JPS6322083B2 - - Google Patents

Info

Publication number
JPS6322083B2
JPS6322083B2 JP6199579A JP6199579A JPS6322083B2 JP S6322083 B2 JPS6322083 B2 JP S6322083B2 JP 6199579 A JP6199579 A JP 6199579A JP 6199579 A JP6199579 A JP 6199579A JP S6322083 B2 JPS6322083 B2 JP S6322083B2
Authority
JP
Japan
Prior art keywords
thin film
electromechanical
elinvar
elastic metal
mechanical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6199579A
Other languages
Japanese (ja)
Other versions
JPS55153411A (en
Inventor
Yoichi Myasaka
Sadayuki Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP6199579A priority Critical patent/JPS55153411A/en
Publication of JPS55153411A publication Critical patent/JPS55153411A/en
Publication of JPS6322083B2 publication Critical patent/JPS6322083B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks

Description

【発明の詳細な説明】 本発明は酸化物強誘電体薄膜を用いた電気機械
振動子に関する。電気機械振動子は高Q、高安定
で小形であるという利点から、フイルタ、共振子
などの回路部品に広く利用されており、電子回路
に不可欠の素子である。近年半導体集積回路の急
速な発達に伴つて電子機器の小形化が進んでいる
が、半導体回路の小形化、集積化の発達に比べて
電気機械振動子の小形化は大幅に遅れている。従
来、電気機械振動子においては、電気エネルギー
を機械エネルギーに或いは逆に機械エネルギーを
電気エネルギーに変換する電気−機械変換器の主
要構成材料として主にBaTiO3やPb(Zr、Ti)O3
などの圧電性の大きい酸化物強誘電体の焼結体
(セラミクス)を用いており、これを薄く切断し
て弾性金属で構成した機械振動体に接着すること
によつて電気機械振動子を構成していた。しかし
切断、接着の工作的限界及び接着層の振動への影
響の増大などから電気機械振動子の小型化にも自
ずと限界が生じていた。上記のような欠点を除い
て電気機械振動子の小型化をより一層図るために
は、酸化物強誘電体を薄膜化することにより弾性
金属で構成された機械振動体をもそれに見合うよ
うに小型化し、それら両面から電気機械振動子を
小型化するのがよい。酸化物強誘電体のなかで
BaTiO3、Pb(Zr、Ti)O3は大きな電気機械結合
係数を示すところから、小形で高性能の電気機械
振動子を得るためにはBaTiO3、Pb(Zr、Ti)O3
などの薄膜を用いるのが有利である。しかし、こ
れらの薄膜は500℃以上の温度で、かつ酸化性雰
囲気中で熱処理を行なわないと結晶化せず、した
がつて通常の蒸着法やスパツタリング法によつて
薄膜化したままでは有意量の圧電性を示さない。
弾性金属の代表格であるエリシバー合金は弾性定
数の温度特性のすぐれた金属であるが、薄膜の結
晶化のために上記の如き条件で熱処理すると、エ
リンバー合金の温度特性が変化してしまう。この
熱処理に伴う問題はエリンバー合金に限らず殆ん
どの弾性金属に共通するので、充分な圧電性を具
備した状態で薄膜化した酸化物強誘電体層を弾性
金属で構成した機械振動体の一部表面に形成した
構造の電気機械振動子は現在に至るまで存在し得
ず、その可能性が示唆されたこともなかつた。唯
一の例として圧電材料として酸化亜鉛(ZnO)を
用い、その薄層をエリンバー製音叉は外側面の一
つに200〜300℃でRFスパツタリング法によつて
形成した電子腕時計用音叉振動子が知られてい
る。ZnOは上記温度で一応の圧電性を示す為、電
気機械結合係数が小さくとも一応使用し得る上記
用途に適用し得たのであるが、ZnOが強誘電体で
はないため電気機械結合係数がBaTiO3やPb(Zr、
Ti)O3などのような強誘電体に比らべて一桁程
度以上小さく、従つて挿入損失の小さいことが不
可欠要素とされるメカニカルフイルターなどの電
気機械振動子を構成することは不可能である。ま
た、ZnOは湿度に対して不安定であり、大気中や
水中で露出状態で使用することもあるバイモルフ
振動子などの電気機械振動子には採用し得ない。
これらの制約があることからも判るように、この
ZnOを用いた電気機械振動子は不充分なものであ
る。そしてこれの有する欠点を解決するために、
なされたのが本発明である。前述のようにエリン
バー合金などの弾性金属で構成した機械振動体の
表面にBaTiO3やPb(Zr、Ti)O3などの酸化物強
誘電体を通常の蒸着法やスパツタリング法によつ
て薄膜化した場合酸化物強誘電体薄膜はこのまま
では有意量の圧電性を示さず、何らかの処理によ
つて薄膜を結晶化させる必要があるが、通常の熱
処理を施したのでは前記の如く弾性金属の方の特
性が変化してしまい実用にならない。このような
薄膜の結晶化の処理に伴う弾性金属の特性の変化
を避けるためにはレーザ・アニールによつて
BaTiO3やPb(Zr、Ti)O3などの酸化物強誘電体
薄膜の結晶化を行なうのが良い。本発明では、レ
ーザ・アニールを用いることによつて、エリンバ
ー合金などの特性のすぐれた弾性金属特性を変化
させることなく、その表面に作製した酸化物強誘
電体薄膜を結晶化し、非常に大きな圧電性を持つ
た薄膜とすることを可能とした。レーザ・アニー
ルによつて結晶化した場合、電子顕微鏡観察等々
の手段を用いると極めて局所的選択的なアニール
が施されており、従来の一様加熱によるものとは
全く別異の組織構成を有しているのが判る。レー
ザ・アニールによる結晶化領域は殆んど任意とい
つてよい程の制御性を有し、波長や光量を制御す
ることによつて、必要に応じて強誘電体薄膜の全
域全厚を結晶化したり、一部領域のみに留めた
り、弾性金属との界面の一歩手前で停めたり、あ
るいは又界面近くの極く薄い部分の弾性金属とだ
けは合金層を形成したり、等々の選択ができる利
点をも有する。本発明はこれら全ての変形を考慮
したものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electromechanical vibrator using an oxide ferroelectric thin film. Electromechanical resonators have the advantages of high Q, high stability, and small size, and are widely used in circuit components such as filters and resonators, and are essential elements in electronic circuits. In recent years, with the rapid development of semiconductor integrated circuits, electronic devices have become smaller in size, but the miniaturization of electromechanical resonators has lagged significantly behind the progress in miniaturization and integration of semiconductor circuits. Conventionally, in electromechanical resonators, BaTiO 3 and Pb (Zr, Ti) O 3 have been mainly used as the main constituent materials of electro-mechanical converters that convert electrical energy into mechanical energy or conversely, mechanical energy into electrical energy.
An electromechanical vibrator is constructed by cutting a sintered body (ceramics) of an oxide ferroelectric material with high piezoelectricity and bonding it to a mechanical vibrator made of elastic metal. Was. However, there are limits to the miniaturization of electromechanical vibrators due to mechanical limitations in cutting and bonding, and the increased influence of the adhesive layer on vibrations. In order to further reduce the size of electromechanical resonators while eliminating the above-mentioned drawbacks, it is necessary to reduce the size of mechanical vibrators made of elastic metal by making the oxide ferroelectric film thinner. It is better to miniaturize the electromechanical resonator from both of these aspects. Among oxide ferroelectrics
Since BaTiO 3 and Pb(Zr, Ti)O 3 exhibit a large electromechanical coupling coefficient, BaTiO 3 and Pb(Zr, Ti)O 3 are necessary to obtain a small and high-performance electromechanical resonator.
It is advantageous to use thin films such as. However, these thin films do not crystallize unless they are heat-treated at a temperature of 500°C or higher in an oxidizing atmosphere, and therefore, if they are thinned by ordinary vapor deposition or sputtering methods, a significant amount of Does not exhibit piezoelectricity.
Elysiver alloy, which is a typical elastic metal, is a metal with excellent temperature characteristics of elastic constant, but when heat treated under the above conditions for crystallization of a thin film, the temperature characteristics of Elysiver alloy change. This problem with heat treatment is common not only to Elinvar alloys but to most elastic metals, so a mechanical vibrator made of elastic metal and a thin oxide ferroelectric layer with sufficient piezoelectricity. Until now, an electromechanical vibrator with a structure formed on the surface of a part has not existed, and its possibility has never been suggested. The only known example is a tuning fork vibrator for electronic watches that uses zinc oxide (ZnO) as a piezoelectric material and forms a thin layer of ZnO on one of the outer surfaces of Elinvar's tuning fork by RF sputtering at 200 to 300°C. It is being Since ZnO exhibits some degree of piezoelectricity at the above temperature, it could be applied to the above applications even if the electromechanical coupling coefficient is small, but since ZnO is not a ferroelectric material, the electromechanical coupling coefficient is BaTiO 3 and Pb(Zr,
It is about one order of magnitude smaller than ferroelectric materials such as Ti) O3 , and therefore it is impossible to construct electromechanical resonators such as mechanical filters, where low insertion loss is an essential element. It is. Furthermore, ZnO is unstable with respect to humidity and cannot be used in electromechanical resonators such as bimorph resonators, which are sometimes used exposed in the atmosphere or underwater.
As you can see from these constraints, this
Electromechanical resonators using ZnO are inadequate. And in order to solve the drawbacks of this,
What has been accomplished is the present invention. As mentioned above, a thin film of ferroelectric oxides such as BaTiO 3 and Pb(Zr, Ti)O 3 is formed on the surface of a mechanical vibrating body made of an elastic metal such as Elinvar alloy by a normal vapor deposition method or sputtering method. In this case, the oxide ferroelectric thin film does not exhibit any significant amount of piezoelectricity as it is, and it is necessary to crystallize the thin film through some kind of treatment. The characteristics of the product change, making it unusable. In order to avoid changes in the properties of elastic metals due to the crystallization process of such thin films, laser annealing is used.
It is preferable to crystallize an oxide ferroelectric thin film such as BaTiO 3 or Pb(Zr, Ti)O 3 . In the present invention, by using laser annealing, an oxide ferroelectric thin film fabricated on the surface of Elinvar alloy is crystallized without changing the excellent elastic metal properties, and a very large piezoelectric This made it possible to create a thin film with excellent properties. When crystallized by laser annealing, extremely local selective annealing is performed using methods such as electron microscopy, resulting in a completely different structure from that obtained by conventional uniform heating. I can see that you are doing it. The crystallized region by laser annealing can be controlled almost arbitrarily, and by controlling the wavelength and light intensity, the entire thickness of the ferroelectric thin film can be crystallized as needed. The advantage is that you can choose to hold the alloy only in a certain area, stop it one step before the interface with the elastic metal, or form an alloy layer only with the elastic metal in a very thin area near the interface. It also has The present invention takes into account all these variations.

以下本発明の典型的な実施の一例について図面
を用いて説明する。
An example of a typical implementation of the present invention will be described below with reference to the drawings.

第1図のように厚さ100μmで10mm×2mmのエ
リンバー合金1の片方の表面全体にスパツタリン
グ法によつてPb(Zr、Ti)O3薄膜2を10μm形成
した。形成したPb(Zr、Ti)O3薄膜全体に数秒
間レーザ光を照射してPb(Zr、Ti)O3薄膜を結
晶化させて、その上に金の電極膜3を蒸着した。
得られたエリンバー音片振動子の基本共振周波数
は5KHzでありQ値は5000であつた。また共振周
波数の温度特性を−20℃〜+60℃で測定したとこ
ろほぼ10ppm/degであり、Pb(Zr、Ti)O3薄膜
の結晶化の際にエリンバー合金に特性の変化を生
じていないことが実証された。また同様のエリン
バー音片フイルタをBaTiO3薄膜を用いて作成し
たところPb(Zr、Ti)O3薄膜の場合と同様の結
果が得られた。
As shown in FIG. 1, a 10 μm thick Pb(Zr,Ti)O 3 thin film 2 was formed on the entire surface of one side of Elinvar alloy 1 measuring 10 mm×2 mm and having a thickness of 100 μm by sputtering. The entire formed Pb(Zr,Ti)O 3 thin film was irradiated with laser light for several seconds to crystallize the Pb(Zr,Ti)O 3 thin film, and a gold electrode film 3 was deposited thereon.
The fundamental resonance frequency of the obtained Elinvar vibrator was 5KHz, and the Q value was 5000. In addition, when the temperature characteristics of the resonance frequency were measured from -20℃ to +60℃, it was approximately 10ppm/deg, indicating that there was no change in the characteristics of Elinvar alloy during crystallization of the Pb (Zr, Ti) O 3 thin film. has been proven. Furthermore, when a similar Elinvar vibrating filter was created using a BaTiO 3 thin film, the same results as in the case of a Pb(Zr,Ti)O 3 thin film were obtained.

以上のように、本発明によればエリンバー合金
などの弾性金属で構成した機械振動体の一部表面
にスパツタリング法、蒸着法などの方法で
BaTiO3、Pb(Zr、Ti)O3などの圧電性の大きい
酸化物強誘電体薄膜を形成し、レーザ・アニール
によつて薄膜を結晶化させその上に電極を形成し
た構造の小形でかつ温度特性のすぐれた高性能の
電気機械振動子が実現できた。
As described above, according to the present invention, a part of the surface of a mechanical vibrating body made of an elastic metal such as Elinvar alloy is coated with a method such as sputtering or vapor deposition.
It has a structure in which a ferroelectric thin film of a highly piezoelectric oxide such as BaTiO 3 or Pb (Zr, Ti) O 3 is formed, the thin film is crystallized by laser annealing, and an electrode is formed on the thin film. A high-performance electromechanical resonator with excellent temperature characteristics was realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の典型的な実施の一例であるエ
リンバー音片フイルタの構造を示す。1はエリン
バー合金、2はスパツタリング法によつて形成し
たPb(Zr、Ti)O3薄膜、3は蒸着法によつて作
成した金電極である。
FIG. 1 shows the structure of an Elinvar vibrator filter, which is an example of a typical implementation of the present invention. 1 is an Elinvar alloy, 2 is a Pb (Zr, Ti) O 3 thin film formed by a sputtering method, and 3 is a gold electrode made by a vapor deposition method.

Claims (1)

【特許請求の範囲】[Claims] 1 弾性金属で構成した機械振動体の一部表面に
物理的気相成長法によつて酸化物強誘電体材料の
構成元素からなる薄膜を堆積させた後、レーザ・
アニールによつて該薄膜を結晶化させ、さらに該
薄膜の上に駆動電極を設けることを特徴とする電
気機械振動子の製造方法。
1 After depositing a thin film made of constituent elements of an oxide ferroelectric material on a part of the surface of a mechanical vibrating body made of an elastic metal by physical vapor deposition, laser
A method for manufacturing an electromechanical vibrator, comprising crystallizing the thin film by annealing and further providing a drive electrode on the thin film.
JP6199579A 1979-05-18 1979-05-18 Electromechanical oscillator Granted JPS55153411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6199579A JPS55153411A (en) 1979-05-18 1979-05-18 Electromechanical oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6199579A JPS55153411A (en) 1979-05-18 1979-05-18 Electromechanical oscillator

Publications (2)

Publication Number Publication Date
JPS55153411A JPS55153411A (en) 1980-11-29
JPS6322083B2 true JPS6322083B2 (en) 1988-05-10

Family

ID=13187285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6199579A Granted JPS55153411A (en) 1979-05-18 1979-05-18 Electromechanical oscillator

Country Status (1)

Country Link
JP (1) JPS55153411A (en)

Also Published As

Publication number Publication date
JPS55153411A (en) 1980-11-29

Similar Documents

Publication Publication Date Title
US6239536B1 (en) Encapsulated thin-film resonator and fabrication method
US4472652A (en) Electrode piezoelectric devices including surface wave devices
JPS61177900A (en) Piezo-electric element and its manufacture
JPH09130199A (en) Piezoelectric thin film element and its production
JPS6068711A (en) Piezoelectric thin film resonator
JPS6165510A (en) Energy confinement vibrator and its manufacture
JP4820520B2 (en) Method for manufacturing piezoelectric filter having acoustic resonator in acoustic reflection layer on carrier substrate
JP2006510222A (en) Method for manufacturing ferroelectric single crystal film structure
JPWO2009072585A1 (en) Crystalline KLN film manufacturing method, semiconductor device manufacturing method, and semiconductor device
JPS6382116A (en) Piezoelectric thin film resonator and its manufacture
JP4196641B2 (en) Ultra-thin piezoelectric device and manufacturing method thereof
JPS6322083B2 (en)
WO2005005320A1 (en) A ferroelectric ceramic compound, a ferroelectric ceramic single crystal, and preparation processes thereof
JPH10209794A (en) Piezoelectric thin-film resonator
JP2000165188A (en) Piezoelectric resonator
JPH10200369A (en) Piezoelectric thin film resonator
JP4422678B2 (en) Method for manufacturing ferroelectric single crystal film structure using vapor deposition method
JPS58137318A (en) Thin-film piezoelectric oscillator
JP2000196404A (en) Piezoelectric resonator
JP7356085B2 (en) Piezoelectric vibrator and its manufacturing method
JP7273377B2 (en) Piezoelectric vibrator and its manufacturing method
JPH07286897A (en) Pyroelectric type infrared ray element and its manufacturing method
JPH04363904A (en) Piezoelectric thin film resonator
JPS63120508A (en) Manufacture of piezoelectric resonator
JP2005142902A (en) Substrate for surface acoustic wave device