JPS63221125A - Production of composite material - Google Patents

Production of composite material

Info

Publication number
JPS63221125A
JPS63221125A JP5568687A JP5568687A JPS63221125A JP S63221125 A JPS63221125 A JP S63221125A JP 5568687 A JP5568687 A JP 5568687A JP 5568687 A JP5568687 A JP 5568687A JP S63221125 A JPS63221125 A JP S63221125A
Authority
JP
Japan
Prior art keywords
clay mineral
composite material
polyamide
swelling agent
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5568687A
Other languages
Japanese (ja)
Inventor
Arimitsu Usuki
有光 臼杵
Tadashi Mizutani
義 水谷
Yoshitsugu Kojima
由継 小島
Masaya Kawakado
昌弥 川角
Norio Kurauchi
紀雄 倉内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP5568687A priority Critical patent/JPS63221125A/en
Publication of JPS63221125A publication Critical patent/JPS63221125A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyamides (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain a composite material excellent in mechanical strengths and heat resistance, by mixing a specified composite obtained from a clay mineral and a swelling agent with a monomer comprising a diamine compound and a dicarboxylic ester compound and polymerizing the mixture. CONSTITUTION:A laminar clay mineral of a cation exchange capacity of 50-2,000meq/100g is contacted with a swelling agent to obtain a composite which swells in a molten state of the following polyamide monomer. The obtained composite is mixed with a polyamide monomer comprising a diamine compound and a dicarboxylic ester compound. This mixture is polymerized by heating to a predetermined temperature to obtain the purpose composite material. A process for performing this contact comprises, for example, immersing said clay mineral in an aqueous solution containing the desired swelling agent or contacting a cation exchange resin previously exchanged with a desired swelling agent with an aqueous solution of said clay mineral.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は2機械的強度及び耐熱性に優れた複合材料であ
り、更に詳しくはポリアミドを含む樹脂組成物と粘土鉱
物を構成する珪酸塩層とがイオン結合を介して互いに結
合し、それらが均一に混合されてなる複合材料の製造方
法に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention is a composite material having excellent mechanical strength and heat resistance, and more specifically, a silicate layer comprising a resin composition containing polyamide and a clay mineral. The present invention relates to a method for manufacturing a composite material in which these materials are uniformly mixed and bonded to each other through ionic bonds.

〔従来の技術〕[Conventional technology]

従来より、有機高分子材料の機械的特性を改善する目的
で、炭酸カルシウムや粘土鉱物、雲母等の無機質材料の
添加・混合が検討されている。
Addition and mixing of inorganic materials such as calcium carbonate, clay minerals, and mica have been studied for the purpose of improving the mechanical properties of organic polymer materials.

その一つとして9本出願人は、ポリアミドを含む樹脂と
粘土鉱物を構成する珪酸塩層とがイオン結合を介して互
いに結合し、それらが均一に混合されてなる複合材料を
開発した(特願昭60−217396号)。この複合材
料は、ポリアミドの分子鎖が層状の粘土鉱物とのイオン
結合により橋かけされた構造を有するため1機械的強度
及び耐熱製に優れている。この複合材料の製造方法とし
ては、粘土鉱物と膨潤化剤とを接触させた後、これをポ
リアミドモノマーと混合し、該混合物を加熱してポリア
ミドモノマーを重合することにより行っており、上記ポ
リアミドモノマーとしてアミノ酸、すイロン塩、ラクタ
ム等を挙げている。
As one of these, the applicant has developed a composite material in which a resin containing polyamide and a silicate layer constituting clay minerals are bonded to each other through ionic bonds and are uniformly mixed (patent application). No. 1983-217396). This composite material has a structure in which polyamide molecular chains are cross-linked by ionic bonds with layered clay minerals, so it has excellent mechanical strength and heat resistance. The method for manufacturing this composite material is to bring the clay mineral and the swelling agent into contact, mix it with a polyamide monomer, and heat the mixture to polymerize the polyamide monomer. Examples include amino acids, suiron salt, and lactams.

しかしながら、ポリアミドモノマーとしてナイロン塩を
用いると膨潤化剤との組合せによっては。
However, when using nylon salts as polyamide monomers, depending on the combination with swelling agents.

粘土鉱物を構成する珪酸塩層が十分に分散したものが得
られないことが判明した。すなわち、ナイロン塩が膨潤
化剤と置換してしまい、この置換反応により重合の際に
珪酸塩層の層間が広がることが妨げられるためである。
It was found that it was not possible to obtain a material in which the silicate layer constituting the clay mineral was sufficiently dispersed. That is, the nylon salt replaces the swelling agent, and this substitution reaction prevents the silicate layers from expanding during polymerization.

また、ポリアミドの合成法の一つである界面重縮合法を
用いる場合には1反応の際に生成するアンモニウム塩が
膨潤化剤と置換する反応が起こり。
Furthermore, when using an interfacial polycondensation method, which is one of the methods for synthesizing polyamide, a reaction occurs in which the ammonium salt produced during one reaction replaces the swelling agent.

珪酸塩層が均一に分散した複合材料が得られないことも
判明した。
It has also been found that it is not possible to obtain a composite material in which the silicate layer is uniformly distributed.

〔発明の目的〕[Purpose of the invention]

そこで1本発明者らは、上述の如き従来の技術の問題点
を解決すべく鋭意研究し、更に各種の系統的実験を重ね
た結果1本発明を成すに至ったものである。
Therefore, the present inventors conducted intensive research to solve the problems of the conventional techniques as described above, and as a result of various systematic experiments, they came up with the present invention.

本発明の目的は、粘土鉱物を構成する珪酸塩層が十分に
分散してなり9機械的強度及び耐熱性に優れた複合材料
の製造方法を提供することにある。
An object of the present invention is to provide a method for producing a composite material in which a silicate layer constituting a clay mineral is sufficiently dispersed and has excellent mechanical strength and heat resistance.

〔発明の構成〕[Structure of the invention]

本発明の複合材料の製造方法は、陽イオン交換容量が5
0〜200ミリ当it/100gの層状の粘土鉱物と膨
潤化剤とを接触させてポリアミドモノマーの溶融状態に
おいて膨潤する性質を有する複合体を得る接触工程と、
該複合体と、ジアミン化合物とジカルボン酸エステル化
合物とから成るポリアミドモノマーとを混合する混合工
程と、該混合物を所定温度に加熱して重合する重合工程
とから成ることを特徴とするものである。
The method for producing a composite material of the present invention has a cation exchange capacity of 5
A contacting step of contacting a layered clay mineral of 0 to 200 mm/100 g with a swelling agent to obtain a composite having a property of swelling in the molten state of the polyamide monomer;
It is characterized by comprising a mixing step of mixing the composite with a polyamide monomer consisting of a diamine compound and a dicarboxylic acid ester compound, and a polymerization step of heating the mixture to a predetermined temperature and polymerizing it.

以下に1本発明の構成をより詳細に説明する。Below, the configuration of the present invention will be explained in more detail.

先ず、陽イオン交換容量が50〜200ミリ当量/10
0gの層状の粘土鉱物と膨潤化剤とを接触させる(接触
工程)。これにより、粘土鉱物に膨潤化剤を吸着させて
、ポリアミドモノマーの溶融状態において膨潤する性質
を有する複合体を得る。すなわち、後述する重合工程に
おいて粘土鉱物の層(珪酸塩層)の層間が拡がる性質を
有する複合体を得る。
First, the cation exchange capacity is 50 to 200 meq/10
0 g of layered clay mineral is brought into contact with a swelling agent (contact step). As a result, the swelling agent is adsorbed onto the clay mineral to obtain a composite having the property of swelling in the molten state of the polyamide monomer. That is, a composite having a property in which the interlayers of clay mineral layers (silicate layers) expand in the polymerization step described below is obtained.

ここで、この接触方法としては、所望の膨潤化剤を含む
水溶液中に粘土鉱物を浸漬する方法、あるいは予め所定
の膨潤化剤で交換した陽イオン交換樹脂と粘土鉱物の水
溶液とを接触させてイオン交換する方法等がある。なお
、イオン交換する方法において、イオン交換された粘土
鉱物は、少量の水を含むまま使用してもよく、あるいは
凍結乾燥によって水分を除去してもよい。
Here, this contact method is a method of immersing the clay mineral in an aqueous solution containing a desired swelling agent, or a method of contacting a cation exchange resin exchanged with a predetermined swelling agent with an aqueous solution of the clay mineral. There are methods such as ion exchange. In addition, in the ion-exchange method, the ion-exchanged clay mineral may be used while containing a small amount of water, or the water may be removed by freeze-drying.

粘土鉱物は、高分子材料に機械的特性及び耐熱性を付与
するものであり、厚さが7〜12人の珪酸マグネシウム
層または珪酸アルミニウム層より形成される層状フィロ
珪酸鉱物である。これらの粘土鉱物は、同形イオン置換
等により負に帯電している。この負電荷の密度や分布な
どによりその特性が異なるが1本発明では負電荷−個当
たりの層表面の占有面積が25〜200人2の層状粘土
鉱物であることが好ましい。この粘土鉱物としては、具
体的には、モンモリロナイト、サポナイト。
Clay minerals provide mechanical properties and heat resistance to polymeric materials, and are layered phyllosilicate minerals formed from a magnesium silicate layer or an aluminum silicate layer with a thickness of 7 to 12 people. These clay minerals are negatively charged due to isomorphic ion substitution and the like. Although the characteristics vary depending on the density and distribution of the negative charges, in the present invention, it is preferable to use a layered clay mineral in which the area occupied by each negative charge on the surface of the layer is 25 to 200. Specifically, these clay minerals include montmorillonite and saponite.

バイデライト ノントロナイト、ヘクトライト。beidellite, nontronite, hectorite.

スティプンサイト等のスメクタイト系粘土鉱物やバーミ
キュライト、ハロイサイトなどがあり、天然のものでも
合成されたものでもよい。
Examples include smectite clay minerals such as stipunsite, vermiculite, and halloysite, and they may be natural or synthetic.

また、粘土鉱物は、陽イオンの交換容量が50〜200
ミリ当量/100gであり9反応させるモノマーとの接
触面積が大きいものである。ここで、陽イオン交換容量
を50〜200ミリ当量/100gとしたのは、該容量
が200ミリ当量/100gを越えた場合、その鉱物の
眉間の結合力が強固なため本発明の目的とする複合材料
を得ることが困難となるからである。
In addition, clay minerals have a cation exchange capacity of 50 to 200
It has a large contact area with the monomer to be reacted. Here, the reason why the cation exchange capacity is set to 50 to 200 meq/100g is because when the capacity exceeds 200 meq/100g, the binding force between the eyebrows of the mineral is strong, which is the object of the present invention. This is because it becomes difficult to obtain a composite material.

また、50ミリ当!/100g未満の場合1本発明にお
いて不可欠である有機陽イオンまたは無機陽イオンから
なる膨潤化剤の交換吸着を充分に行うことができない。
Also, you win 50 millimeters! When the amount is less than 100 g, the exchange adsorption of the swelling agent consisting of organic cations or inorganic cations, which is essential in the present invention, cannot be carried out sufficiently.

なお、粘土鉱物は、ミキサー、ボールミル、振動ミル、
ビンミル、ジェットミル、叩解機等を用いて粉砕し、予
め所望の形状、大きさのものとしておくことが好ましい
In addition, clay minerals can be processed using mixers, ball mills, vibration mills,
It is preferable to crush it using a bottle mill, a jet mill, a beater, etc., and give it a desired shape and size in advance.

また、膨潤化剤は、粘土鉱物の層間に存在する交換性カ
チオンと置換することにより、眉間を拡げる役割及び眉
間にポリアミドモノマーや反応に用いる溶媒を侵入しや
すくする役割を有するものである。該膨潤化剤としては
、アンモニウム化合物イオン(RaN″″)、スルホニ
ウム化合物イオン(R,3S″″)、ホスホニウム化合
物イオン(R4,P”)等の有機陽イオンを有する化合
物が挙げられる(Rはアルキル基、アリル基、アリール
基、水素であり、すべてが水素でない。)。
In addition, the swelling agent has the role of widening the glabella and making it easier for the polyamide monomer and the solvent used in the reaction to enter the glabella by replacing exchangeable cations present between the layers of the clay mineral. Examples of the swelling agent include compounds having organic cations such as ammonium compound ions (RaN''), sulfonium compound ions (R, 3S''), and phosphonium compound ions (R4, P'') (R is Alkyl groups, allyl groups, aryl groups, hydrogen, but not all hydrogen).

次に、前記接触工程により得られた複合体と。Next, the composite obtained by the contacting step.

ジアミン化合物とジカルボン酸エステル化合物とから成
るポリアミドモノマーとを混合する(混合工程)。
A polyamide monomer consisting of a diamine compound and a dicarboxylic acid ester compound is mixed (mixing step).

ここで、ポリアミドモノマーは、その重合後ポリアミド
になる原料であり、複合材料の基体をなすものである。
Here, the polyamide monomer is a raw material that becomes polyamide after polymerization, and forms the base of the composite material.

上記ジアミン化合物としては、ベキサメチレンジアミン
、テトラメチレンジアミン等が挙げられ。
Examples of the diamine compound include bexamethylene diamine, tetramethylene diamine, and the like.

それらのうちの1種または2種以上を用いる。また、ジ
カルボン酸エステル化合物としては、アジピン酸ジメチ
ルエステル、セバシン酸ジメチルエステル等が挙げられ
、それらのうちの1種または2種以上を用いる。
One or more of them are used. Further, examples of the dicarboxylic acid ester compound include adipic acid dimethyl ester, sebacic acid dimethyl ester, etc., and one or more types thereof are used.

また、上記複合体とポリアミドモノマーとの混合は、自
動乳鉢や振動ミル等による機械的混合等により行う。
Further, the above composite and the polyamide monomer are mixed by mechanical mixing using an automatic mortar, vibrating mill, or the like.

この混合により、上記複合体がポリアミドモノマー中に
おいて分散した混合物になる。
This mixing results in a mixture in which the composite is dispersed in the polyamide monomer.

次に、前記混合工程で得られた混合物を所定温度に加熱
して重合する(重合工程)。
Next, the mixture obtained in the mixing step is heated to a predetermined temperature and polymerized (polymerization step).

この重合は、混合の後直ちに所定温度に昇温しで行って
もよいが、一旦モノマー融点以上に加熱し、その後均−
に粘土鉱物をモノマー中に分散させることが効果的であ
る。
This polymerization may be carried out by raising the temperature to a predetermined temperature immediately after mixing, but it is possible to carry out the polymerization by heating it to a predetermined temperature immediately after mixing.
It is effective to disperse clay minerals in monomers.

また、上記の重合は、前記混合物に重合開始剤あるいと
熱や、光を加える等により行う。また。
Further, the above polymerization is carried out by adding a polymerization initiator, heat, light, etc. to the mixture. Also.

重合の種類は7重縮合重合、ラジカル重合、カチオン重
合、アニオン重合、配位重合等、どのような重合方法で
もよく、それぞ九の重合形式に適した条件を選べばよい
The type of polymerization may be any polymerization method such as heptad condensation polymerization, radical polymerization, cationic polymerization, anionic polymerization, coordination polymerization, etc., and conditions suitable for each of the nine polymerization types may be selected.

更に重合の加熱温度は100〜300℃が望ましい。1
00℃未満では生成するアルコールの除去が効率的に進
行しないし、300℃を越える場合にはモノマーの蒸発
による損失やポリマーの分解がおこるためである。
Further, the heating temperature for polymerization is desirably 100 to 300°C. 1
This is because if the temperature is lower than 00°C, the removal of the produced alcohol will not proceed efficiently, and if the temperature exceeds 300°C, loss due to evaporation of the monomer and decomposition of the polymer will occur.

以上のようにして得られた複合材料は、ポリアミドと、
該ポリアミド中に均一に分散した層状の粘土鉱物とから
成り、該粘土鉱物は層厚さが7〜12人で層間距離が3
0Å以上のものである。より詳細には、ポリアミドの分
子鎖の中にイオン結合によって粘土鉱物のN(珪酸塩層
)が組み込まれたものと考えられ9寸法安定性、耐摩耗
性2表面潤滑性、耐水性に優れている。更に、該複合材
料は、射出成形法や加熱加圧成形法などで成形すること
ができる。また、上記の重合反応を所定の型中で進行さ
せて成形体を得てもよい。また、ポリアミドの重合工程
においては、燐酸や水などの重合触媒を更に添加しても
よい。
The composite material obtained as above consists of polyamide,
It consists of a layered clay mineral uniformly dispersed in the polyamide, and the clay mineral has a layer thickness of 7 to 12 layers and an interlayer distance of 3.
It is 0 Å or more. More specifically, it is thought that N (silicate layer) of clay mineral is incorporated into the molecular chain of polyamide through ionic bonding. There is. Furthermore, the composite material can be molded by an injection molding method, a hot pressure molding method, or the like. Alternatively, the molded article may be obtained by allowing the above polymerization reaction to proceed in a predetermined mold. Further, in the polyamide polymerization step, a polymerization catalyst such as phosphoric acid or water may be further added.

また、上記複合材料にガラス繊維などを混合して用いて
もよく、あるいは他の高分子へ強化剤として添加するこ
ともできる。なお、他の高分子に添加する場合、ポリア
ミドを含む割合が多ければ多い捏持性に擾れた複合材料
か得られるが、その含有割合が10−t%であってもよ
い。
Further, glass fiber or the like may be mixed with the above composite material, or may be added to other polymers as a reinforcing agent. When added to other polymers, the higher the polyamide content, the better the composite material can be obtained, but the content may be as low as 10-t%.

また、ポリアミドまたはポリアミドと他の高分子に対す
る粘土鉱物の含有量は、ポリアミドまたはポリアミドと
他の高分子100重量部に対して0.5〜150重量部
となるようにするのが好ましい。これは、該含有量が0
.5重量部未満の場合。
The content of clay mineral in the polyamide or polyamide and other polymer is preferably 0.5 to 150 parts by weight based on 100 parts by weight of the polyamide or polyamide and other polymer. This means that the content is 0
.. If it is less than 5 parts by weight.

粘土鉱物が少なすぎるため補強等の充分な特性が得られ
ないからである。また、150重量部を越えた場合、ポ
リアミド等の樹脂成分が少ないため粘土鉱物の粉体が得
られるに過ぎず、これを成形体として利用することが困
難だからである。
This is because sufficient properties such as reinforcement cannot be obtained because the clay mineral content is too small. On the other hand, if the amount exceeds 150 parts by weight, only a clay mineral powder is obtained due to the small amount of resin components such as polyamide, which is difficult to use as a molded product.

〔発明の作用及び効果〕[Operation and effect of the invention]

本発明の複合材料の製造方法により、ポリアミド中に粘
土鉱物を構成する珪酸塩層が十分に分散した複合材料を
得ることができる。これは以下の理由によると考えられ
る。
By the method for producing a composite material of the present invention, a composite material in which a silicate layer constituting a clay mineral is sufficiently dispersed in polyamide can be obtained. This is considered to be due to the following reasons.

ポリアミドモノマーとして用いたカルボン酸エステル化
合物は、一方のポリアミドモノマーであるジアミン化合
物が反応中にジアンモニウム塩となるのを抑制する。も
し、ジアンモニウム塩カ生成したとすれば、このジアン
モニウム塩は、膨潤化剤で処理した粘土鉱物に作用して
、珪酸塩層間に存在する有機陽イオンと置換し、粘土鉱
物の膨潤性を失わせてしまう。そのため、この状態で重
合工程を行っても珪酸塩層の眉間は広がらず、ポリアミ
ド中に珪酸塩層が均一に分散することができない。本発
明の方法では、カルボン酸エステル化合物の使用により
、ジアンモニウム塩の生成を抑制し、粘土鉱物の膨潤性
を失わせることなく。
The carboxylic acid ester compound used as the polyamide monomer suppresses the diamine compound, which is one of the polyamide monomers, from turning into a diammonium salt during the reaction. If a diammonium salt is formed, this diammonium salt acts on the clay mineral treated with a swelling agent, replacing the organic cations present between the silicate layers, and reducing the swelling property of the clay mineral. I'll make you lose it. Therefore, even if the polymerization step is performed in this state, the glabella of the silicate layer does not widen, and the silicate layer cannot be uniformly dispersed in the polyamide. In the method of the present invention, the use of a carboxylic acid ester compound suppresses the formation of diammonium salts without causing the clay mineral to lose its swelling properties.

ポリアミド中に粘土鉱物の珪酸塩層が均一に分散した複
合材料を得ることができる。
It is possible to obtain a composite material in which a silicate layer of clay mineral is uniformly dispersed in the polyamide.

また3本発明の方法によれば、従来その合成が困難であ
ったナイロン66、ナイロン610.−1−イロン46
等と粘土鉱物との複合材料を容易に合成することができ
る。
In addition, according to the method of the present invention, nylon 66, nylon 610, which has been difficult to synthesize in the past. -1-Iron 46
etc. and clay minerals can be easily synthesized.

また9重合工程において、界面重縮合法を用いても、珪
酸塩層が樹脂中に均一に分散した複合材料を製造するこ
とができる。
Furthermore, even if an interfacial polycondensation method is used in the ninth polymerization step, a composite material in which the silicate layer is uniformly dispersed in the resin can be produced.

更に1本発明の方法により得られた複合材料は。Furthermore, a composite material obtained by the method of the present invention is as follows.

機械的強度及び耐熱性に優れた複合材料である。It is a composite material with excellent mechanical strength and heat resistance.

本発明の製造方法は、上記効果を有する他、従来の複合
材料製造の工程を省くことができる。すなわち、(1)
本発明の方法によるイオンを吸着した粘土鉱物はポリア
ミドモノマーの重合触媒作用をするため、新たな触媒添
加やアミノ酸合成のための開環反応工程が不要である。
The manufacturing method of the present invention not only has the above-mentioned effects, but also can omit the conventional composite material manufacturing process. That is, (1)
Since the clay mineral adsorbed with ions by the method of the present invention acts as a polymerization catalyst for polyamide monomers, there is no need to add a new catalyst or to perform a ring-opening reaction step for amino acid synthesis.

(2)重合工程により複合化が可能なため、鉱物の表面
処理や混合の工程が省略できる。(3)化学反応を利用
して珪酸塩層を分散させるため、粘土鉱物の粉砕や混合
方法が簡略化でき、しかも粉砕のしすぎによるアスペク
ト比の低下もない。(4)粘土鉱物はポリアミドのモノ
マーやポリマーを変質させることはなく、保存安定性に
優れるのでモノマーと予め混合したままでも1重合後の
ポリマーと複合体の形でも保存や輸送が可能である。
(2) Since composite formation is possible through the polymerization process, the steps of surface treatment and mixing of minerals can be omitted. (3) Since the silicate layer is dispersed using a chemical reaction, the method of crushing and mixing clay minerals can be simplified, and there is no reduction in aspect ratio due to excessive crushing. (4) Clay minerals do not alter the properties of polyamide monomers or polymers and have excellent storage stability, so they can be stored and transported either as a pre-mix with monomers or in the form of a composite with polymers after one polymerization.

〔実施例〕〔Example〕

以下に1本発明の詳細な説明する。 The present invention will be explained in detail below.

実施例1 粘土鉱物としのモンモリロナイト(陽イオン交換容量1
00ミリ当量/100g、F!厚さ=9.8人)10重
量部を蒸留水にミキサーを用いて分散させた。これに膨
潤化剤としての12−アミノラウリン酸塩酸塩2.2重
量部を加え、ミキサーで攪拌した。これによりモンモリ
ロナイトはイオン交換され、このモンモリロナイトを吸
引口過で収集し、蒸留水で洗浄した。更に、凍結乾燥を
行い。
Example 1 Montmorillonite as a clay mineral (cation exchange capacity 1
00 milliequivalent/100g, F! Thickness = 9.8 people) 10 parts by weight were dispersed in distilled water using a mixer. To this was added 2.2 parts by weight of 12-aminolaurate hydrochloride as a swelling agent, and the mixture was stirred with a mixer. This ion-exchanged the montmorillonite, which was collected by suction filtration and washed with distilled water. Furthermore, freeze-dry it.

粉末状にした。Made into powder.

次に、ガラス製セパラブルフラスコにヘキサメチレンジ
アミン174.20重量部、アジピン酸ジメチルエステ
ル116.21重量部、上述のイオン交換されたモンモ
リロナイト14.5重量部(乾燥重量)を入れ、窒素ガ
スで置換した。この混合物を攪拌しながら150℃で3
時間加熱して生成するメタノールを除去した。更に窒素
気流中で250℃、2時間加熱して生成物を得た。
Next, 174.20 parts by weight of hexamethylene diamine, 116.21 parts by weight of dimethyl adipate, and 14.5 parts by weight (dry weight) of the above-mentioned ion-exchanged montmorillonite were placed in a separable glass flask, and the mixture was heated with nitrogen gas. Replaced. This mixture was heated at 150°C for 3 hours with stirring.
Methanol produced by heating for a period of time was removed. The mixture was further heated at 250° C. for 2 hours in a nitrogen stream to obtain a product.

得られた生成物は、IRスペクトル、元素分析により5
.2重量部の粘土鉱物を含むナイロン66であることが
確かめられた。また、粉末X線回折によりモンモリロナ
イトの珪酸塩層の層間距離は100Å以上であることが
確認された。また、射出成形により試験片を成形し、そ
の機械的性質を評価したところ1曲げ強度は152MP
a、曲げ弾性率は4.06GPaであった。
The obtained product was determined to be 5 by IR spectrum and elemental analysis.
.. It was confirmed that it was nylon 66 containing 2 parts by weight of clay mineral. Furthermore, it was confirmed by powder X-ray diffraction that the interlayer distance between the silicate layers of montmorillonite was 100 Å or more. In addition, when a test piece was molded by injection molding and its mechanical properties were evaluated, the 1 bending strength was 152 MP.
a, the flexural modulus was 4.06 GPa.

比較例1 ポリアミドモノマーとしてヘキサメチレンジアミンとア
ジピン酸とを用いた比較例を示す。
Comparative Example 1 A comparative example using hexamethylene diamine and adipic acid as polyamide monomers is shown.

アジピン酸146重量部を無水メタノール1000重量
部に溶かし、ここにヘキサメチレンジアミン116重景
部を攪拌しながら加えた。析出した結晶を口過し、無水
の冷エタノールで洗浄した後、室温で一晩真空乾燥させ
た。これにより、収量254重量部(97%)、融点1
96〜197℃のナイロン66塩を生成した。
146 parts by weight of adipic acid was dissolved in 1000 parts by weight of anhydrous methanol, and 116 parts by weight of hexamethylene diamine was added thereto with stirring. The precipitated crystals were passed through the mouth, washed with anhydrous cold ethanol, and then vacuum-dried at room temperature overnight. As a result, the yield was 254 parts by weight (97%), and the melting point was 1.
Nylon 66 salt was produced at 96-197°C.

このようにして得たナイロン66塩100重量部を実施
例1と同様にしてイオン交換されたモンモリロナイト5
重量部と乳鉢を用いて混合し、ガラス製のセパラブルフ
ラスコに入れた。フラスコ内を窒素ガスで置換し、21
5℃で2時間、270℃で1時間加熱処理し、生成物を
得た。
Montmorillonite 5 was ion-exchanged with 100 parts by weight of the nylon 66 salt thus obtained in the same manner as in Example 1.
Parts by weight were mixed using a mortar and placed in a separable glass flask. The inside of the flask was replaced with nitrogen gas, and 21
Heat treatment was performed at 5°C for 2 hours and at 270°C for 1 hour to obtain a product.

この生成物の粉末X線回折によりモンモリロナイトの珪
酸塩層の層間距離は214人であった。
Powder X-ray diffraction of this product revealed that the distance between the silicate layers of montmorillonite was 214.

すなわち、珪酸塩層が十分に分散していないことがわか
った。射出成形を行った試験片について機械的性質を評
価したところ2曲げ強度は130MPa、曲げ弾性率は
2.9 G P aであった。
In other words, it was found that the silicate layer was not sufficiently dispersed. When the mechanical properties of the injection molded test piece were evaluated, the bending strength was 130 MPa, and the bending modulus was 2.9 GPa.

実施例2 膨潤化剤として16−アミノヘキサデカン酸塩酸塩を用
いた以外は実施例1と同様にしてモンモリロナイトのイ
オン交換を行った。
Example 2 Montmorillonite was ion-exchanged in the same manner as in Example 1, except that 16-aminohexadecano hydrochloride was used as the swelling agent.

このイオン交換されたモンモリロナイト5.0重量部と
へキサメチレンジアミン60.07重量部。
5.0 parts by weight of this ion-exchanged montmorillonite and 60.07 parts by weight of hexamethylene diamine.

アジピン酸ジエチルエステル46.52重量部とをガラ
ス製セパラブルフラスコに入れ、窒素気流中150℃で
2時間、250℃で1時間加熱処理して生成物を得た。
46.52 parts by weight of diethyl adipic acid were placed in a separable glass flask and heated in a nitrogen stream at 150°C for 2 hours and at 250°C for 1 hour to obtain a product.

得られた生成物は1通常のX線回折法では眉間距離に対
応するピークは観測されず(層間距離は100Å以上)
、モンモリロナイトの珪酸塩層が均一にナイロン66中
に分散していることが確認された。
The obtained product is 1. No peak corresponding to the distance between the eyebrows is observed by ordinary X-ray diffraction method (interlayer distance is 100 Å or more)
It was confirmed that the silicate layer of montmorillonite was uniformly dispersed in nylon 66.

実施例3 山形県産モンモリロナイト(陽イオン交換容量120ミ
リ当!/100g)を実施例1と同様の方法で12−ア
ミノラウリン酸陽イオン(NH3(CHz) + +C
00H)を吸着させた。
Example 3 Montmorillonite produced in Yamagata Prefecture (cation exchange capacity 120 mm/100 g) was treated with 12-aminolauric acid cation (NH3 (CHz) + +C) in the same manner as in Example 1.
00H) was adsorbed.

このイオン吸着させたモンモリロナイト5重量部に、ヘ
キサメチレンジアミン116.21重量部とセバシン酸
ジメチルエステル230.31重量部とを加え、ガラス
製セパラブルフラスコに入れた。
116.21 parts by weight of hexamethylene diamine and 230.31 parts by weight of dimethyl sebacate were added to 5 parts by weight of the ion-adsorbed montmorillonite, and the mixture was placed in a separable glass flask.

この混合物を窒素気流中で180℃、2時間加熱処理し
、生成するメタノールを除去した。その後窒素気流中2
30℃で1時間加熱処理し、生成物を得た。
This mixture was heat-treated at 180° C. for 2 hours in a nitrogen stream to remove generated methanol. Then in a nitrogen stream 2
A product was obtained by heat treatment at 30° C. for 1 hour.

この生成物は、X線回折により、モンモリロナイトの珪
酸塩の眉間は100Å以上に広がっていることが確認さ
れた。
In this product, it was confirmed by X-ray diffraction that the glabella of the silicate of montmorillonite spread over 100 Å.

Claims (1)

【特許請求の範囲】[Claims] 陽イオン交換容量が50〜200ミリ当量/100gの
層状の粘土鉱物と膨潤化剤とを接触させてポリアミドモ
ノマーの溶融状態において膨潤する性質を有する複合体
を得る接触工程と、該複合体と、ジアミン化合物とジカ
ルボン酸エステル化合物とから成るポリアミドモノマー
とを混合する混合工程と、該混合物を所定温度に加熱し
て重合する重合工程とから成ることを特徴とする複合材
料の製造方法。
A contacting step of contacting a layered clay mineral with a cation exchange capacity of 50 to 200 milliequivalents/100 g with a swelling agent to obtain a composite having a property of swelling in the molten state of the polyamide monomer; A method for producing a composite material, comprising a mixing step of mixing a polyamide monomer consisting of a diamine compound and a dicarboxylic acid ester compound, and a polymerization step of heating the mixture to a predetermined temperature and polymerizing it.
JP5568687A 1987-03-11 1987-03-11 Production of composite material Pending JPS63221125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5568687A JPS63221125A (en) 1987-03-11 1987-03-11 Production of composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5568687A JPS63221125A (en) 1987-03-11 1987-03-11 Production of composite material

Publications (1)

Publication Number Publication Date
JPS63221125A true JPS63221125A (en) 1988-09-14

Family

ID=13005785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5568687A Pending JPS63221125A (en) 1987-03-11 1987-03-11 Production of composite material

Country Status (1)

Country Link
JP (1) JPS63221125A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02305828A (en) * 1989-05-19 1990-12-19 Ube Ind Ltd Polyamide composite material and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02305828A (en) * 1989-05-19 1990-12-19 Ube Ind Ltd Polyamide composite material and its production

Similar Documents

Publication Publication Date Title
JPS6274957A (en) Composite material and production thereof
US4739007A (en) Composite material and process for manufacturing same
JP4646352B2 (en) Layered composition having multi-charged onium ions as exchange ions, and application of the composition to prepare monomer, oligomer and polymer intercalation products, and nano-preparation prepared using the layered composition of the intercalation products Complex
Wang et al. Hybrid organic− inorganic nanocomposites formed from an epoxy polymer and a layered silicic acid (Magadiite)
Akelah et al. Synthesis and characterization of ‘epoxyphilic’montmorillonites
JP3851089B2 (en) Intercalation formed with MXD6 nylon intercalant
JP2002500253A (en) Nano composite materials
JP3952482B2 (en) Layered organosilicon polymer, molded product thereof, and production method thereof
JP3014674B2 (en) Composite material
JPS63221168A (en) Composite material and production thereof
JPS63221125A (en) Production of composite material
JP2747019B2 (en) Method for producing polyamide composite material
KR100533734B1 (en) Process for preparing polymer-layered compound nanocomposite
JP2519045B2 (en) Composite material and manufacturing method thereof
Nour Polymer/clay nanocomposites
JPS63215775A (en) Composite material and production thereof
JP3075709B2 (en) Composite material
JP2663113B2 (en) Manufacturing method of composite material
JPH07309942A (en) Production of composite material
JP2003119398A (en) Resin composite material and method for producing the same
JP2999225B2 (en) Method for producing smectite-containing nylon composition and composition thereof
JP2003073538A (en) Biodegradable resin composite material
JPH02102261A (en) Production of composite polyamide material
JP2565557B2 (en) Method for producing polyamide composite material
JPH0229458A (en) Low-warpage polyamide resin composition