specified according to the difference in the purpose for which the user uses the management server 140, and the inspection data is generated according to the specified level of the management server. It is transmitted to 140. As a result, the inspection data is uploaded to the management server 140 at a level of the amount of data suitable for the purpose of using the management server 140. Therefore, for example, when the user desires a management purpose for the purpose of using the management server 140, the inspection data is generated with the amount of data corresponding to the first prediction purpose, the second prediction purpose, or the third prediction purpose. When this is done, it is possible to prevent uploading inspection data having an unnecessarily large amount of data to the management server 140. Therefore, the communication load when uploading the inspection data can be reduced as much as possible and the cost can be suppressed.
 なお、上記実施の形態では、何れも本発明を実施するにあたっての具体化の一例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその要旨、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。 It should be noted that the above embodiments are merely examples of embodiment of the present invention, and the technical scope of the present invention should not be construed in a limited manner by these. That is, the present invention can be implemented in various forms without departing from its gist or its main features.
 2019年5月20日出願の特願2019-094637の日本出願に含まれる明細書、図面および要約書の開示内容は、全て本願に援用される。 The disclosures of the specifications, drawings and abstracts contained in the Japanese application of Japanese Patent Application No. 2019-094637 filed on May 20, 2019 are all incorporated herein by reference.
 10 検査データ管理システム
 100 撮像装置
 102 赤外線撮像部
 104 可視光撮像部
 106 位置検出部
 108 角度検出部
 120 検査装置
 122 画像処理部
 124 表示制御部
 126 表示部
 128 入力受付部
 130 検査データ生成送信部
 140 管理サーバー
 142 検査データ受信部
 144 記憶部
 146 データ解析部
 148 データ送信部
 160 端末装置
 162 データ受信部
 164 表示制御部
 166 表示部
 168 入力受付部
10 Inspection data management system 100 Imaging device 102 Infrared imaging unit 104 Visible light imaging unit 106 Position detection unit 108 Angle detection unit 120 Inspection device 122 Image processing unit 124 Display control unit 126 Display unit 128 Input reception unit 130 Inspection data generation and transmission unit 140 Management server 142 Inspection data reception unit 144 Storage unit 146 Data analysis unit 148 Data transmission unit 160 Terminal device 162 Data reception unit 164 Display control unit 166 Display unit 168 Input reception unit

Claims (9)

  1.  検査装置と、前記検査装置と通信可能な管理装置とを備える検査データ管理システムであって、
     前記検査装置は、
     ガス生産施設を撮像して得られた画像データを取得する画像データ取得部と、
     前記画像データ取得部により取得された前記画像データに基づいて、前記ガス生産施設に対してのガスの漏洩検査に関する検査データを、ユーザーに指定された当該検査データのデータ量のレベルに応じて生成する検査データ生成部と、
     前記検査データ生成部により生成された前記検査データを前記管理装置に送信する検査データ送信部と、
     を有し、
     前記管理装置は、
     前記検査データ送信部から送信された前記検査データを受信する検査データ受信部と、
     前記検査データ受信部により受信された前記検査データを記憶する検査データ記憶部と、
     を有する、
     検査データ管理システム。
    An inspection data management system including an inspection device and a management device capable of communicating with the inspection device.
    The inspection device
    An image data acquisition unit that acquires image data obtained by imaging a gas production facility,
    Based on the image data acquired by the image data acquisition unit, inspection data relating to gas leakage inspection for the gas production facility is generated according to the level of the data amount of the inspection data specified by the user. Inspection data generation unit and
    An inspection data transmission unit that transmits the inspection data generated by the inspection data generation unit to the management device,
    Have,
    The management device
    An inspection data receiving unit that receives the inspection data transmitted from the inspection data transmitting unit, and an inspection data receiving unit.
    An inspection data storage unit that stores the inspection data received by the inspection data receiving unit, and an inspection data storage unit.
    Have,
    Inspection data management system.
  2.  前記検査データは、前記画像データに対してガスの可視化処理が施された第1の画像データを含む第1の検査データ、または、前記画像データに対してガスの可視化処理が施されていない第2の画像データを含む第2の検査データである、
     請求項1に記載の検査データ管理システム。
    The inspection data is the first inspection data including the first image data in which the gas visualization processing is applied to the image data, or the first inspection data in which the gas visualization processing is not applied to the image data. Second inspection data including 2 image data,
    The inspection data management system according to claim 1.
  3.  前記第1の検査データは、前記第1の画像データを含み、データの間引き処理が行われていない検査データ、または、前記第1の画像データを含み、前記データの間引き処理が行われ前記データ量が少ない検査データである、
     請求項2に記載の検査データ管理システム。
    The first inspection data includes the first image data and has not been subjected to data thinning processing, or the first image data including the data having been thinned out and said data. Inspection data with a small amount,
    The inspection data management system according to claim 2.
  4.  前記第2の検査データは、前記第2の画像データを含み、データの間引き処理が行われていない検査データ、または、前記第2の画像データを含み、前記データの間引き処理が行われた検査データである、
     請求項2に記載の検査データ管理システム。
    The second inspection data includes inspection data including the second image data and not subjected to data thinning processing, or inspection including the second image data and performing the data thinning processing. Data,
    The inspection data management system according to claim 2.
  5.  前記データの間引き処理は、前記画像データの画素密度、前記画像データのフレームレート、前記画像データの撮像期間、および、前記ガス生産施設を撮像した際の撮像状況を示す撮像状況情報の少なくとも1つに基づいて行われる、
     請求項3または4に記載の検査データ管理システム。
    The data thinning process is at least one of the pixel density of the image data, the frame rate of the image data, the imaging period of the image data, and the imaging status information indicating the imaging status when the gas production facility is imaged. It is done based on
    The inspection data management system according to claim 3 or 4.
  6.  前記管理装置は、前記データ量のレベルに応じて、前記検査データ受信部により受信された前記検査データを解析するデータ解析部を有する、
     請求項1~5の何れか1項に記載の検査データ管理システム。
    The management device has a data analysis unit that analyzes the inspection data received by the inspection data receiving unit according to the level of the data amount.
    The inspection data management system according to any one of claims 1 to 5.
  7.  前記管理装置と通信可能な外部装置を備え、
     前記管理装置は、前記データ解析部の解析結果を示す解析データを前記外部装置に送信するデータ送信部を有する、
     請求項6に記載の検査データ管理システム。
    Equipped with an external device capable of communicating with the management device
    The management device has a data transmission unit that transmits analysis data indicating the analysis result of the data analysis unit to the external device.
    The inspection data management system according to claim 6.
  8.  管理装置と通信可能な検査装置であって、
     ガス生産施設を撮像して得られた画像データを取得する画像データ取得部と、
     前記画像データ取得部により取得された前記画像データに基づいて、前記ガス生産施設に対してのガスの漏洩検査に関する検査データを、ユーザーに指定された当該検査データのデータ量のレベルに応じて生成する検査データ生成部と、
     前記検査データ生成部により生成された前記検査データを前記管理装置に送信する検査データ送信部と、
     を備える検査装置。
    An inspection device that can communicate with the management device
    An image data acquisition unit that acquires image data obtained by imaging a gas production facility,
    Based on the image data acquired by the image data acquisition unit, inspection data relating to gas leakage inspection for the gas production facility is generated according to the level of the data amount of the inspection data specified by the user. Inspection data generation unit and
    An inspection data transmission unit that transmits the inspection data generated by the inspection data generation unit to the management device,
    Inspection device equipped with.
  9.  ガス生産施設を撮像して得られた画像データを取得し、
     取得された前記画像データに基づいて、前記ガス生産施設に対してのガスの漏洩検査に関する検査データを、ユーザーに指定された当該検査データのデータ量のレベルに応じて生成し、
     生成された前記検査データを管理装置に送信する、
     検査データ送信方法。
    Acquire the image data obtained by imaging the gas production facility,
    Based on the acquired image data, inspection data relating to gas leak inspection for the gas production facility is generated according to the level of the data amount of the inspection data specified by the user.
    Send the generated inspection data to the management device,
    Inspection data transmission method.
PCT/JP2020/007411 2019-05-20 2020-02-25 Inspection data management system, inspection device, and inspection data transmission method WO2020235165A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019094637 2019-05-20
JP2019-094637 2019-05-20

Publications (1)

Publication Number Publication Date
WO2020235165A1 true WO2020235165A1 (en) 2020-11-26

Family

ID=73458531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007411 WO2020235165A1 (en) 2019-05-20 2020-02-25 Inspection data management system, inspection device, and inspection data transmission method

Country Status (1)

Country Link
WO (1) WO2020235165A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221226A (en) * 1987-03-10 1988-09-14 Tokyo Gas Co Ltd Liquid leakage detecting method
JP2001292439A (en) * 2000-04-06 2001-10-19 Mitsubishi Heavy Ind Ltd Supervisory system
JP2003009131A (en) * 2001-06-22 2003-01-10 Matsushita Electric Ind Co Ltd Image supervising system and method for delivering image
JP2003061080A (en) * 2001-08-21 2003-02-28 Hitachi Kokusai Electric Inc Supervisory system compatible with network
JP2009044538A (en) * 2007-08-09 2009-02-26 Hitachi Ltd Monitoring system and imaging device employed therefor
WO2017122660A1 (en) * 2016-01-15 2017-07-20 コニカミノルタ株式会社 Gas visualizing apparatus, gas visualizing method, and gas visualizing program
WO2019073377A1 (en) * 2017-10-09 2019-04-18 Csir A gas detection system and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221226A (en) * 1987-03-10 1988-09-14 Tokyo Gas Co Ltd Liquid leakage detecting method
JP2001292439A (en) * 2000-04-06 2001-10-19 Mitsubishi Heavy Ind Ltd Supervisory system
JP2003009131A (en) * 2001-06-22 2003-01-10 Matsushita Electric Ind Co Ltd Image supervising system and method for delivering image
JP2003061080A (en) * 2001-08-21 2003-02-28 Hitachi Kokusai Electric Inc Supervisory system compatible with network
JP2009044538A (en) * 2007-08-09 2009-02-26 Hitachi Ltd Monitoring system and imaging device employed therefor
WO2017122660A1 (en) * 2016-01-15 2017-07-20 コニカミノルタ株式会社 Gas visualizing apparatus, gas visualizing method, and gas visualizing program
WO2019073377A1 (en) * 2017-10-09 2019-04-18 Csir A gas detection system and method

Similar Documents

Publication Publication Date Title
US11927529B2 (en) Gas detection system and method
US20210302267A1 (en) Data management method and data management terminal for a laser gas detector
US10732123B2 (en) Inspection routing systems and methods
US20140043480A1 (en) Video monitoring system and method
US20140139658A1 (en) Remote visual inspection system and method
CN109752721B (en) Portable acoustic imaging tool with scanning and analysis capabilities
CN109756720B (en) Focus and/or parallax adjustment in acoustic imaging using distance information
US20140340525A1 (en) Reliability determination of camera fault detection tests
US10533937B1 (en) Cloud-based machine learning system and data fusion for the prediction and detection of corrosion under insulation
US20180197006A1 (en) Imaging support system, device and method, and imaging terminal
JP2013013086A (en) Quality checking in video monitoring system
CN104048687A (en) Measurement system with image capture capabilities
KR101685950B1 (en) CCTV recording system having self-diagnosis function
US11197065B2 (en) Gas detection device, information processing device, and program
KR102011713B1 (en) Continuous structure defect monitoring system and method
WO2020235165A1 (en) Inspection data management system, inspection device, and inspection data transmission method
US20220237225A1 (en) Inspection data management system, management device, management method, and terminal device
US9449234B2 (en) Displaying relative motion of objects in an image
JP7078109B2 (en) Camera equipment, gas leak inspection system, gas leak inspection method, and gas leak inspection program
CN116486506A (en) Method and equipment for executing patrol task information
JP2018106439A (en) Measurement support device
JP2015114956A (en) System for reading gas consumption displayed on gas meter
US20180089822A1 (en) Automated diagnostics for device display and camera
WO2022059341A1 (en) Data transmission device, data transmission method, information processing device, information processing method, and program
Wang et al. Automated low-cost photogrammetry for flexible structure monitoring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20809893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP