JPS6137332B2 - - Google Patents
Info
- Publication number
- JPS6137332B2 JPS6137332B2 JP10068678A JP10068678A JPS6137332B2 JP S6137332 B2 JPS6137332 B2 JP S6137332B2 JP 10068678 A JP10068678 A JP 10068678A JP 10068678 A JP10068678 A JP 10068678A JP S6137332 B2 JPS6137332 B2 JP S6137332B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel
- coil
- yield ratio
- hot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910000831 Steel Inorganic materials 0.000 claims description 67
- 239000010959 steel Substances 0.000 claims description 67
- 238000005096 rolling process Methods 0.000 claims description 34
- 238000001816 cooling Methods 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 19
- 238000004519 manufacturing process Methods 0.000 claims description 16
- 229910052720 vanadium Inorganic materials 0.000 claims description 15
- 229910052758 niobium Inorganic materials 0.000 claims description 14
- 238000005452 bending Methods 0.000 claims description 11
- 229910052748 manganese Inorganic materials 0.000 claims description 9
- 238000004804 winding Methods 0.000 claims description 9
- 239000012535 impurity Substances 0.000 claims description 8
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 238000005520 cutting process Methods 0.000 claims description 3
- 238000005728 strengthening Methods 0.000 description 11
- 238000001556 precipitation Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 238000005098 hot rolling Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000006104 solid solution Substances 0.000 description 6
- 229910000859 α-Fe Inorganic materials 0.000 description 6
- 239000000463 material Substances 0.000 description 4
- 238000005482 strain hardening Methods 0.000 description 4
- 230000009466 transformation Effects 0.000 description 3
- 229910001566 austenite Inorganic materials 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- CSJDCSCTVDEHRN-UHFFFAOYSA-N methane;molecular oxygen Chemical compound C.O=O CSJDCSCTVDEHRN-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910001562 pearlite Inorganic materials 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000004513 sizing Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/02—Hardening by precipitation
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Description
本発明は、板厚4.5mmから15mm程度で降伏強度
が30Kg/mm2以上の析出強化型低降伏比熱延鋼板の
製造法に係るものである。
石油またはガス燃料の輪送を目的とした鋼管は
安全性等の観点からますます厳しい規格が取り入
れられるようになつてきた。降伏比(降伏強度を
引張強さで除した値)もその一つで、管の破壊防
止のためには低い方が良いと考えられるようにな
つてきた。特に最近のように輪送効率を上げるた
めに高張力鋼が使われる場合、降伏比の上限規制
は著しい。さらにこの事情は管直径が200ないし
800mm程度の溶接鋼管において著しい。なぜなら
このクラスの鋼管は一般に、直径に対する板厚の
比が大きく造管時の曲げ加工での加工硬化が大き
くまた溶接時の圧着による圧縮歪やさらに拡管、
サイジング等の加工を受けるので、製品としての
鋼管の降伏比はかなり高くなる。一般に加工硬化
により降伏強度は著しく上昇するが、引張強さは
それほど上昇しないので、加工硬化すれば降伏比
が上昇するからである。従つてその素材としての
鋼板もしくは鋼帯の降伏比はあらかじめ加工硬化
相当量を見込むため降伏比0.8以下とか、さらに
極端な場合は0.75以下といつた極めて低いものが
要求されるようになつてきた。
一方、鋼管素材としての鋼板の製造法は厚板ミ
ルもしくはホツトストリツプミルによるが、普通
降伏強度30Kg/mm2以上の高張力鋼にはNb、V、Ti
等の析出強化元素を用いる。
ところが析出強化は一般に降伏比を高めること
が知られている。これは、微細な析出物が転位の
運動を妨げるためと考えられている。さらにホツ
トストリツプミルで製造する場合、生産性を高め
るため仕上圧延後冷却水により強制冷却を行う。
そのため変態点通過時の冷却速度が早くなり、
結晶が細粒となる。細粒になればペツチの式で知
られるように降伏強度、引張強さともに増すが、
降伏強度の増加程度が大きいので降伏比が高くな
る。
以上のような理由で降伏比が低く降伏強度が30
Kg/mm2以上の析出強化型高張力鋼板をホツトスト
リツプミルで製造することは困難であつた。
本発明者らは種々の実験を重ね研究を行つた結
果、NbもしくはVのような析出強化元素を含む
鋼においても成分を限定し、特定の熱延条件のも
とで圧延を行うことによつてホツトストリツプミ
ルにおいても降伏比が0.8%以下、さらに必要な
場合は0.75以下の、かつ伸びの優れた高張力鋼を
製造することに成功した。
すなわち、本発明の骨子とするところは、重量
でC0.15〜0.25%、Si0.7%以下、Mn1.5%以下、
Al0.005〜0.080%、さらにNb0.005〜0.03%、も
しくはV0.01〜0.04%を含み、またはNb、Vを複
合して含む場合は、その和が0.005〜0.05%とな
るようにし、残部がFeおよび不可避的不純物か
らなる鋼を、通常工程でスラブとした後1200℃以
上に加熱し、続いてホツトストリツプミルにて
1000℃以上で粗圧延を終了し、830℃以上900℃以
下で仕上圧延を終了し、続いて5〜20℃/秒の平
均冷却速度で冷却し、550℃〜700℃でコイル状に
巻取ることを特徴とする降伏比0.8以下の低降伏
析出強化型熱延鋼板の製造法および重量でC0.15
〜0.25%、Si0.7%以下、Mn1.5%以下、Al0.005
〜0.080%、さらにNb0.005〜0.03%、もしくは
V0.01〜0.04%を含み、またはNb、Vを複合して
含む場合は、その和が0.005〜0.05%となるよう
にし、さらにNi0.5%以下、Mo0.5%以下、Cu0.5
%以下、REM0.1%以下、Zr0.1%以下、Ca、0.02
%以下の1種または2種以上を含み、残部がFe
および不可避的不純物からなる鋼を、通常工程で
スラブとした後、1200℃以上に加熱し、続いてホ
ツトストリツプミルにて1000℃以上で粗圧延を終
了し、830℃以上900℃以下で仕上圧延を終了し、
続いて5〜20℃/秒の平均冷却速度で冷却し、
550℃〜700℃でコイル状に巻取ることを特徴とす
る降伏比0.8以下の低降伏比析出強化型熱延鋼板
の製造法および重量でC0.15〜0.25%、Si0.7%以
下、Mn1.5%以下、Al0.005〜0.080%、さらに
Nb0.005〜0.03%、もしくはV0.01〜0.04%を含み
またはNb、Vを複合して含む場合は、その和が
0.005〜0.05%となるようにし、残部がFeおよび
不可避的不純物からなる鋼を通常工程でスラブと
した後、1200℃以上に加熱し、続いてホツトスト
リツプミルにて1000℃以上で粗圧延を終了し、
830℃以上900℃以下で仕上圧延を終了し、続いて
5〜20℃/秒の平均冷却速度で冷却し、550℃〜
700℃でコイル状に巻取り、しかる後コイルを巻
戻し最大表面曲げ歪0.6〜2.0%の曲げ変形を与え
ながら矯正した後切板とすることを特徴とする降
伏比0.8以下の低降伏比析出強化型熱延鋼板の製
造法および重量でC0.15〜0.25%、Si0.7%以下、
Mn1.5%以下、Al0.005〜0.080%、さらに
Nb0.005〜0.03%、もしくはV0.01〜0.04%を含み
またはNb、Vを複合して含む場合は、その和が
0.005〜0.05%となるようにし、さらにNi0.5%以
下、Mo0.5%以下、Cu0.5%以下、REM0.1%以
下、Zr0.1%以下、Ca0.02%以下の1種または2
種以上を含み、残部がFeおよび不可避的不純物
からなる鋼を通常工程でスラブとした後、1200℃
以上に加熱し、続いてホツトストリツプミルにて
1000℃以上で粗圧延を終了し、830℃以上900℃以
下で仕上圧延を終了し、続いて5〜20℃/秒の平
均冷却速度で冷却し、550℃〜700℃でコイル状に
巻取り、しかる後コイルを巻戻し最大表面曲げ歪
0.6〜2.0%の曲げ変形を与えながら矯正した後切
板とすることを特徴とする降伏比0.8以下の低降
伏比析出強化型熱延鋼板の製造法である。
また、本発明による鋼の成分系は製鋼での介在
物減少対策になんら支障にならずむしろ介在物を
減らす傾向にあり、そのため電縫溶接鋼管で最も
問題となる溶接の衝合部の超音波探傷欠陥も著し
く低くできる。さらにホツトストリツプミル製品
を使用するため板厚精度がよくそのため鋼管とし
ての寸法精度も良いことなど、本発明による鋼板
は鋼管用素材として種々の優れた特徴を有する。
次に本発明の構成要件の効果の説明と数値限定
理由の説明を行う。
まず成分であるが、Cは従来のこの種の鋼より
も高目に設定している。その理由はパーライト体
積率を高めパーライトによる強度上昇をはかる目
的と、製鋼上のC−O(炭素−酸素)バランスか
らO(酸素)を下げ鋼を清浄にするためである。
0.15%未満ではその効果が不十分であり、また
0.25%を越えると鋼の靭性が劣化し、またスラブ
加熱時にNbやVの炭窒化物が十分固溶せず、析
出強化元素が効果を発揮しない。次にSiとMnは
鋼に置換型固溶し固溶体強化する。SiおよびMn
がそれぞれ0.7%と1.5%を超えると、鋼の靭性、
特に溶接部の靭性を劣化させる。適当な量のSiお
よびMnは鋼の靭性、延性および溶接性を向上さ
せるので、これらの特性が厳しく要求される場合
には、Siを0.1〜0.5%、Mnを0.7〜1.2%の範囲と
することが好ましい。またAlは脱酸のため必要
である。特に本発明の場合のように電縫溶接鋼管
に用いられる場合、鋼板端部が溶接衝合部とな
り、その場所での巨大な介在物は致命欠陥とな
る。
よつてAlで十分脱酸し、かつ脱酸生成物が溶
鋼中にとどまらないように十分浮上する必要があ
る。そのためには、Alの量が重要であり0.005%
未満では十分脱酸できず、また0.080%を越すと
Al2O3を中心とした脱酸生成物が鋼中に残存する
量が増すので、Al量を0.005〜0.080%とした。よ
り厳しい介在物制御が必要な場合には、Alは0.01
〜0.04%が好ましい。次にNb、Vは析出強化元
素として鋼を強化するので降伏強さ30Kg/mm2以上
の高張力鋼においては必須である。しかしなが
ら、前述したように析出強化は通常降伏比を高め
るため、他の条件とのバランスを考慮に入れて極
力低く抑えている。すなわちNbの上限値0.03
%、Vの上限値0.04%、およびNb、Vを複合し
て用いる場合の上限値0.05%を越えると析出強化
の効果が大きくなりすぎて他の条件を考慮しても
降伏比0.8以下は達成されない。降伏比0.75以下
を達成するには、上記の値はそれぞれ0.025%、
(Nbの場合)、0.03%(Vの場合)、0.04%(Nb+
Vの場合)が好ましい。
またこれらの元素の下限値0.005%(Nbの場
合)、0.01%(Vの場合)、0.005%(Nb+Vの場
合)未満では析出強化が発揮されない。さらに必
要に応じてNi0.5%以下、Mo0.5%以下、Cu0.5%
以下、REM0.1%以下、Zr0.1%以下、Oa0.02%
以下の1種または2種以上を添加してよい。
Ni、Moは固溶体強化元素として降伏比を下げる
効果を有するので、1種または2種以上添加して
よい。それぞれ0.5%を越えると溶接性が悪くな
るほか鋼が非常に高価になり経済性の観点から好
ましくない。また、Cuは耐食性を向上させるの
で、必要に応じて添加してよい。0.5%を越える
と効果が飽和するので上限は0.5%である。さら
にREM、Zr、Caは硫化物介在物を熱間で非可塑
性とし、結果的に球状化するため圧延方向に直角
方向の延性、靭性を向上させるので適宜添加して
よい。その上限値は効果の飽和する点で決められ
ている。
以上の他に特別な介在物対策が必要とされる用
途に対しては、不純物元素としてのSを0.015%
以下、O0.0030%以下としかつ重量でMnがCの
3〜6培、Siの3〜9倍とすることが好ましい。
次に熱延条件の説明を行う。まず、加熱温度で
あるが、NbもしくはVの炭窒化物を十分固溶さ
せるため、1200℃以上の高温にする必要がある。
特に本発明の場合、降伏比を下げるためCを高目
にしているため、炭窒化物が固溶しにくく加熱温
度は重要である。次に圧延温度は成分との組合せ
で低降伏比を与えるので非常に重要である。粗圧
延は1000℃以上で行うことが必要である。1000℃
未満で粗圧延を行うとオーステナイト粒が細粒に
なり、続く仕上圧延、冷却により非常に微細なフ
エライト粒が得られ降伏比を低くできない。好ま
しくは1040℃以上で粗圧延を終了すべきである。
続いて仕上圧延であるが、この温度が低すぎると
オーステナイト粒中にフエライト粒の核生成頻度
が増し、その結果、フエライト粒が微細になりす
ぎて降伏比が高くなる。その意味で830℃以上で
仕上圧延を行う必要がある。しかしながら微細な
フエライト粒は靭性にとつては好ましいので、仕
上圧延温度をむやみに高くすることはできない。
900℃を越えると粗大でかつ混粒のフエライトが
生じ鋼の靭性の上から許容できない。これらの圧
延条件は降伏比を低くするため次の冷却条件との
兼ね合いで決められている。厚板ミルのように、
仕上圧延後空冷されるような工程では変態点通過
時の冷却速度が小さく、比較的大きなフエライト
粒が変態によつて得られるので、降伏比は比較的
低くなる。ホツトストリツプミルでは、この意味
から冷却速度を制限する必要があり、平均冷却速
度が20℃/秒を越えると、降伏比0.80以下を達成
できない。好ましくは15℃/秒以下がよい。また
平均冷却速度の下限値は5℃/秒である。5℃/
秒未満の冷却速度では生産性が下がりホツトスト
リツプミルで製造する意義が失なわれる。最後に
巻取温度は、NbもしくはVまたはその両者の炭
窒化物とが最も微細に析出する温度域である550
〜700℃にする必要がある。550℃未満では析出が
十分でなく700℃を越えると析出物が粗大になり
析出強化が十分発揮されない。なお、スラブ加熱
温度、粗圧延終了温度の上限は特に記していな
い。これは通常のホツトストリツプミルで取り得
る上限値までその効果が発揮されるためである。
それぞれの上限値は約1330℃および1150℃であ
る。
以上本発明の構成要件の限定理由を述べたが、
さらに二、三補足すると、本発明による鋼は転炉
で出鋼するのが一般的である。その後、DH法ま
たはRH法による真空脱ガスにより鋼を清浄化す
ることは好ましい。続いて造塊、分塊によりスラ
ブとするか連続鋳造によりスラブとして熱延工程
に入る。次に本発明に従つて熱延コイルとなる。
熱延コイルはそのまゝ造管工程に供されるか、も
しくはコイルを巻戻し切板とされて造管工程に供
される。コイルを巻戻して切板とする場合は、最
大表面曲げ歪が0.6〜2.0%となるように繰り返し
曲げ加工(レベラー加工)によつて矯正して切板
とすることが切板の平担度が良好となり、降伏比
も低くなるので好ましい。
続いて本発明の効果を実施例で説明する。
実施例 1
まず本発明における成分の影響を実施例1で説
明する、第1表に示す化学成分を含む鋼を転炉で
溶製し造塊、分塊を行い本発明による熱延を行つ
た。熱延条件としては1230℃でスラブを加熱し、
続いて5スタンドの粗圧延機で一方向の粗圧延を
行つた。粗圧延終了温度は1050℃である。続いて
7スタンドのタンデム圧延機から成る仕上圧延を
行つた。仕上圧延終了温度は850℃で製品の板厚
は8.0mmである。続いて平均冷却速度10℃/秒で
冷却し、630℃でコイル状に巻取つた。
その時の材料の機械的性質を第2表に示す。
引張試験片はJISZ22015号試験片を用いた。表
中、YS、TS、El、YRはそれぞれ降伏強度、引
張強さ、伸び、降伏比(YS/TS)を表わす。ま
た引張試験片の方向は、圧延方向と直角にとつ
た。
第2表中〇印をつけた符号A、H、Iは本発明
に基づく成分を本発明に基づく方法で製造したも
のである。符号B〜Fは本発明とは成分が異な
る。この表から明らかなように、本発明によれ
ば、YR0.8以下、降伏強度30Kg/mm2以上の高張力
鋼板を要求して得ることが出来る。さらに第1図
に示すように、本発明による鋼板は同一TSに対
するElが優れており、種々の鋼管の矯正、サイ
ジング等に耐えることがわかる。
The present invention relates to a method for manufacturing a precipitation-strengthened low yield ratio hot-rolled steel plate having a thickness of about 4.5 mm to 15 mm and a yield strength of 30 Kg/mm 2 or more. Steel pipes for the purpose of transporting oil or gas fuel have become subject to increasingly strict standards from the viewpoint of safety. One of these is the yield ratio (the value obtained by dividing the yield strength by the tensile strength), and it has come to be believed that the lower the ratio, the better in order to prevent pipes from breaking. Particularly in recent years, when high-strength steel is used to increase wheel transport efficiency, the upper limit on yield ratio is severely restricted. Furthermore, this situation is because the pipe diameter is not 200
It is noticeable in welded steel pipes of about 800 mm. This is because this class of steel pipes generally has a large ratio of plate thickness to diameter, is subject to large work hardening during bending during pipe manufacturing, and suffers from compressive strain due to crimping during welding, as well as expansion and expansion.
Since the pipe undergoes processing such as sizing, the yield ratio of the steel pipe as a product is quite high. Generally, work hardening significantly increases the yield strength, but the tensile strength does not increase so much, so work hardening increases the yield ratio. Therefore, the yield ratio of the steel plate or steel strip used as the material has come to be required to be extremely low, such as 0.8 or less, or even 0.75 or less in extreme cases, in order to allow for the equivalent amount of work hardening. . On the other hand, the manufacturing method of steel plates as steel pipe materials is by plate mills or hot strip mills, but high-strength steels with yield strength of 30 kg/mm 2 or higher are produced by Nb, V, Ti, etc.
Use precipitation strengthening elements such as However, precipitation strengthening is generally known to increase the yield ratio. This is thought to be because fine precipitates impede the movement of dislocations. Furthermore, when manufacturing with a hot strip mill, forced cooling is performed using cooling water after finish rolling to increase productivity. Therefore, the cooling rate when passing the transformation point becomes faster,
The crystals become fine grains. As the grain becomes finer, both the yield strength and tensile strength increase, as known from the Petsch equation.
Since the degree of increase in yield strength is large, the yield ratio becomes high. Due to the above reasons, the yield ratio is low and the yield strength is 30.
It has been difficult to produce precipitation-strengthened high-strength steel sheets of Kg/mm 2 or more using hot strip mills. As a result of various experiments and research, the present inventors have found that even in steel containing precipitation-strengthening elements such as Nb or V, by limiting the composition and rolling under specific hot-rolling conditions. Even in a hot strip mill, we succeeded in producing high-strength steel with a yield ratio of 0.8% or less, and if necessary, 0.75 or less, and excellent elongation. That is, the gist of the present invention is that C0.15 to 0.25% by weight, Si 0.7% or less, Mn 1.5% or less,
If it contains Al0.005-0.080%, Nb0.005-0.03%, or V0.01-0.04%, or a combination of Nb and V, the sum should be 0.005-0.05%, and the remainder Steel consisting of Fe and unavoidable impurities is made into a slab in the normal process, heated to over 1200℃, and then processed in a hot strip mill.
Rough rolling is completed at 1000°C or higher, finish rolling is completed at 830°C or higher and 900°C or lower, followed by cooling at an average cooling rate of 5 to 20°C/sec, and winding into a coil at 550°C to 700°C. A method for manufacturing a low yield precipitation strengthened hot rolled steel sheet with a yield ratio of 0.8 or less and a weight of C0.15.
~0.25%, Si0.7% or less, Mn1.5% or less, Al0.005
~0.080%, further Nb0.005~0.03%, or
If it contains 0.01 to 0.04% of V, or a combination of Nb and V, the sum should be 0.005 to 0.05%, and in addition, Ni 0.5% or less, Mo 0.5% or less, Cu 0.5
% or less, REM 0.1% or less, Zr 0.1% or less, Ca, 0.02
% or less, and the remainder is Fe.
Steel consisting of steel and unavoidable impurities is made into a slab in the normal process, heated to 1200℃ or higher, then rough rolled in a hot strip mill at 1000℃ or higher, and then heated at 830℃ or higher and 900℃ or lower. Finish rolling is finished,
followed by cooling at an average cooling rate of 5 to 20°C/sec,
Manufacturing method of precipitation-strengthened hot rolled steel sheet with a low yield ratio of 0.8 or less, which is characterized by winding into a coil at 550℃ to 700℃, and the weight of C0.15 to 0.25%, Si0.7% or less, Mn1 .5% or less, Al0.005~0.080%, and more
If it contains Nb0.005~0.03% or V0.01~0.04%, or contains a combination of Nb and V, the sum is
The steel is made into a slab using a normal process, with the balance being Fe and unavoidable impurities, heated to 1200℃ or higher, and then roughly rolled at 1000℃ or higher in a hot strip mill. exit,
Finish rolling is completed at 830°C or higher and 900°C or lower, followed by cooling at an average cooling rate of 5 to 20°C/sec, and then 550°C to 900°C.
Low yield ratio precipitation with a yield ratio of 0.8 or less, characterized by winding the coil into a coil at 700°C, then unwinding the coil, straightening it while giving a maximum surface bending strain of 0.6 to 2.0%, and cutting it into a cut plate. Manufacturing method and weight of strengthened hot rolled steel sheet: C0.15-0.25%, Si0.7% or less,
Mn1.5% or less, Al0.005~0.080%, and
If it contains Nb0.005~0.03% or V0.01~0.04%, or contains a combination of Nb and V, the sum is
0.005 to 0.05%, and one or two of the following: Ni 0.5% or less, Mo 0.5% or less, Cu 0.5% or less, REM 0.1% or less, Zr 0.1% or less, Ca 0.02% or less.
After making the steel into a slab using the normal process, it is heated to 1200°C.
Heat as above, then use a hot strip mill
Rough rolling is completed at 1000°C or higher, finish rolling is completed at 830°C or higher and 900°C or lower, followed by cooling at an average cooling rate of 5 to 20°C/sec, and winding into a coil at 550°C to 700°C. , then unwind the coil to maximum surface bending strain
This is a method for producing a precipitation-strengthened hot-rolled steel sheet with a low yield ratio of 0.8 or less, which is characterized in that the sheet is cut after straightening while applying bending deformation of 0.6 to 2.0%. In addition, the composition system of the steel according to the present invention does not interfere with measures to reduce inclusions in steel manufacturing, but rather tends to reduce inclusions. Detection defects can also be significantly lowered. Furthermore, the steel plate according to the present invention has various excellent features as a material for steel pipes, such as good plate thickness accuracy due to the use of hot strip mill products, and therefore good dimensional accuracy as a steel pipe. Next, the effects of the constituent elements of the present invention and the reason for limiting the numerical values will be explained. First, regarding the ingredients, C is set higher than in conventional steels of this type. The reason for this is to increase the pearlite volume fraction and increase the strength due to pearlite, and to lower O (oxygen) from the C-O (carbon-oxygen) balance in steel manufacturing to make the steel cleaner.
If it is less than 0.15%, the effect is insufficient, and
If it exceeds 0.25%, the toughness of the steel will deteriorate, and the carbonitrides of Nb and V will not dissolve sufficiently in solid solution during slab heating, and the precipitation strengthening elements will not be effective. Next, Si and Mn form a substitutional solid solution in the steel to strengthen it as a solid solution. Si and Mn
exceeds 0.7% and 1.5%, respectively, the toughness of the steel,
In particular, it deteriorates the toughness of welded parts. Appropriate amounts of Si and Mn improve the toughness, ductility and weldability of steel, so if these properties are strictly required, Si should be in the range of 0.1-0.5% and Mn in the range of 0.7-1.2%. It is preferable. Also, Al is necessary for deoxidation. Particularly when used in electric resistance welded steel pipes as in the case of the present invention, the ends of the steel plates become weld abutments, and large inclusions at those locations become fatal defects. Therefore, it is necessary to sufficiently deoxidize with Al and to float sufficiently so that the deoxidized products do not remain in the molten steel. For this purpose, the amount of Al is important and is 0.005%
If it is less than 0.080%, it cannot be deoxidized sufficiently, and if it exceeds 0.080%,
Since the amount of deoxidation products mainly consisting of Al 2 O 3 remaining in the steel increases, the amount of Al was set to 0.005 to 0.080%. If tighter inclusion control is required, Al is 0.01
~0.04% is preferred. Next, Nb and V strengthen steel as precipitation-strengthening elements, so they are essential for high-strength steels with a yield strength of 30 Kg/mm 2 or more. However, as mentioned above, precipitation strengthening usually increases the yield ratio, so it is kept as low as possible while taking into consideration the balance with other conditions. In other words, the upper limit of Nb is 0.03
%, V exceeds the upper limit of 0.04%, and when Nb and V are used in combination, the upper limit of 0.05% is exceeded, the effect of precipitation strengthening becomes too large, and a yield ratio of 0.8 or less is not achieved even considering other conditions. Not done. To achieve a yield ratio of 0.75 or less, the above values should be 0.025%,
(for Nb), 0.03% (for V), 0.04% (for Nb+
V) is preferred. Furthermore, precipitation strengthening is not achieved when the lower limits of these elements are less than 0.005% (in the case of Nb), 0.01% (in the case of V), and 0.005% (in the case of Nb+V). Furthermore, if necessary, Ni0.5% or less, Mo0.5% or less, Cu0.5%
Below, REM 0.1% or less, Zr 0.1% or less, Oa 0.02%
One or more of the following may be added.
Since Ni and Mo have the effect of lowering the yield ratio as solid solution strengthening elements, one or more of them may be added. If each content exceeds 0.5%, weldability deteriorates and the steel becomes extremely expensive, which is undesirable from an economical point of view. Further, since Cu improves corrosion resistance, it may be added as necessary. If it exceeds 0.5%, the effect will be saturated, so the upper limit is 0.5%. Furthermore, REM, Zr, and Ca make the sulfide inclusions non-plastic during hot heating, resulting in spheroidization, which improves the ductility and toughness in the direction perpendicular to the rolling direction, so they may be added as appropriate. The upper limit is determined at the point where the effect is saturated. In addition to the above, for applications that require special inclusion measures, S as an impurity element should be added to 0.015%.
Hereinafter, it is preferable that O is 0.0030% or less, and that Mn is 3 to 6 times that of C and 3 to 9 times that of Si. Next, the hot rolling conditions will be explained. First, regarding the heating temperature, it is necessary to set it to a high temperature of 1200° C. or higher in order to sufficiently dissolve the carbonitride of Nb or V as a solid solution.
Particularly in the case of the present invention, since the carbon content is set high in order to lower the yield ratio, it is difficult for carbonitrides to form a solid solution, so the heating temperature is important. Next, the rolling temperature is very important because in combination with the ingredients it gives a low yield ratio. Rough rolling must be performed at a temperature of 1000°C or higher. 1000℃
If rough rolling is performed at less than 100%, the austenite grains become fine, and the subsequent finish rolling and cooling result in very fine ferrite grains, making it impossible to lower the yield ratio. Preferably, rough rolling should be completed at 1040°C or higher.
Next is finish rolling, but if this temperature is too low, the frequency of nucleation of ferrite grains in austenite grains will increase, and as a result, the ferrite grains will become too fine and the yield ratio will increase. In this sense, it is necessary to perform finish rolling at a temperature of 830°C or higher. However, since fine ferrite grains are favorable for toughness, the finish rolling temperature cannot be increased unnecessarily.
If the temperature exceeds 900°C, coarse and mixed grains of ferrite are produced, which is unacceptable from the viewpoint of the toughness of the steel. These rolling conditions are determined in consideration of the following cooling conditions in order to lower the yield ratio. Like a plank mill,
In a process in which air cooling is performed after finish rolling, the cooling rate when passing the transformation point is low and relatively large ferrite grains are obtained by transformation, so the yield ratio is relatively low. For hot strip mills, it is necessary to limit the cooling rate for this reason; if the average cooling rate exceeds 20°C/sec, a yield ratio of 0.80 or less cannot be achieved. Preferably it is 15°C/second or less. The lower limit of the average cooling rate is 5°C/sec. 5℃/
If the cooling rate is less than a second, the productivity will decrease and the purpose of manufacturing with a hot strip mill will be lost. Finally, the coiling temperature is 550°C, which is the temperature range in which carbonitrides of Nb, V, or both are precipitated most minutely.
Need to be ~700℃. If the temperature is lower than 550°C, precipitation will not be sufficient, and if the temperature exceeds 700°C, the precipitates will become coarse and precipitation strengthening will not be sufficiently achieved. Note that the upper limits of the slab heating temperature and rough rolling completion temperature are not particularly specified. This is because the effect is exhibited up to the upper limit that can be achieved with a normal hot strip mill.
The respective upper limits are approximately 1330°C and 1150°C. Although the reasons for limiting the constituent elements of the present invention have been described above,
To add a few more points, the steel according to the present invention is generally tapped in a converter. Thereafter, it is preferable to clean the steel by vacuum degassing using the DH method or the RH method. Next, it enters the hot rolling process, either by ingot making and blooming into a slab, or by continuous casting into a slab. A hot rolled coil is then obtained according to the present invention.
The hot-rolled coil is directly subjected to the tube-making process, or the coil is unwound and cut into plates, which are then subjected to the tube-making process. When unwinding a coil to make a cut plate, it is necessary to straighten the cut plate by repeated bending (leveler processing) so that the maximum surface bending strain is 0.6 to 2.0%. This is preferable because it provides good yield ratio and low yield ratio. Next, the effects of the present invention will be explained using examples. Example 1 First, the influence of the components in the present invention will be explained in Example 1. Steel containing the chemical components shown in Table 1 was melted in a converter, ingot-formed and bloomed, and hot-rolled according to the present invention. . The hot rolling conditions were to heat the slab at 1230℃,
Subsequently, unidirectional rough rolling was performed using a 5-stand rough rolling mill. The rough rolling finish temperature is 1050°C. This was followed by finish rolling using a seven-stand tandem rolling mill. The final rolling temperature is 850℃ and the product thickness is 8.0mm. Subsequently, it was cooled at an average cooling rate of 10°C/sec and wound into a coil at 630°C. The mechanical properties of the material at that time are shown in Table 2. A JISZ22015 test piece was used as the tensile test piece. In the table, YS, TS, El, and YR represent yield strength, tensile strength, elongation, and yield ratio (YS/TS), respectively. The direction of the tensile test piece was perpendicular to the rolling direction. In Table 2, symbols A, H, and I marked with a circle indicate components based on the present invention that were produced by a method based on the present invention. Symbols B to F have different components from those of the present invention. As is clear from this table, according to the present invention, a high tensile strength steel plate having a YR of 0.8 or less and a yield strength of 30 Kg/mm 2 or more can be obtained. Furthermore, as shown in FIG. 1, the steel sheet according to the present invention has an excellent El for the same TS, and can withstand various types of straightening, sizing, etc. of steel pipes.
【表】【table】
【表】【table】
【表】【table】
【表】
実施例 2
次に実施例2で熱延条件の効果について説明す
る。
第3表に示す成分の鋼を転炉で出鋼し造塊、分
塊工程を経て、スラブとした。続いて1250℃で加
熱後、第4表に示す熱延条件で熱延を行つた。板
厚はいずれも8.0mmであつた。その後矯正ライン
で最大表面曲げ歪10%の曲げ変形を与えて矯正後
切板とした。表中番号1、2は本発明によるもの
である。番号3は圧延温度が、番号4は仕上後の
冷却速度が本発明と異なる。第4表中の機械的性
質に示すように、本発明によれば安定して低降伏
比の高張力鋼板が得られている。この鋼板は、ひ
き続いて電縫鋼管に成形、溶接され、続いて拡
管、サイジングされて製品鋼管となつたが鋼管と
しての機械的性質、真円度、真直度等の品質全般
にわたり良好であつた。[Table] Example 2 Next, in Example 2, the effects of hot rolling conditions will be explained. Steel having the components shown in Table 3 was tapped in a converter and subjected to ingot making and blooming processes to form slabs. Subsequently, after heating at 1250°C, hot rolling was performed under the hot rolling conditions shown in Table 4. The thickness of each plate was 8.0 mm. Thereafter, a bending deformation with a maximum surface bending strain of 10% was applied on the straightening line to produce a straightened cut plate. Numbers 1 and 2 in the table are according to the present invention. Number 3 differs from the present invention in rolling temperature, and number 4 differs in cooling rate after finishing. As shown in the mechanical properties in Table 4, according to the present invention, a high tensile strength steel plate with a stable low yield ratio can be obtained. This steel plate was subsequently formed and welded into an electric resistance welded steel pipe, and then expanded and sized to become a product steel pipe. However, the overall quality of the steel pipe, including mechanical properties, roundness, and straightness, was good. Ta.
【表】【table】
【表】
以上のように、本発明は析出強化元素を用いな
がら鋼管用の品質特性として近年重要になりつゝ
ある降伏比を十分低めた降伏強度30Kg/mm2以上の
高張力熱延鋼板を安定して製造できる方法であ
る。[Table] As described above, the present invention uses precipitation-strengthening elements to sufficiently reduce the yield ratio, which has become important in recent years as a quality characteristic for steel pipes, and has a yield strength of 30 Kg/mm 2 or higher. This is a method that allows stable production.
第1図は縦軸に伸び、横軸に引張強さを取り強
度と延性の関係を表わしたものである。図中〇印
は本発明による鋼板、●印は比較鋼板を表わす。
Figure 1 shows the relationship between strength and ductility, with elongation on the vertical axis and tensile strength on the horizontal axis. In the figure, the ○ mark represents the steel plate according to the present invention, and the ● mark represents the comparative steel plate.
Claims (1)
その和が0.005〜0.05%となるようにし、残部が
Feおよび不可避的不純物からなる鋼を、通常工
程でスラブとした後1200℃以上に加熱し、続いて
ホツトストリツプミルに1000℃以上で粗圧延を終
了し、830℃以上900℃以下で仕上圧延を終了し、
続いて5〜20℃/秒の平均冷却速度で冷却し、
550℃〜700℃でコイル状に巻取ることを特徴とす
る降伏比0.8以下の低降伏比析出強化型熱延鋼板
の製造法。 2 重量でC 0.15〜0.25%、 Si 0.7%以下、 Mn 1.5%以下、 Al 0.005〜0.080%、 さらに Nb 0.005〜0.03%、 もしくは V 0.01〜0.04% を含み、またはNb、Vを複合して含む場合は、
その和が0.005〜0.05%となるようにし、さらに Ni 0.5%以下、 Mo 0.5%以下、 Cu 0.5%以下、 REM 0.1%以下、 Zr 0.1%以下、 Ca 0.02%以下、 の1種または2種以上を含み、残部がFeおよび
不可避的不純物からなる鋼を、通常工程でスラブ
とした後1200℃以上に加熱し、続いてホツトスト
リツプミルにて1000℃以上で粗圧延を終了し、
830℃以上900℃以下で仕上圧延を終了し、続いて
5〜20℃/秒の平均冷却速度で冷却し、550℃〜
700℃でコイル状に巻取ることを特徴とする降伏
比0.8以下の低降状比析出強化型熱延鋼板の製造
法。 3 重量でC 0.15〜0.25%、 Si 0.7%以下、 Mn 1.5%以下、 Al 0.005〜0.080%、 さらに Nb 0.005〜0.03%、 もしくは V 0.01〜0.04% を含み、またはNb、Vを複合して含む場合は、
その和が0.005〜0.05%となるようにし、残部が
Feおよび不可避的不純物からなる鋼を通常工程
でスラブとした後、1200℃以上に加熱し、続いて
ホツトストリツプミルにて1000℃以上で粗圧延を
終了し、830℃以上900℃以下で仕上圧延を終了
し、続いて5〜20℃/秒の平均冷却速度で冷却
し、550℃〜700℃でコイル状に巻取り、しかる後
コイルを巻戻し最大表面曲げ歪0.6〜2.0%の曲げ
変形を与えながら矯正した後切板とすることを特
徴とする降伏比0.8以下の低降伏比析出強化型熱
延鋼板の製造法。 4 重量でC 0.15〜0.25%、 Si 0.7%以下、 Mn 1.5%以下、 Al 0.005〜0.080%、 さらに Nb 0.005〜0.03%、 もしくは V 0.01〜0.04% を含み、またはNb、Vを複合して含む場合はそ
の和が0.005〜0.05%となるようにし、さらに Ni 0.5%以下、 Mo 0.5%以下、 Cu 0.5%以下、 REM 0.1%以下、 Zr 0.1%以下、 Ca 0.02%以下 の1種または2種以上を含み、残部がFeおよび
不可避的不純物からなる鋼を通常工程でスラブと
した後、1200℃以上に加熱し、続いてホツトスト
リツプミルにて1000℃以上で粗圧延を終了し、
830℃以上900℃以下で仕上圧延を終了し、続いて
5〜20℃/秒の平均冷却速度で冷却し、550℃〜
700℃でコイル状に巻取り、しかる後コイルを巻
取し最大表面曲げ歪0.6〜2.0%の曲げ変形を与え
ながら矯正した後切板とすることを特徴とする降
伏比0.8以下の低降伏比析出強化型熱延鋼板の製
造法。[Claims] 1 Contains by weight C 0.15 to 0.25%, Si 0.7% or less, Mn 1.5% or less, Al 0.005 to 0.080%, further Nb 0.005 to 0.03%, or V 0.01 to 0.04%, or Nb, If V is included in combination,
The sum should be 0.005 to 0.05%, and the remainder should be
Steel consisting of Fe and unavoidable impurities is made into a slab in the normal process, heated to 1200℃ or higher, then rough rolled in a hot strip mill at 1000℃ or higher, and finished at 830℃ or higher and 900℃ or lower. Finish rolling,
followed by cooling at an average cooling rate of 5 to 20°C/sec,
A method for producing a precipitation-strengthened hot-rolled steel sheet with a low yield ratio of 0.8 or less, which is characterized by winding it into a coil at 550°C to 700°C. 2 Contains C 0.15 to 0.25%, Si 0.7% or less, Mn 1.5% or less, Al 0.005 to 0.080%, and further Nb 0.005 to 0.03%, or V 0.01 to 0.04%, or a combination of Nb and V In case,
The sum should be 0.005 to 0.05%, and one or more of the following: Ni 0.5% or less, Mo 0.5% or less, Cu 0.5% or less, REM 0.1% or less, Zr 0.1% or less, Ca 0.02% or less steel, the balance of which is Fe and unavoidable impurities, is made into a slab in a normal process, heated to a temperature of 1200°C or higher, and then rough rolled in a hot strip mill at a temperature of 1000°C or higher,
Finish rolling is completed at 830°C or higher and 900°C or lower, followed by cooling at an average cooling rate of 5 to 20°C/sec, and then 550°C to 900°C.
A method for manufacturing a precipitation-strengthened hot rolled steel sheet with a yield ratio of 0.8 or less, which is characterized by winding it into a coil at 700℃. 3 Contains C 0.15 to 0.25%, Si 0.7% or less, Mn 1.5% or less, Al 0.005 to 0.080%, and further Nb 0.005 to 0.03%, or V 0.01 to 0.04%, or a combination of Nb and V In case,
The sum should be 0.005 to 0.05%, and the remainder should be
After making steel consisting of Fe and unavoidable impurities into a slab in the normal process, it is heated to 1200℃ or higher, then rough rolling is completed at 1000℃ or higher in a hot strip mill, and then the steel is heated at 830℃ or higher and 900℃ or lower. Finish rolling is completed, followed by cooling at an average cooling rate of 5-20°C/sec, winding into a coil at 550°C-700°C, and then unwinding the coil and bending with a maximum surface bending strain of 0.6-2.0%. A method for producing a precipitation-strengthened hot-rolled steel sheet with a low yield ratio of 0.8 or less, which comprises straightening the sheet while applying deformation and then cutting the sheet. 4 Contains C 0.15 to 0.25%, Si 0.7% or less, Mn 1.5% or less, Al 0.005 to 0.080%, and further Nb 0.005 to 0.03%, or V 0.01 to 0.04%, or a combination of Nb and V If so, the sum should be 0.005 to 0.05%, and one or two of the following types: Ni 0.5% or less, Mo 0.5% or less, Cu 0.5% or less, REM 0.1% or less, Zr 0.1% or less, Ca 0.02% or less After forming the steel containing the above and the balance consisting of Fe and unavoidable impurities into a slab in a normal process, it is heated to 1200°C or higher, and then rough rolling is completed at 1000°C or higher in a hot strip mill,
Finish rolling is completed at 830°C or higher and 900°C or lower, followed by cooling at an average cooling rate of 5 to 20°C/sec, and then 550°C to 900°C.
A low yield ratio with a yield ratio of 0.8 or less, which is characterized by winding the coil into a coil at 700°C, then winding the coil, straightening it while giving a maximum surface bending strain of 0.6 to 2.0%, and cutting it into a cut plate. A method for producing precipitation-strengthened hot-rolled steel sheets.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10068678A JPS5528336A (en) | 1978-08-18 | 1978-08-18 | Manufacture of hot rolled precipitation hardening type steel sheet of low yield ratio of 0.8 or less |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10068678A JPS5528336A (en) | 1978-08-18 | 1978-08-18 | Manufacture of hot rolled precipitation hardening type steel sheet of low yield ratio of 0.8 or less |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5528336A JPS5528336A (en) | 1980-02-28 |
JPS6137332B2 true JPS6137332B2 (en) | 1986-08-23 |
Family
ID=14280610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10068678A Granted JPS5528336A (en) | 1978-08-18 | 1978-08-18 | Manufacture of hot rolled precipitation hardening type steel sheet of low yield ratio of 0.8 or less |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5528336A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56139626A (en) * | 1980-03-31 | 1981-10-31 | Kobe Steel Ltd | Production of hot-rolled steel plate of superior strength-ductility balance |
CA1320110C (en) * | 1988-06-13 | 1993-07-13 | Hiroshi Tamehiro | Process for manufacturing building construction steel having excellent fire resistance and low yield ratio, and construction steel material |
JP2006169173A (en) * | 2004-12-16 | 2006-06-29 | Toyobo Co Ltd | Method for using sheet-shaped packing material |
-
1978
- 1978-08-18 JP JP10068678A patent/JPS5528336A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5528336A (en) | 1980-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1288316B1 (en) | Method for making high-strength high-toughness martensitic stainless steel seamless pipe | |
JP4905240B2 (en) | Manufacturing method of hot-rolled steel sheet with excellent surface quality, fracture toughness and sour resistance | |
JP5151233B2 (en) | Hot-rolled steel sheet excellent in surface quality and ductile crack propagation characteristics and method for producing the same | |
JP3610883B2 (en) | Method for producing high-tensile steel sheet with excellent bendability | |
JP4367091B2 (en) | High-strength hot-rolled steel sheet having excellent fatigue resistance and excellent strength-ductility balance and method for producing the same | |
JP5087966B2 (en) | Method for producing hot-rolled steel sheet with excellent surface quality and ductile crack propagation characteristics | |
JP4900260B2 (en) | Method for producing hot-rolled steel sheet having excellent ductile crack propagation characteristics and sour resistance | |
JPH09118952A (en) | Member made of high-strength hot rolled steel sheet having lower yield ratio | |
JP3296723B2 (en) | Austenitic stainless hot-rolled steel sheet excellent in deep drawability and method for producing the same | |
JPH07316650A (en) | Production of high strength hot rolled steel plate with low yield ratio | |
JP5534319B2 (en) | Method for producing hot-rolled steel sheet with excellent pickling and workability | |
JPS6137332B2 (en) | ||
KR20190078259A (en) | High strength cold rolled steel sheet having low mechanical properties deviation, good stretch flangeability and high recovery rate | |
JPH04293721A (en) | Production of soft steel wire rod excellent in mechanical descaling property | |
JP5061420B2 (en) | Manufacturing method of high-tensile hot-rolled steel sheet | |
JPS6144122B2 (en) | ||
JP2001207244A (en) | Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method | |
JPS63100126A (en) | Manufacture of hot rolled high tension steel for resistance welded steel pipe having superior workability | |
JP3169293B2 (en) | Automotive thin steel sheet excellent in impact resistance and method for producing the same | |
JPH0368927B2 (en) | ||
CN115053007B (en) | Cold-rolled steel sheet for flux-cored wire and method for producing same | |
RU2784908C1 (en) | Method for producing hot-rolled sheet structural steel | |
JP5413496B2 (en) | Hot-rolled steel sheet excellent in surface quality and ductile crack propagation characteristics and method for producing the same | |
JPH0559493A (en) | High strength resistance welded steel tube for impact bar in vehicle door and its manufacture | |
JPH10140292A (en) | Manufacture of high purity ferritic stainless steel and steel sheet made of the steel |