JPS63220904A - Pack rolling method for boron added austenitic stainless steel - Google Patents

Pack rolling method for boron added austenitic stainless steel

Info

Publication number
JPS63220904A
JPS63220904A JP5423887A JP5423887A JPS63220904A JP S63220904 A JPS63220904 A JP S63220904A JP 5423887 A JP5423887 A JP 5423887A JP 5423887 A JP5423887 A JP 5423887A JP S63220904 A JPS63220904 A JP S63220904A
Authority
JP
Japan
Prior art keywords
rolling
stainless steel
boron
austenitic stainless
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5423887A
Other languages
Japanese (ja)
Other versions
JPH0579731B2 (en
Inventor
Takashi Ariizumi
孝 有泉
Sadahiro Yamamoto
山本 定弘
Yasuo Kobayashi
泰男 小林
Toshinori Matsuo
松尾 敏憲
Chiaki Ouchi
大内 千秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP5423887A priority Critical patent/JPS63220904A/en
Publication of JPS63220904A publication Critical patent/JPS63220904A/en
Publication of JPH0579731B2 publication Critical patent/JPH0579731B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To prevent rolling crack and to obtain a good product by using a material whose deformation resistant value is under the value of a material to be rolled as a cover material, heating it in a specific temp. range and performing finishing rolling at >= a fixed temp. CONSTITUTION:The material having the deformation resistant value or less of a B contg. austenitic stainless steel is used as a cover material 2, a pack rolling stock is heated at 1,100 deg.C min. and 1,175 deg.C max. and a finishing rolling is performed at higher temp. than the temp. shown in the equation. With this method, the crack generation at rolling time is prevented and the product in specified plate thickness and of excellent quality may be obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、熱間加工性の悪いオーステナイト系ステンレ
ス鋼のパック圧延方法に関するもので、圧延による割れ
を発生させずに所定の板厚まで圧延することを目的とす
る圧延方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a pack rolling method for austenitic stainless steel with poor hot workability, and is a method for rolling austenitic stainless steel to a predetermined thickness without causing cracks due to rolling. This relates to a rolling method for the purpose of

[従来の技術] ボロンを0.3〜2.Ovt%添加したオーステナイト
系ステンレス鋼は、熱中性子吸収性に優れていることか
ら、使用済み核燃料の輸送および貯蔵用キャスクの燃料
バスケット用材料として使用される。
[Prior art] Boron is added to a concentration of 0.3 to 2. Ovt%-added austenitic stainless steel has excellent thermal neutron absorption properties and is therefore used as a material for fuel baskets in casks for transporting and storing spent nuclear fuel.

然し、ボロンの添加によってステンレス鋼中には、硬く
て脆いホウ化物が形成されるためボロン添加量の増加に
伴い熱間加工性が著しく低下する。
However, the addition of boron forms hard and brittle borides in stainless steel, and as the amount of boron added increases, hot workability significantly decreases.

通常、熱中性子吸収材としては厚さ10關以下のボロン
添加オーステナイト系ステンレス鋼板並びに薄鋼板が使
用される。
Usually, boron-added austenitic stainless steel plates and thin steel plates with a thickness of 10 mm or less are used as thermal neutron absorbers.

従って、通常の圧延法を適用すると熱間加工性を維持で
きる圧延温度の確保が困難となり熱間加工性の劣化から
割れが発生する。この場合、加熱温度を高めることによ
って圧延温度を上昇させることが可能であるが、前述の
ホウ化物は1200℃以上で溶融するので加熱温度は1
175℃より高くするこは出来ない。これらの点を考慮
して実施されてきた従来技術の内容とその問題点を以下
に述べる。
Therefore, when a normal rolling method is applied, it becomes difficult to secure a rolling temperature that maintains hot workability, and cracks occur due to deterioration of hot workability. In this case, it is possible to raise the rolling temperature by increasing the heating temperature, but since the aforementioned boride melts at 1200°C or higher, the heating temperature is 1
It is not possible to raise the temperature higher than 175℃. The contents and problems of conventional techniques that have been implemented with these points in mind are described below.

[発明が解決すべき問題点] ボロン添加オーステナイト系ステンレス鋼は、熱間加工
可能な温度範囲が狭いために、この温度範囲を保持すべ
く、加熱・加工を多数回繰返して製造するが、ヒート数
の増加により製造コストは大幅に上昇する。
[Problems to be Solved by the Invention] Boron-added austenitic stainless steel has a narrow temperature range that can be hot worked, so it is manufactured by repeating heating and processing many times to maintain this temperature range. The increase in number significantly increases manufacturing costs.

又、この方法においても、ボロン添加オーステナイト系
ステンレス鋼板を使用する板幅は1101I以下の中厚
板あるいは3 mm以下の薄板が多いため、板幅が薄く
なめに伴う温度降下が大きく、熱間加工可能温度域で所
定の板厚まで加工できず割れが発生する。
Also, in this method, boron-added austenitic stainless steel sheets are often used for medium-thick sheets of 1101I or less or thin sheets of 3 mm or less, so the temperature drop due to thinner sheets is large and hot processing is difficult. It is not possible to process the plate to the specified thickness within the possible temperature range, resulting in cracks.

この割れは、鋼板のエツジより発生し加工度が加わるに
つれて鋼板の中央部方向に進展する。割れの発生した部
分は、使用に供することができないため歩留り低下を来
たし、製造コストの上昇となる。
This cracking occurs from the edges of the steel plate and progresses toward the center of the steel plate as the degree of processing increases. The cracked portion cannot be used, resulting in a decrease in yield and an increase in manufacturing costs.

一方、ボロン添加オーステナイト系ステンレス鋼にTi
(チタン)あるいはV(バナジューム)を添加してホウ
化物の組成、形態を変化させ熱間加工性を改善すること
が試みられているが、これ等の元素はフェライト形成元
素であるため、ホウ化物の他にデルタ・フェライトをも
形成し、熱間加工性の飛躍的な向上には結びつかず割れ
の発生を防止することは出来ない。
On the other hand, Ti is added to boron-added austenitic stainless steel.
Attempts have been made to change the composition and morphology of borides by adding (titanium) or vanadium (V) to improve hot workability, but since these elements are ferrite-forming elements, boride In addition, delta ferrite is also formed, which does not lead to a dramatic improvement in hot workability and prevents the occurrence of cracks.

本発明は、上記の従来技術の問題点を解決するためのも
のであり、圧延による割れを発生させずに、所定の板厚
まで圧延するボロン添加オーステナイト系ステンレス鋼
の圧延方法を提供することを目的とする。
The present invention is intended to solve the above-mentioned problems of the prior art, and aims to provide a method for rolling boron-added austenitic stainless steel that can be rolled to a predetermined thickness without causing cracks due to rolling. purpose.

[問題点を解決するための手段] 本発明は、表面に剥離剤を塗布したボロン含有オーステ
ナイト系ステンレス鋼材を1枚以上積層し、その上下を
カバー材で覆い、周りをスペーサーで囲み、溶接して組
立てたパック圧延素材を熱間で圧延する前記ボロン含有
オーステナイト系ステ材の製造方法において、変形抵抗
値が前記ボロン含有オーステナイト系ステンレス鋼材の
変形抵抗値以下とする材料をカバー材として選定し、か
つ前記パック圧延素材を1100℃以上1175℃以下
で加熱し、下記の式で示される温度以上で仕上げ圧延を
行うことを特徴とするボロン添加オーステナイト系ステ
ンレス鋼の圧延方法である。
[Means for Solving the Problems] The present invention consists of laminating one or more boron-containing austenitic stainless steel materials coated with a release agent on the surface, covering the top and bottom with cover materials, surrounding them with spacers, and welding them. In the method for producing a boron-containing austenitic stainless steel material, which comprises hot rolling a pack-rolled material assembled with a steel sheet, a material having a deformation resistance value equal to or less than the deformation resistance value of the boron-containing austenitic stainless steel material is selected as the cover material; The method for rolling a boron-added austenitic stainless steel is characterized in that the pack-rolled material is heated at 1100° C. or higher and 1175° C. or lower, and finish rolling is performed at a temperature higher than or equal to the temperature expressed by the following formula.

T鱈53B+870 但し T;仕上限界圧延温度(℃)B ;ボロン含有率(wt%) [作用] 本発明は、ボロン添加オーステナイト系ステンレス鋼板
のパック圧延による製造技術を詳細に検討した結果なさ
れたものである。
T Cod 53B + 870 However, T: Finishing rolling temperature limit (°C) B: Boron content (wt%) [Function] The present invention was made as a result of detailed study of the manufacturing technology of boron-added austenitic stainless steel sheets by pack rolling. It is.

即ち、先ず熱間圧延加工性については、後述の実施例に
示す如く、ボロン添加量が高いほどホウ化物が多くなり
、割れの発生する限界温度が高くなるものの、ボロン添
加量(wt%)に応じて熱間圧延可能な温度範囲が存在
する。
First, regarding hot rolling workability, as shown in the examples below, the higher the amount of boron added, the more borides there are, and the higher the critical temperature at which cracks occur, but the amount of boron added (wt%) Accordingly, there is a temperature range in which hot rolling is possible.

従って、本材料の圧延仕上り温度をボロン添加Q(wt
%)に応じて、下記(1)式で与えられる限界圧延温度
T (℃)以上にとることにより、熱間圧延による本材
料の製造が可能となる。
Therefore, the rolling finish temperature of this material is changed by boron addition Q (wt
%), the material can be produced by hot rolling by setting the rolling temperature T (° C.) or higher given by the following formula (1).

T−53B+870・・・・・・(1)そこで、本発明
者等は、上記(1)式を満足させるため即ち材料の温度
降下防止ために、以下のパック圧延方法を発明するに至
ったものである。
T-53B+870 (1) Therefore, in order to satisfy the above formula (1), that is, to prevent the temperature drop of the material, the present inventors came up with the following pack rolling method. It is.

パック圧延方法とは、第1図に示すようにボロン添加オ
ーステナイト系ステンレス鋼を1枚以上の多層に積重ね
、その外周を他の材料で包み込むことによって、被圧延
材の厚さを一定以上に維持して本材料の温度降下を防止
し、1層当りの厚さを圧延仕上げ寸法に熱間圧延する方
法である。
The pack rolling method, as shown in Figure 1, involves stacking one or more layers of boron-added austenitic stainless steel and wrapping the outer periphery with other materials to maintain the thickness of the rolled material above a certain level. This method prevents the temperature of the material from dropping and hot-rolls the thickness of each layer to the finished rolling dimension.

以下本圧延方法について述べる。The present rolling method will be described below.

1)組立ての基本構成 第1図はパック圧延における組立ての基本構成の説明図
である。図において、1はコア材であり、ボロン添加オ
ーステナイト系ステンレス鋼インゴットあるいは連鋳ス
ラブを、前述の(1)式を満足する範囲で熱間圧延もし
くは熱間鍛造して製造する。従ってコア材の仕上り厚さ
は必然的に厚いものとなる。
1) Basic configuration of assembly FIG. 1 is an explanatory diagram of the basic configuration of assembly in pack rolling. In the figure, 1 is a core material, which is manufactured by hot rolling or hot forging a boron-added austenitic stainless steel ingot or continuously cast slab within a range that satisfies the above-mentioned formula (1). Therefore, the finished thickness of the core material is necessarily thick.

また、このコア材の製造過程を経ず本材料のインゴット
あるいは連鋳スラブを直ちにコア材として用いることも
可能である。
Furthermore, it is also possible to use an ingot or continuously cast slab of the present material as the core material immediately without going through the manufacturing process of the core material.

2はカバー材、3はスペーサと呼び、低炭素鋼などの溶
接可能な材料を用いる。4は剥離剤であり、圧延による
層間での圧着を防止すると共に伝熱抵抗として、コア材
1の温度低下を防止する。
2 is called a cover material, and 3 is called a spacer, and they are made of a weldable material such as low carbon steel. 4 is a release agent, which prevents pressure bonding between layers due to rolling, and also acts as a heat transfer resistance to prevent a drop in temperature of the core material 1.

5はカバー材2とスペーサ3の溶接部である。5 is a welded portion between the cover material 2 and the spacer 3.

2)パック圧延法の基本特性 第3図及び第4図は夫々(カバー材の伸び)−(コア材
の伸び)と形状特性及び板厚特性との関係図であるが、
これらの図に基いて、積層圧延法の基本特性の理論的検
討結果を定性的に説明する。
2) Basic characteristics of pack rolling method Figures 3 and 4 are diagrams showing the relationship between (elongation of cover material) - (elongation of core material), shape characteristics and plate thickness characteristics, respectively.
Based on these figures, the results of a theoretical study of the basic characteristics of the laminated rolling method will be qualitatively explained.

■形状特性 第3図に示すように、コア材の変形抵抗がカバー材の変
形抵抗よりも大きい場合、即ちコア材の方がカバー材よ
りも硬い場合には、軟らかいカバー材の伸びが大きくな
り、この伸び差は、コア材の変形抵抗とカバー材の変形
抵抗の比(以後変形抵抗比という。)が大きい程大とな
る。
■Shape characteristics As shown in Figure 3, if the deformation resistance of the core material is greater than that of the cover material, that is, if the core material is harder than the cover material, the elongation of the soft cover material will be greater. This difference in elongation increases as the ratio of the deformation resistance of the core material to the deformation resistance of the cover material (hereinafter referred to as deformation resistance ratio) increases.

このような条件下においては、コア材はカバー材内部で
安定して圧延され形状良好となる。
Under such conditions, the core material is stably rolled inside the cover material and has a good shape.

変形抵抗比が1の場合、即ちコア材とカバー材の硬さが
同一の場合には夫々の伸びが一致し、単体の材料を圧延
するのと全く同様な状態で安定した圧延となり形状良好
となる。
When the deformation resistance ratio is 1, that is, when the hardness of the core material and the cover material are the same, the elongation of each material matches, and stable rolling occurs in exactly the same condition as rolling a single material, resulting in a good shape. Become.

一方、変形抵抗比が1より小さい場合には、コア材の伸
びがカバー材の伸びより大きくなる。
On the other hand, when the deformation resistance ratio is less than 1, the elongation of the core material is greater than the elongation of the cover material.

従って、コア材の変形はカバー材によって拘束され、一
般的には塑性座屈を生じて形状不良となる。
Therefore, the deformation of the core material is restrained by the cover material, and generally plastic buckling occurs, resulting in a defective shape.

即ち、 変形抵抗比(k  ’)−コア材の変形抵抗とカバーr 材の変形抵抗の比、と定義すると、 k ≧1:形状良好 ■r k く1;形状不良 r となり、k ≧1で安定したパック圧延法が成立r することが明らかとなった。That is, Deformation resistance ratio (k’) – Deformation resistance of core material and cover r Defining it as the ratio of the deformation resistance of the material, k≧1: Good shape ■r k く1;Poor shape r Therefore, a stable pack rolling method is established when k≧1. It became clear that

■板厚特性 第4図に示すように、k  <1の場合、形状不r 良は呈しないものの、パック圧延材の厚さく総板厚と言
う)に対するコア材の占める板厚の比率によってカバー
材の伸びとコア材の伸びとの差が異なる。
■ Plate thickness characteristics As shown in Figure 4, when k < 1, shape defects do not occur, but the ratio of the thickness of the core material to the thickness of the pack rolled material (referred to as the total thickness) The difference between the elongation of the material and the elongation of the core material is different.

図示するように、コア材の板厚と総板厚の比(以後、合
せ板厚比と言う)が小さいとカバー材の伸びが促進され
コア材、の伸びとの差が大きいが、合せ板厚比が増加す
るにつれてこの伸び差が減少する。
As shown in the figure, when the ratio of the core material thickness to the total thickness (hereinafter referred to as the laminated sheet thickness ratio) is small, the elongation of the cover material is promoted and the difference between the elongation of the core material and the core material is large. This elongation difference decreases as the thickness ratio increases.

即ち、これを板厚の変化として表現すると、パック圧延
材の圧下率(総圧下率と言う)に対してコア材とカバー
材夫々の圧下率は第5図に示すようになる。
That is, when this is expressed as a change in plate thickness, the rolling reduction ratios of the core material and the cover material are as shown in FIG. 5 with respect to the rolling reduction ratio (referred to as the total rolling ratio) of the pack rolled material.

従って所定のコア材厚を得るためには、変形抵抗比並び
に合せ板厚比に応じてパック圧延材の最終狙い板厚を設
定しなければならない。
Therefore, in order to obtain a predetermined core material thickness, it is necessary to set the final target thickness of the pack rolled material according to the deformation resistance ratio and the laminated sheet thickness ratio.

k  −1の場合には、 r 総圧下率−コア材の圧下率−カバー材の圧下率となる。In the case of k-1, r The total rolling reduction ratio - the rolling reduction ratio of the core material - the rolling reduction ratio of the cover material.

実際的には、コア材の製品厚と積層枚数の生産性の点、
カバー材の溶接強度、総板厚の制限などからこの合せ板
厚比は0.3〜0.8程度とすることが好ましい。
In practical terms, the productivity of the product thickness of the core material and the number of laminated sheets,
In view of the welding strength of the cover material, the total plate thickness, etc., the combined plate thickness ratio is preferably about 0.3 to 0.8.

3)カバー材の選択 この発明を具現化するために、1.00%ボロン添加オ
ーステナイト系ステンレス鋼板(第1表、Nα2)につ
いて、その変形抵抗を調査し適切なカバー材質について
の検討を行った。
3) Selection of cover material In order to embody this invention, we investigated the deformation resistance of a 1.00% boron-added austenitic stainless steel plate (Table 1, Nα2) and considered an appropriate cover material. .

その1例を56図に示す。An example is shown in Figure 56.

図に明らかなように、1.00%ボロン添加オーステナ
イト系ステンレス鋼板(SUS304B)の平均変形抵
抗は、5US304材より30〜40%程度大きい。
As is clear from the figure, the average deformation resistance of the 1.00% boron-added austenitic stainless steel plate (SUS304B) is approximately 30 to 40% greater than that of the 5US304 material.

また炭素鋼(C−0,21%)に対しては、1.7〜q 2倍程度である。In addition, for carbon steel (C-0, 21%), 1.7 to q It is about twice as large.

従って、いずれの材料をカバー材として選択しても、形
状不良を生じないパック圧延の可能性が予測されるが、
5US304材自体が高価な材料であることや、炭素鋼
より平均変形抵抗が大きく圧延負荷が増大することを考
慮すると、工業的には低炭素鋼をカバー材として選択す
るのが好ましい。
Therefore, it is predicted that no matter which material is selected as the cover material, it is possible to perform pack rolling without causing shape defects.
Considering that the 5US304 material itself is an expensive material and that the average deformation resistance is higher than that of carbon steel, which increases the rolling load, it is industrially preferable to select low carbon steel as the cover material.

また、実際の圧延では、カバー材の温度はコア材の温度
より降下するため、温度降下によってカバー材の平均変
形抵抗がコア材より大きくならない配慮が必要となる。
Furthermore, in actual rolling, the temperature of the cover material falls below the temperature of the core material, so care must be taken to prevent the average deformation resistance of the cover material from becoming larger than that of the core material due to the temperature drop.

4)パック組立て条件(カバー材厚の適正化)1.00
%ボロン添加オーステナイト系ステンレス鋼板(SUS
304B)のパック圧延法による製造を可能とするため
には前述した(1)式の圧延温度範囲T≧923℃ と圧延中における 5US304Bの平均変形抵抗≧炭素鋼(Ceq=0.
21%)(コア材)        (カバー材)を同
時に満足させるパック組立て条件(カバー材厚の適正化
)を検討する必要がある。
4) Pack assembly conditions (optimization of cover material thickness) 1.00
% boron-added austenitic stainless steel sheet (SUS
304B) by the pack rolling method, the rolling temperature range T≧923°C according to the above-mentioned formula (1) and the average deformation resistance of 5US304B during rolling≧carbon steel (Ceq=0.
21%) (core material) (cover material) It is necessary to consider pack assembly conditions (optimization of cover material thickness) that simultaneously satisfy the following requirements.

計算シミュレーションによる検討結果の1例を第7図に
示す。計算条件は、 コア材(SUS304B)寸法 108   X 1310  X 1810’−圧延1
0.4tX1840’ コア材の枚数   1枚 パック組立て寸法 t X 1470’ X 1970
’加熱温度     1150℃ バススケジュール 厚板ミル1基にてクロス(幅出しを
含む)圧延 とした。
An example of the results of calculation simulation is shown in FIG. The calculation conditions are: Core material (SUS304B) dimensions: 108 x 1310 x 1810' - Rolling 1
0.4t x 1840' Number of core materials 1 piece pack assembly dimensions t x 1470' x 1970
'Heating temperature: 1150°C Bus schedule: Cross rolling (including tentering) using one plate mill.

第7図より、この場合の適正カバー材厚は、56關/片
側以上であることがわかる。但し、先に、2)■で述べ
たようにカバー材厚の薄い方が目標とする圧延寸法の達
成が容易であることは言うまでもない。
From FIG. 7, it can be seen that the appropriate thickness of the cover material in this case is 56 mm/side or more. However, as mentioned above in 2) (2), it goes without saying that the thinner the cover material is, the easier it is to achieve the target rolling dimension.

以上3)4)で例示したような検討過程を踏まえること
により、0.3〜2. Owt%ボロン添加オーステナ
イト系ステンレス鋼板のパック圧延法による製造条件が
確立された。
By taking into account the examination process as exemplified in 3) and 4) above, the results are as follows: 0.3 to 2. The conditions for manufacturing Owt% boron-added austenitic stainless steel sheets using the pack rolling method have been established.

次に加熱温度の限定理由について述べる。Next, the reason for limiting the heating temperature will be described.

加熱温度を1100℃以上1175℃以下としたのは、
1100℃未満の加熱では、仕上り温度の低下が著しく
なり、圧延可能な温度範囲が狭くなるため好ましなく、
また1175℃を越えて加熱すると、ホウ化物の溶融が
起り圧延中に割れるために、加熱温度は1100℃〜1
175℃とした。
The heating temperature was set to 1100°C or higher and 1175°C or lower because
Heating below 1100°C is not preferable because the finishing temperature will drop significantly and the temperature range that can be rolled will be narrowed.
Furthermore, if heated above 1175°C, the boride will melt and crack during rolling, so the heating temperature should be between 1100°C and 1100°C.
The temperature was 175°C.

尚、ボロン添加オーステナイト系ステンレス鋼とは、 B:0.3〜2.Owt%、 C:0.08vt%以下
、 Si: 2.Ovt%以下、 Mn: 2.Ovt
%以下、 P:0.05vt%以下、 s:o、oav
t%以下、 Cr: 1B、0〜20.Owt%、 N
i:8.O〜15.Owt% 、 Mo:3.0wt%
以下、 N:0.15wt%以下を含有し、残部がFe
及び不可避不純物からなる鋼を言う。
In addition, boron-added austenitic stainless steel has B: 0.3 to 2. Owt%, C: 0.08vt% or less, Si: 2. Ovt% or less, Mn: 2. Ovt.
% or less, P: 0.05vt% or less, s: o, oav
t% or less, Cr: 1B, 0-20. Owt%, N
i:8. O~15. Owt%, Mo: 3.0wt%
Below, N: 0.15wt% or less is contained, and the balance is Fe.
and steel consisting of unavoidable impurities.

次に本発明の実施例について述べる。Next, examples of the present invention will be described.

〔実施例〕〔Example〕

先ず、第1表に示す組成のボロン添加オーステナイト系
ステンレス鋼を、素材として加熱温度を1150℃とし
その熱間圧延加工性を評価した。
First, boron-added austenitic stainless steel having the composition shown in Table 1 was used as a raw material and heated at a heating temperature of 1150° C., and its hot rolling workability was evaluated.

その結果を第1図に示す。The results are shown in FIG.

第1表    (vt%) 第1図に示す如く、B添加率(vt%)と圧延仕上り温
度(℃)との関係より次の如きことが分る。
Table 1 (vt%) As shown in Fig. 1, the following can be seen from the relationship between the B addition rate (vt%) and the finishing rolling temperature (°C).

ボロン添加量が高いほどホウ化物が多くなり、割れの発
生する限界温度が高くなるもののボロン添加率(wt%
)に応じて熱間圧延可能な温度範囲が存在し、第1図よ
り圧延仕上り温度とボロン添加率(vt1%)との関係
から下記(1)式が成立する。
The higher the amount of boron added, the more borides there are, and the higher the critical temperature at which cracks occur, but the boron addition rate (wt%)
) There is a temperature range in which hot rolling is possible, and as shown in FIG. 1, the following equation (1) is established from the relationship between the finishing rolling temperature and the boron addition rate (vt1%).

T−53B+870・・・・・・(1)この(1)式よ
り、限界圧延温度(T℃)以上にとることにより熱間圧
延による本材料の製造が可能となることが分る。
T-53B+870 (1) From equation (1), it can be seen that this material can be manufactured by hot rolling by keeping the rolling temperature above the limit rolling temperature (T° C.).

実施例1 下記の第2表の成分組成のボロン添加オーステナイト系
ステンレス鋼を、コア材の供試材として試験を行った。
Example 1 A boron-added austenitic stainless steel having the composition shown in Table 2 below was tested as a core material.

第2図に示す如くパック圧延を行った。その場合の条件
を以下に示す。
Pack rolling was performed as shown in FIG. The conditions in that case are shown below.

コア材;ボロン添加オーステナイト系ステンレス鋼板 
108 mm (厚) X 1310mm (幅)X 
181hm (長)X1枚 カバー材;炭素鋼(C−0,21%) q パック圧延素材; 240 +a+s (厚) X 1
47h+s (幅)X 1970關(長) 合せ板厚比、 0.45 コア材の圧延寸法; lO,4+o+i (厚) X 
1g40!I11 (幅)加熱温度、1120℃ 以上の条件にて、厚板圧延機にて12バスの加工(クロ
ス圧延実施)を行って、圧延後解体してコア材を調査し
た結果、コア材に割れの発生は全く認められなかった。
Core material: Boron-added austenitic stainless steel plate
108 mm (thickness) x 1310 mm (width) x
181hm (length) x 1 cover material; carbon steel (C-0, 21%) q pack rolled material; 240 +a+s (thickness) x 1
47h+s (width) X 1970 length (length) Laminated plate thickness ratio, 0.45 Rolling dimension of core material;
1g40! I11 (Width) At a heating temperature of 1120°C or higher, 12 baths were processed (cross rolling) using a plate rolling mill. After rolling, the core material was dismantled and investigated. As a result, cracks were found in the core material. No occurrence was observed.

第8図にコア材及びカバー材の平均温度のシュミレーシ
ョン結果、実測によるカバー材の表面温度、コア材及び
カバー材の平均抵抗値を示す。
FIG. 8 shows the simulation results of the average temperature of the core material and the cover material, the actually measured surface temperature of the cover material, and the average resistance value of the core material and the cover material.

これによると変形抵抗比 k  >1であった。According to this, the deformation resistance ratio k>1.

■「 実施例2 下記に示す条件で、厚板圧延機にて12バスの加工(ク
ロス圧延を含む)を行った。
■Example 2 12 baths (including cross rolling) were performed in a plate rolling mill under the conditions shown below.

コア材;ボロン添加オーステナイト系ステンレス鋼板 
108 m+s (厚) X1310+am(幅) X
 1890u+ (長)X1枚カバー材;炭素鋼(C−
0,21%) q パック圧延素材; 300 mm (厚)X1470龍
(幅)X 1850+*m (長) 合せ板厚比、 0.36 コア材の圧延寸法; 5.4 m+i (厚) X 1
840mm (幅)加熱温度、 1150℃ 圧延後、解体し、コア材を調査した結果、コア材に割れ
の発生は全く認められながった。
Core material: Boron-added austenitic stainless steel plate
108 m+s (thickness) X1310+am (width)
1890u+ (long) x 1 cover material; carbon steel (C-
0.21%) q Pack rolled material; 300 mm (thickness) x 1470 dragon (width) x 1850+*m (length) Laminated plate thickness ratio, 0.36 Rolled dimensions of core material; 5.4 m+i (thickness) x 1
840mm (width) Heating temperature: 1150°C After rolling, it was dismantled and the core material was examined, and as a result, no cracks were observed in the core material.

実施例1と同様に、同じ諸元を第9図に示す。As in Example 1, the same specifications are shown in FIG.

比較例 下記に示す条件で厚板圧延機にて12バスの加工(クロ
ス圧延実施)を行った。
Comparative Example 12 baths (cross rolling) were carried out in a plate rolling mill under the conditions shown below.

コア材;ボロン含有オーステナイト系ステンレス鋼板 
10g +am (厚) X131hm (幅)X 1
810mm (長)X1枚 カバー材;炭素鋼(C−0,21%) q ハック圧延索材; 160 srs (厚) X 14
70mm (幅)X 1970!I11 (長) 合せ板厚比、 0.875 加熱温度; 1150”c 圧延後、解体して、コア材を調査した結果、コア材のエ
ツジ部に割れの発生が認められた。
Core material: boron-containing austenitic stainless steel plate
10g +am (thickness) x131hm (width) x 1
810mm (length) x 1 cover material; carbon steel (C-0, 21%) q hack rolled cable material; 160 srs (thickness) x 14
70mm (width) x 1970! I11 (Long) Laminated plate thickness ratio: 0.875 Heating temperature: 1150"c After rolling, the core material was dismantled and examined, and as a result, cracks were observed at the edges of the core material.

これは本発明の実施例1及び2に比べ、合せ板厚比が大
きく、即ちカバー材の厚みが比較例では薄いためコア材
に対する断熱効果が弱く、第10図に示すように、コア
材の仕上圧延温度が915℃で、限界圧延温度より降下
したことに起因する。
Compared to Examples 1 and 2 of the present invention, the combined plate thickness ratio is larger, that is, the thickness of the cover material is thinner in the comparative example, so the insulation effect on the core material is weaker, as shown in FIG. 10. This is because the finish rolling temperature was 915°C, which was lower than the limit rolling temperature.

この場合、また第10図に示すように、上述の理由でコ
ア材とカバー材の変形抵抗比がk  <1r である。(4パス〜10バス) [発明の効果] 本発明のボロン添加オーステナイト系ステンレス鋼のパ
ック圧延方法によれば、圧延による割れを発生させずに
所定の厚さまで圧延することを可能とするものである。
In this case, and as shown in FIG. 10, the deformation resistance ratio of the core material and the cover material is k<1r for the above-mentioned reason. (4 passes to 10 passes) [Effects of the Invention] According to the pack rolling method for boron-added austenitic stainless steel of the present invention, it is possible to roll the boron-added austenitic stainless steel to a predetermined thickness without causing cracks due to rolling. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はパック圧延法の説明図、第2図はB添加量と圧
延仕上り温度との関係グラフ、第3図はパック圧延法の
基本特性である形状特性の説明図、第4図及び第5図は
同じくパック圧延法の基本特性である形状特性の説明図
、第6図は圧延温度と平均変形抵抗比との関係グラフ、
第7図は圧延仕上り温度とカバー材厚/片側(+s+s
 )との関係グラフ、第8図は、実施例1における操業
成績グラフ、第9図は、実施例2における操業成績グラ
フ、第10図は、比較例における操業成績グラフである
Figure 1 is an explanatory diagram of the pack rolling method, Figure 2 is a graph of the relationship between the amount of B added and the finishing temperature of rolling, Figure 3 is an explanatory diagram of the shape characteristics which are the basic characteristics of the pack rolling method, Figures 4 and Figure 5 is an explanatory diagram of the shape characteristics, which are also the basic characteristics of the pack rolling method, and Figure 6 is a graph of the relationship between rolling temperature and average deformation resistance ratio.
Figure 7 shows rolling finishing temperature and cover material thickness/one side (+s+s
), FIG. 8 is a graph of operational results in Example 1, FIG. 9 is a graph of operational results in Example 2, and FIG. 10 is a graph of operational results in Comparative Example.

Claims (1)

【特許請求の範囲】 表面に剥離剤を塗布したボロン含有オーステナイト系ス
テンレス鋼材を1枚以上積層し、その上下をカバー材で
覆い、周りをスペーサーで囲み、溶接して組立てたパッ
ク圧延素材を熱間で圧延する前記ボロン含有オーステナ
イト系ステンレス鋼材の製造方法において、変形抵抗値
が前記ボロン含有オーステナイト系ステンレス鋼材の変
形抵抗値以下とする材料をカバー材として選定し、かつ
前記パック圧延素材を1100℃以上1175℃以下で
加熱し、下記の式で示される温度以上で仕上げ圧延を行
うことを特徴とするボロン添加オーステナイト系ステン
レス鋼のパック圧延方法。 T=53B+870 但しT;仕上限界圧延温度(℃) B;ボロン含有率(wt%)
[Claims] One or more sheets of boron-containing austenitic stainless steel materials coated with a release agent on the surface are laminated, the upper and lower sides are covered with cover materials, the surroundings are surrounded by spacers, and the assembled packed rolled materials are heated. In the method for manufacturing the boron-containing austenitic stainless steel material, the material is selected as the cover material and the deformation resistance value is equal to or less than the deformation resistance value of the boron-containing austenitic stainless steel material, and the pack-rolled material is rolled at 1100°C. A pack rolling method for boron-added austenitic stainless steel, which comprises heating at a temperature of 1175° C. or lower and finishing rolling at a temperature not lower than the following formula. T=53B+870 However, T: Finishing limit rolling temperature (℃) B: Boron content (wt%)
JP5423887A 1987-03-11 1987-03-11 Pack rolling method for boron added austenitic stainless steel Granted JPS63220904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5423887A JPS63220904A (en) 1987-03-11 1987-03-11 Pack rolling method for boron added austenitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5423887A JPS63220904A (en) 1987-03-11 1987-03-11 Pack rolling method for boron added austenitic stainless steel

Publications (2)

Publication Number Publication Date
JPS63220904A true JPS63220904A (en) 1988-09-14
JPH0579731B2 JPH0579731B2 (en) 1993-11-04

Family

ID=12964962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5423887A Granted JPS63220904A (en) 1987-03-11 1987-03-11 Pack rolling method for boron added austenitic stainless steel

Country Status (1)

Country Link
JP (1) JPS63220904A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161341A (en) * 2000-11-21 2002-06-04 Sumitomo Metal Ind Ltd Austenitic stainless steel sheet including b and manufacturing method therefor
JP2012067337A (en) * 2010-09-21 2012-04-05 Nisshin Steel Co Ltd Stainless steel square pipe for nuclear fuel storage rack, method of manufacturing the same, and rack
KR20200143930A (en) * 2019-06-17 2020-12-28 주식회사 포스코 Manufacturing method for thin and wide steel plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561162A (en) * 1979-06-15 1981-01-08 Matsushita Electric Works Ltd Lowwfrequency treating appliance
JPS5791804A (en) * 1980-11-29 1982-06-08 Daido Steel Co Ltd Rolling method for sendust alloy
JPS59183906A (en) * 1983-04-01 1984-10-19 Tohoku Metal Ind Ltd Method for rolling ti-base alloy
JPS61201726A (en) * 1985-03-01 1986-09-06 Sumitomo Special Metals Co Ltd Manufacture of b-containing austenitic stainless steel
JPS6350429A (en) * 1986-08-20 1988-03-03 Nippon Kokan Kk <Nkk> Production of austenitic stainless steel sheet having excellent surface characteristic

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561162A (en) * 1979-06-15 1981-01-08 Matsushita Electric Works Ltd Lowwfrequency treating appliance
JPS5791804A (en) * 1980-11-29 1982-06-08 Daido Steel Co Ltd Rolling method for sendust alloy
JPS59183906A (en) * 1983-04-01 1984-10-19 Tohoku Metal Ind Ltd Method for rolling ti-base alloy
JPS61201726A (en) * 1985-03-01 1986-09-06 Sumitomo Special Metals Co Ltd Manufacture of b-containing austenitic stainless steel
JPS6350429A (en) * 1986-08-20 1988-03-03 Nippon Kokan Kk <Nkk> Production of austenitic stainless steel sheet having excellent surface characteristic

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161341A (en) * 2000-11-21 2002-06-04 Sumitomo Metal Ind Ltd Austenitic stainless steel sheet including b and manufacturing method therefor
JP2012067337A (en) * 2010-09-21 2012-04-05 Nisshin Steel Co Ltd Stainless steel square pipe for nuclear fuel storage rack, method of manufacturing the same, and rack
KR20200143930A (en) * 2019-06-17 2020-12-28 주식회사 포스코 Manufacturing method for thin and wide steel plate

Also Published As

Publication number Publication date
JPH0579731B2 (en) 1993-11-04

Similar Documents

Publication Publication Date Title
JPH0747797B2 (en) Steel plate for enamel having excellent scabbing resistance, bubble resistance, black spot defect resistance and press formability, and method for producing the same
KR102329537B1 (en) Steel having excellent laser cutting properties and method of manufacturing the same
JPS59182952A (en) Case hardening steel
JPS63220904A (en) Pack rolling method for boron added austenitic stainless steel
JPH0215609B2 (en)
JP2023507810A (en) Tin-plated base plate for processing and method for producing the same
KR20210030640A (en) Rolling method of titanium sheet
JP6926247B2 (en) Cold-rolled steel sheet for flux-cored wire and its manufacturing method
KR102231345B1 (en) High-strength cold-rolled steel sheet having excellent surface property and method for manufacturing thereof
KR102112172B1 (en) Cold-rolled steel sheet for flux cored wire and manufacturing the same
KR102353730B1 (en) Cold-rolled steel sheet for flux cored wire and manufacturing the same
JPS60162751A (en) Semi-process electrical steel sheet having excellent magnetic characteristic and surface characteristic and its production
KR20190074757A (en) Ferritic stainless steel with improved expanability and method of manufacturing the same
JPH0572447B2 (en)
JP2626849B2 (en) Manufacturing method of high strength hot rolled steel sheet with excellent fatigue properties
JPH04253506A (en) Method for hot-rolling boron containing austenite stainless steel material
JPS6346131B2 (en)
JPH0718385A (en) Fe-cr alloy excellent in ridging resistance
JPH04350122A (en) Production of high strength and lightweight vessel for lp gas
JPH06275B2 (en) Method for manufacturing high temperature stratified pressure vessel
JPH0941035A (en) Production of low yield ratio hot rolled steel sheet excellent in toughness
JPH07138638A (en) Production of high-strength hot rolled steel sheet having good workability and weldability
JPS6137332B2 (en)
JPS62110879A (en) Production of thin clad steel sheet for roll forming
JPH0118969B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees