JPS63220959A - Method for pouring molten metal by ladle - Google Patents

Method for pouring molten metal by ladle

Info

Publication number
JPS63220959A
JPS63220959A JP5466387A JP5466387A JPS63220959A JP S63220959 A JPS63220959 A JP S63220959A JP 5466387 A JP5466387 A JP 5466387A JP 5466387 A JP5466387 A JP 5466387A JP S63220959 A JPS63220959 A JP S63220959A
Authority
JP
Japan
Prior art keywords
ladle
pressure
molten metal
value
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5466387A
Other languages
Japanese (ja)
Inventor
Kazufumi Matsumura
松村 千史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP5466387A priority Critical patent/JPS63220959A/en
Publication of JPS63220959A publication Critical patent/JPS63220959A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To pour molten metal into a mold at the fixed flow velocity and to eliminate the need of a tundish by detecting molten metal weight in a ladle to grasp the static hydraulic pressure, detecting the pressure in the ladle after tightening the ladle and supplying gas in the ladle so that the sum of the static hydraulic pressure and the pressure in the ladle becomes constant. CONSTITUTION:In accordance with pouring the molten metal 12, the gross weight of the ladle 10 is reduced, and then, electric resistant value of a load cell 14 is changed and voltage value is an arithmetic unit 16 is reduced. Next, based on the detected voltage, the static hydraulic pressure of the molten metal 12 is calculated and the calculated value is transmitted to a control device 18. On the other hand, the pressure in the ladle 10 is detected by a detector 24 and the detected value is inputted to the control device 18. The control unit 18 outputs the voltage signal corresponding to the total pressure value of the static hydraulic pressure and the pressure in the ladle. And, a voltage difference is found by comparing the voltage signal with the pressure setting value. next, at the time of transmitting the voltage difference from the control unit 18 to flow rate adjusting valve 28, the suitable quantity of gas is supplied in the ladle 10 through piping 26 and the pressure in the ladle, which is gradually decreased from starting of pouring, is gradually increased, and the whole molten metal 12 in the ladle is poured into the mold at a constant flowing speed.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、連続鋳造において取鍋内の溶湯を!8型に
注入する取鍋による溶湯注入方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention applies to continuous casting of molten metal in a ladle! This invention relates to a method for pouring molten metal into mold 8 using a ladle.

U従来の技術] 連続鋳造において、鋳型内の湯面高さが変動すると、鋳
片に表面疵が発生する。このため、鋳型に注入される溶
湯の流速を略一定にする必要があり、通常、取鍋内の溶
湯をタンディツシュに一旦注入し、タンディツシュ内の
湯面を所定高さに保持しつつタンディツシュ内の溶湯を
鋳型に注入する。
U Prior Art] In continuous casting, when the height of the molten metal in the mold fluctuates, surface flaws occur in the slab. For this reason, it is necessary to keep the flow rate of the molten metal injected into the mold approximately constant.Normally, the molten metal in the ladle is once poured into the tundish, and the molten metal level in the tundish is maintained at a predetermined height. Pour the molten metal into the mold.

[発明が解決しようとする問題点コ しかしながら、従来の連続&8造における溶湯注入方法
においては、溶湯との接触面積が広いタンディツシュを
使用するので、耐火物コストが高くなるという問題点が
ある。
[Problems to be Solved by the Invention] However, in the conventional method of pouring molten metal in continuous & 8-build construction, a tundish with a large contact area with the molten metal is used, so there is a problem that the cost of refractories increases.

そこで、取鍋内の溶湯を鋳型へ直接注入することにより
タンディツシュを省略し、耐火物コストを低減する溶湯
注入方法の実用化が連続鋳造において強く要望されてい
る。この場合に、取鍋底部に設けられたスライディング
ノズルを介して鋳型内に溶鋼を注入する。
Therefore, there is a strong demand in continuous casting for the practical application of a molten metal injection method that directly injects the molten metal in the ladle into the mold, thereby omitting the tundish and reducing the cost of refractories. In this case, molten steel is injected into the mold via a sliding nozzle provided at the bottom of the ladle.

第3図は、取鍋内の溶鋼をスライディングノズルを介し
て鋳型に直接注入する場合の取鍋を示す断面図である。
FIG. 3 is a sectional view showing a ladle when molten steel in the ladle is directly injected into a mold via a sliding nozzle.

取鍋1の底部のスライディングノズル4を開くと、溶鋼
2が浸漬ノズル5を介して鋳型6内に注入される。この
とき、鋳造初期では溶鋼圧力が高くなるので、ノズル4
の開口量(開度:$)を小さくし、溶rj4inを調節
する。すなわち、ノズル4が流出口3から若干ずれた状
態で溶鋼を注入する。このため、図中矢印7に示すよう
に、注入溶鋼流の不均一(@流)が発生し、溶湯がノズ
ル5の下部の1対の吐出口から等分に吐出されず、鋳型
内の湯面を乱すという問題点がある。
When the sliding nozzle 4 at the bottom of the ladle 1 is opened, the molten steel 2 is injected into the mold 6 through the immersion nozzle 5. At this time, since the molten steel pressure is high in the initial stage of casting, nozzle 4
Reduce the opening amount (opening degree: $) and adjust the melt rj4in. That is, molten steel is injected with the nozzle 4 being slightly displaced from the outlet 3. For this reason, as shown by the arrow 7 in the figure, non-uniformity (@ flow) occurs in the flow of the injected molten steel, and the molten metal is not evenly distributed from the pair of discharge ports at the bottom of the nozzle 5. There is a problem in that it disturbs the surface.

第4図は、横軸に取鍋内溶鋼深さをとり、縦軸に溶鋼吐
出流速をとって、溶鋼深さと吐出流速との関係について
調査したグラフ図、第5図は、横軸に取鍋内溶鋼深さを
とり、縦軸にスライディングノズルの開度率をとって、
径が50+nのノズルにより鋳型に注入し、厚さが25
0mmで幅が1000an+のスラブを毎分1mの速度
で引扱く場合の溶鋼深さとノズル開度率との関係を示す
グラフ図である。第4図から明らかなように、鋳造末期
において溶鋼吐出流速が急速に低下する。また、第5図
から明らかなように、鋳造末期に取鍋内溶鋼深さが約2
00mm以下になると、ノズル開度率を100%にした
場合でも溶鋼吐出流速が急激に低下するので、鋳造を続
けることができないという問題点がある。更に、第5図
から明らかなように、鋳造初期においてノズル開度率を
約18%以下にすると、ノズル詰りか発生するという問
題点がある。
Figure 4 is a graph showing the relationship between molten steel depth and discharge flow rate, with the horizontal axis representing the molten steel depth in the ladle and the vertical axis representing the molten steel discharge flow rate. The depth of the molten steel in the pot is taken, and the opening ratio of the sliding nozzle is taken on the vertical axis.
Injected into the mold with a nozzle with a diameter of 50+n and a thickness of 25
It is a graph diagram showing the relationship between the molten steel depth and the nozzle opening rate when a slab with a width of 0 mm and a width of 1000 an+ is handled at a speed of 1 m/min. As is clear from FIG. 4, the molten steel discharge flow rate rapidly decreases in the final stage of casting. Furthermore, as is clear from Fig. 5, the depth of the molten steel in the ladle at the end of casting is approximately 2
If the diameter is less than 00 mm, there is a problem that casting cannot be continued because the molten steel discharge flow rate decreases rapidly even when the nozzle opening rate is set to 100%. Furthermore, as is clear from FIG. 5, if the nozzle opening ratio is set to about 18% or less in the early stage of casting, there is a problem that the nozzle will become clogged.

第6図は横軸にスライディングノズルの水平移動距離を
とり、縦軸にスライディングノズル開度率及び溶鋼の通
過断面積をとって、径が50mm。
In FIG. 6, the horizontal axis represents the horizontal movement distance of the sliding nozzle, and the vertical axis represents the opening ratio of the sliding nozzle and the cross-sectional area of the molten steel, and the diameter is 50 mm.

6011111並びに70mmの夫々のノズルについて
ノズル開度率及び溶鋼通過断面積の関係を示すグラフ図
である。図中、黒丸及び白丸はノズル径が701の場合
のノズル開度率及び溶鋼通過断面積を示し、黒三角及び
白三角はノズル径が60Ill1mの場合のノズル開度
率及び溶鋼通過断面積を示し、また、黒四角及び白四角
はノズル径が501!lImの場合のノズル開度率及び
溶鋼通過断面積を示す。第6図から明らかなように、鋳
造中においては湯面の低下に応じてスライディングノズ
ルを順次調節する必要があるという問題点がある。
It is a graph diagram showing the relationship between the nozzle opening rate and the molten steel passage cross-sectional area for each of 6011111 and 70 mm nozzles. In the figure, black circles and white circles indicate the nozzle opening rate and molten steel passage cross-sectional area when the nozzle diameter is 701, and black triangles and white triangles indicate the nozzle opening rate and molten steel passage cross-sectional area when the nozzle diameter is 60Ill1m. , Also, the nozzle diameter of the black square and white square is 501! The nozzle opening ratio and molten steel passage cross-sectional area in the case of lIm are shown. As is clear from FIG. 6, there is a problem in that during casting, it is necessary to sequentially adjust the sliding nozzle according to the drop in the metal level.

この発明はかかる事情に鑑みてなされたものであって、
スライディングノズルによることなく取鍋内の溶湯を一
定の流速で鋳型に直接注入することができ、タンディツ
シュを不要にすることができる取鍋による溶湯注入方法
を提供することを目的とする。
This invention was made in view of such circumstances, and
To provide a method for pouring molten metal using a ladle, which can directly inject molten metal in a ladle into a mold at a constant flow rate without using a sliding nozzle, and can eliminate the need for a tundish.

[問題点を解決するための手段] この発明に係る取鍋による溶湯注入方法は、取鍋内に貯
留された溶湯をその底部のスライディングノズルから鋳
型に注入する取鍋による溶湯注入方法において、取鍋内
の溶湯の重量を検出して前記スライディングノズルに印
加される溶湯の静水圧を把握する一方、取鍋内を密閉し
て取鍋内の圧力を検出し、溶湯の静水圧と取鍋内圧力と
の和が実質的に一定になるように取鍋内にガスを供給す
ることを特徴とする。
[Means for Solving the Problems] The method for pouring molten metal using a ladle according to the present invention is a method for pouring molten metal using a ladle in which molten metal stored in the ladle is poured into a mold from a sliding nozzle at the bottom of the ladle. The weight of the molten metal in the ladle is detected to determine the hydrostatic pressure of the molten metal applied to the sliding nozzle, while the inside of the ladle is sealed and the pressure inside the ladle is detected to determine the hydrostatic pressure of the molten metal and the pressure inside the ladle. It is characterized in that the gas is supplied into the ladle so that the sum with the pressure remains substantially constant.

[作用] この発明に係る取鍋による溶湯注入方法においては、溶
湯の静水圧を取鍋内の溶湯の重量から把握する一方、密
閉された取鍋内の圧力を検出する。
[Function] In the method for pouring molten metal using a ladle according to the present invention, the hydrostatic pressure of the molten metal is determined from the weight of the molten metal in the ladle, and the pressure in the sealed ladle is detected.

そして、溶湯の注入により取鍋内の湯面が順次低下して
溶湯の静水圧が減少すると、ガスを取鍋内に供給して取
鍋内の圧力を上昇させ、溶湯静水圧と取鍋内圧力との和
を略一定に保持する。このため、取鍋底部のスライディ
ングノズルから流出する1mは、略一定の流速になる。
Then, when the molten metal level in the ladle gradually decreases and the hydrostatic pressure of the molten metal decreases, gas is supplied into the ladle to increase the pressure in the ladle, thereby increasing the molten metal hydrostatic pressure and the hydrostatic pressure in the ladle. The sum of the pressure and pressure is kept approximately constant. Therefore, the flow rate of 1 m flowing out from the sliding nozzle at the bottom of the ladle is approximately constant.

[実施例] 以下、添附の図面を参照してこの発明の実施例について
具体的に説明する。
[Embodiments] Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings.

第1図は、この発明の実施例に係る取鍋による溶湯注入
方法が適用された取鍋を示す模式図である。自重が約2
50トンの取110内に約3mの深さく図中、記号Hで
示す深さ)の溶tA12が収容されている。取鍋10の
底部の適所にはスライディングノズル(図示せず)が設
けられており、スライディングノズルに取付けられた浸
漬ノズル(図示せず)を介して鋳型(図示せず)内に溶
鋼を注入するようになっている。また、取鍋10の底部
にはロードセル14が配設されており、取鍋10の総量
mを検出するようになっている。ロードセル14は、演
算装置16に接続されている。
FIG. 1 is a schematic diagram showing a ladle to which a method for pouring molten metal using a ladle according to an embodiment of the present invention is applied. Weight is about 2
Molten tA 12 is stored in a 50-ton chamber 110 to a depth of approximately 3 m (the depth indicated by symbol H in the figure). A sliding nozzle (not shown) is provided at a suitable location at the bottom of the ladle 10, and molten steel is injected into the mold (not shown) through a submerged nozzle (not shown) attached to the sliding nozzle. It looks like this. Further, a load cell 14 is disposed at the bottom of the ladle 10 to detect the total amount m of the ladle 10. Load cell 14 is connected to calculation device 16 .

演算装置16は、ロードセル14の歪ゲージに接続され
た検出部及び検出重量から溶鋼の静水圧を算出する演算
部とを備えている。演算部@16の演算部は制御装置1
8の入力側に接続されている。
The calculation device 16 includes a detection section connected to the strain gauge of the load cell 14 and a calculation section that calculates the hydrostatic pressure of molten steel from the detected weight. The calculation unit of the calculation unit @16 is the control device 1
It is connected to the input side of 8.

一方、取鍋10には蓋20が被せられている。On the other hand, the ladle 10 is covered with a lid 20.

M2Oと取vA10との接触面には可撓性を有する耐火
物(例えば、カオウール)が介装されており、接触面か
ら取1110内のガスが漏洩しないようになっている。
A flexible refractory material (for example, copper wool) is interposed at the contact surface between M2O and the tray 110 to prevent gas in the tray 1110 from leaking from the contact surface.

また、120は適宜の手段により取mioに固定されて
いる。配管22及び配管26がf120を貫通し、取8
1410内に夫々の先端部が開口している。配管22の
基端部は圧力検出器24に接続され、圧力検出器24は
制Wv装置18の入力側に接続されている。この圧力検
出器24は、検出した取鍋内圧を電圧に変換する変換機
能を有している。制御装置18の出力側は流出調整弁2
8の弁体を開閉する駆動部に接続されている。
Further, 120 is fixed to the mounting plate by appropriate means. Piping 22 and piping 26 penetrate f120, and
Each tip opens into 1410 . The base end of the pipe 22 is connected to a pressure detector 24, and the pressure detector 24 is connected to the input side of the Wv control device 18. This pressure detector 24 has a conversion function of converting the detected ladle internal pressure into voltage. The output side of the control device 18 is the outflow regulating valve 2
It is connected to a drive unit that opens and closes the valve body No. 8.

また、制御装置18には所定の圧力設定値が電圧信号と
して与えられており、この圧力設定値と演算装置16に
より算出された溶鋼の静水圧及び圧力検出器24により
検出された取鍋内の圧力の合計値とを比較し、両者の差
を求めてこれを差圧指令として流m調整弁28に信号を
送るようになっている。流m調整弁28は配管26の管
路の適所に設けられいる。この配管26の基端部は窒素
ガス供給源(図示せず)に接続されており、流量調整弁
28が開くと、配管26を介して窒素ガスが取vA10
内に供給されるようになっている。
Further, a predetermined pressure setting value is given as a voltage signal to the control device 18, and this pressure setting value, the hydrostatic pressure of the molten steel calculated by the calculation device 16, and the hydrostatic pressure in the ladle detected by the pressure detector 24 are used. The total value of the pressure is compared, the difference between the two is determined, and this is used as a differential pressure command to send a signal to the flow m regulating valve 28. The flow m adjustment valve 28 is provided at a suitable position in the pipe line of the pipe 26. The base end of this pipe 26 is connected to a nitrogen gas supply source (not shown), and when the flow rate adjustment valve 28 opens, nitrogen gas is taken up via the pipe 26.
It is designed to be supplied internally.

次に、この発明の実施例の動作について説明する。鋳造
開始時における取110内は大気圧(約1気圧)と略同
じ圧力である。この取鍋内圧力を圧力検出器24により
検出し、検出信号を制御装置18に送る。一方、ロード
セル14により取鍋10の総重量を検出し、この検出N
量に基づき演算装置16により溶tA12のみの重量を
鋒出し、更に、溶鋼12の重量からその静水圧を演算装
置16により求め、これを電圧信号として制ta装置1
8に送る。制御fIl装置18では、圧力検出器24か
らの取鍋内圧力の電圧信号と演算装置16からの静水圧
の電圧信号とを合成し、この合成された電圧信号と予め
設定された所定の圧力設定値の電圧信号とを比較する。
Next, the operation of the embodiment of this invention will be explained. At the start of casting, the pressure inside the chamber 110 is approximately the same as atmospheric pressure (approximately 1 atmosphere). This ladle internal pressure is detected by the pressure detector 24 and a detection signal is sent to the control device 18. On the other hand, the total weight of the ladle 10 is detected by the load cell 14, and this detected N
Based on the amount, the calculation device 16 calculates the weight of only the molten steel 12. Furthermore, the calculation device 16 calculates the hydrostatic pressure from the weight of the molten steel 12, and uses this as a voltage signal to control the tA device 1.
Send to 8. The control fl device 18 combines the ladle internal pressure voltage signal from the pressure detector 24 and the hydrostatic pressure voltage signal from the calculation device 16, and combines this combined voltage signal with a predetermined pressure setting. Compare the value with the voltage signal.

このとき、鋳造開始前における合計値は圧力設定値と一
致するので、流II¥14整弁28は閉じている。鋳造
準備が整うと、取鍋10底部のスライディングノズルを
開き、鋳造を開始する。そうすると、浸漬ノズルを介し
て鋳型内に溶鋼12が吐出されて取鍋10内の溶1ii
12が減少し、湯面が順次低下する。例えば、図中の記
@hで示す深さまで湯面が低下すると、溶鋼12の静水
圧が減少して浸漬ノズルから鋳型内に吐出される溶鋼の
流速が低下しようとするが、このとき流ffi調整弁2
8が開いて取110内に窒素ガスが供給され、取鍋内圧
力がΔPだけ上昇するので、溶鋼12の静水圧の減少分
((H−h)に溶鋼の単位重量を乗じたliりが取鍋内
圧力の増加分(ΔP)により補われ、溶鋼12の吐出流
速が低下する事態が回避される。すなわち、溶鋼12の
注入により取鍋10の総重量が減少すると、ロードセル
14の歪ゲージの電気抵抗値が変化し、これに伴って演
算装置16の検出部により検出される電圧値が減少し、
この検出電圧に基づいて溶rA12の静水圧を算出し、
この算出値を電圧信号として制御装置18に送る。一方
、取鍋10内の圧力を圧力検出器24により検出し、ど
の検出値を電圧信号として制御装置18に入力する。制
御装置18では、溶鋼静水圧及び取鍋内圧力の夫々の電
圧信号に基づき両者の合計圧力値に相当する電圧信号を
合成する。そして、この合計圧力値に相当する電圧信号
と所定の圧力設定値の電圧信号とを制n装@18により
比較すると、電圧差が求まる。この電圧差を差圧指令と
して制御装置18から流m調整弁28の弁体駆動部に送
ると、調整弁28の開口量が調整されて適量のガスが配
管26を介して取vA10内に供給される。このときの
ガスの供給量は、例えば、約100ni/時間である。
At this time, since the total value before the start of casting matches the pressure setting value, the flow II\14 regulating valve 28 is closed. When preparations for casting are completed, the sliding nozzle at the bottom of the ladle 10 is opened to start casting. Then, the molten steel 12 is discharged into the mold through the immersion nozzle, and the molten steel 1ii in the ladle 10 is
12 decreases, and the hot water level gradually decreases. For example, when the molten metal level falls to the depth indicated by @h in the figure, the hydrostatic pressure of the molten steel 12 decreases and the flow rate of the molten steel discharged from the immersed nozzle into the mold tends to decrease, but at this time the flow ffi Regulating valve 2
8 opens and nitrogen gas is supplied into the ladle 110, and the pressure inside the ladle increases by ΔP, so the decrease in the hydrostatic pressure of the molten steel 12 ((H-h) multiplied by the unit weight of the molten steel) is This is compensated for by the increase in the pressure inside the ladle (ΔP), and the situation where the discharge flow rate of the molten steel 12 decreases is avoided.In other words, when the total weight of the ladle 10 decreases due to the injection of the molten steel 12, the strain gauge of the load cell 14 The electrical resistance value changes, and the voltage value detected by the detection unit of the arithmetic device 16 decreases accordingly.
Calculate the hydrostatic pressure of the molten rA12 based on this detected voltage,
This calculated value is sent to the control device 18 as a voltage signal. On the other hand, the pressure inside the ladle 10 is detected by the pressure detector 24, and which detected value is inputted to the control device 18 as a voltage signal. The control device 18 synthesizes a voltage signal corresponding to the total pressure value of the molten steel hydrostatic pressure and the ladle internal pressure based on the respective voltage signals. Then, by comparing the voltage signal corresponding to this total pressure value and the voltage signal of a predetermined pressure setting value using the control device @18, a voltage difference is determined. When this voltage difference is sent as a differential pressure command from the control device 18 to the valve body drive part of the flow m regulating valve 28, the opening amount of the regulating valve 28 is adjusted and an appropriate amount of gas is supplied into the intake valve A10 via the piping 26. be done. The amount of gas supplied at this time is, for example, about 100 ni/hour.

第2図は、横軸に取鍋内溶鋼深さをとり、縦軸に取鍋内
の圧力をとって、上記実施例における溶鋼深さと取鍋内
圧力との関係について調査したグラフ図である。第2図
から明らかなように、溶鋼深さが鋳造開始時の約3mか
ら順次減少するに従って、ガスの供給により取鍋内圧力
が順次増加し、鋳造完了直前には取鍋内圧力が最大3.
35気圧まで上昇する。この取鍋内圧力の上昇により取
鍋10内の溶!g12の全量が一定の流出速度で鋳型内
に注入される。
FIG. 2 is a graph showing the relationship between the molten steel depth and the ladle pressure in the above example, with the horizontal axis representing the molten steel depth and the vertical axis representing the pressure within the ladle. . As is clear from Figure 2, as the molten steel depth gradually decreases from about 3 m at the start of casting, the pressure inside the ladle increases gradually due to gas supply, and just before the completion of casting, the pressure inside the ladle reaches a maximum of 3 m. ..
The pressure rises to 35 atmospheres. This increase in pressure inside the ladle causes melting inside the ladle 10! The entire amount of g12 is injected into the mold at a constant flow rate.

このように上記実施例では、鋳造初期から鋳造末期に至
るまで取鍋から鋳型内に一定の流速で溶鋼を注入するこ
とができる。このため、鋳造初期においてスライディン
グノズルの開度率を小さくした場合に発生するノズル詰
り及び偏流を回避することができると共に、鋳造中にお
いてはスライディングノズルの開度率を順次変化させる
調節操作を不要にすることができる。また、鋳造末期に
おける溶鋼吐出流速の低下を防止することができるので
、取鍋内に溶鋼が残留することなく取鍋内溶鋼を鋳型に
注入することができる。
As described above, in the above embodiment, molten steel can be injected from the ladle into the mold at a constant flow rate from the initial stage of casting to the final stage of casting. Therefore, it is possible to avoid nozzle clogging and drifting that occur when the opening ratio of the sliding nozzle is reduced in the early stage of casting, and there is no need for adjustment operations to sequentially change the opening ratio of the sliding nozzle during casting. can do. Further, since it is possible to prevent the molten steel discharge flow rate from decreasing at the final stage of casting, the molten steel in the ladle can be poured into the mold without any molten steel remaining in the ladle.

[発明の効果コ この発明によれば、スライディングノズルによることな
く一定の流速で取鍋内の溶湯を流出させることができる
。このため、運vctJj造において取鍋内の溶湯を鋳
型に直接注入することができるので、タンディツシュを
不要にすることができ、耐火物コストを大幅に低減する
ことができる。
[Effects of the Invention] According to this invention, the molten metal in the ladle can be flowed out at a constant flow rate without using a sliding nozzle. Therefore, the molten metal in the ladle can be directly injected into the mold during manufacturing, making it possible to eliminate the need for a tundish and significantly reducing the cost of refractories.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例に係る取鍋による溶湯注入方
法が適用された取鍋を示す模式図、第2図は実施例の効
果を説明するグラフ図、第3図はスライディングノズル
によりFliを注入する場合の取鍋を示す断面図、第4
図乃至第6図はスライディングノズルの問題点を示すグ
ラフ図である。 10;取鍋、12:溶鋼、14;ロードセル、16;演
算装置、18:制御l装置、20:蓋、24;圧力検出
器、28:流m調整弁 出願人代理人 弁理士 鈴江武彦 lいむけ
FIG. 1 is a schematic diagram showing a ladle to which the method of pouring molten metal using a ladle according to an embodiment of the present invention is applied, FIG. 2 is a graph diagram explaining the effects of the embodiment, and FIG. Cross-sectional view showing the ladle when pouring, No. 4
Figures 6 through 6 are graphs showing problems with sliding nozzles. 10; ladle, 12: molten steel, 14; load cell, 16; calculation device, 18: control device, 20: lid, 24; pressure detector, 28: flow adjustment valve applicant's agent, patent attorney Takehiko Suzue Muke

Claims (1)

【特許請求の範囲】[Claims] 取鍋内に貯留された溶湯をその底部のスライディングノ
ズルから鋳型に注入する取鍋による溶湯注入方法におい
て、取鍋内の溶湯の重量を検出して前記スライディング
ノズルに印加される溶湯の静水圧を把握する一方、取鍋
内を密閉して取鍋内の圧力を検出し、溶湯の静水圧と取
鍋内圧力との和が実質的に一定になるように取鍋内にガ
スを供給することを特徴とする取鍋による溶湯注入方法
In a ladle injection method in which the molten metal stored in the ladle is injected into the mold from a sliding nozzle at the bottom of the ladle, the weight of the molten metal in the ladle is detected and the hydrostatic pressure of the molten metal applied to the sliding nozzle is calculated. At the same time, sealing the inside of the ladle, detecting the pressure inside the ladle, and supplying gas into the ladle so that the sum of the hydrostatic pressure of the molten metal and the pressure inside the ladle becomes substantially constant. A method of pouring molten metal using a ladle, which is characterized by:
JP5466387A 1987-03-10 1987-03-10 Method for pouring molten metal by ladle Pending JPS63220959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5466387A JPS63220959A (en) 1987-03-10 1987-03-10 Method for pouring molten metal by ladle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5466387A JPS63220959A (en) 1987-03-10 1987-03-10 Method for pouring molten metal by ladle

Publications (1)

Publication Number Publication Date
JPS63220959A true JPS63220959A (en) 1988-09-14

Family

ID=12977027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5466387A Pending JPS63220959A (en) 1987-03-10 1987-03-10 Method for pouring molten metal by ladle

Country Status (1)

Country Link
JP (1) JPS63220959A (en)

Similar Documents

Publication Publication Date Title
US5215141A (en) Apparatus and method for controlling the countergravity casting of molten metal into molds
US3402757A (en) Method for continuous casting of steel through a closed gas filled chamber
US3941281A (en) Control device for regulating teeming rate
JPS63220959A (en) Method for pouring molten metal by ladle
US4050503A (en) Apparatus for controlling the rate of filling of casting molds
US5028033A (en) Process for detecting outflow of slag
JP2002507486A (en) Method and apparatus for treating molten magnesium and magnesium alloys
US5031805A (en) Processes and device for dosing free-flowing media
US5190674A (en) Method and apparatus for controlling the flow of molten metals
JPH02200362A (en) Method for predicting and restraining nozzle clogging in continuous casting apparatus
GB1467143A (en) Method and apparatus for controlling the injection of flux into a steelmaking vessel
JP2702344B2 (en) Method for producing atomized metal powder
US3480073A (en) Apparatus for controlling discharge of metal from a vacuum degassing chamber
JPH0938765A (en) Apparatus for pouring molten metal
JPH08164459A (en) Method for automatically controlling pouring of molten metal in pressure molten metal pouring furnace
US4725962A (en) Melt ejection pressure control system for the melt spinning process
JPS5978763A (en) Controlling method of molten steel level in casting mold in continuous casting
JPS5835056A (en) Controlling method for molten metal level in mold in continuous casting
JP3268304B2 (en) Pressure control device in low pressure casting machine
JPS5831021A (en) Slag outflow preventing method in case of charging
GB1348479A (en) Level control in continuous casting
JP2863485B2 (en) Control method of molten steel level in mold in continuous casting
SU1282954A1 (en) Method of feeding molten metal to the mould of continuous casting machine
JPS62168652A (en) Molten metal surface level control method in continuous casting machine
JPH06587A (en) Method for measuring and controlling boundary layer level of molten metal in continuous casting for double-layer cast slab