JPS63220702A - Magnetic levitation carrying device - Google Patents

Magnetic levitation carrying device

Info

Publication number
JPS63220702A
JPS63220702A JP5121587A JP5121587A JPS63220702A JP S63220702 A JPS63220702 A JP S63220702A JP 5121587 A JP5121587 A JP 5121587A JP 5121587 A JP5121587 A JP 5121587A JP S63220702 A JPS63220702 A JP S63220702A
Authority
JP
Japan
Prior art keywords
movable body
composite
magnet
magnets
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5121587A
Other languages
Japanese (ja)
Inventor
Ryuichi Matsuda
隆一 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5121587A priority Critical patent/JPS63220702A/en
Publication of JPS63220702A publication Critical patent/JPS63220702A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize respective three motions of heaving, rolling and pitching, by a method wherein composite magnets are arranged at four ends of a movable body and three sets of displacement sensors are provided so as to be capable of obtaining signals corresponding to the above mentioned three motions. CONSTITUTION:Composite magnets 2-5 are provided at four corners of a base table 1. Further, three sets of displacement sensors 6-8 are provided so as to be capable of detecting the parallel advancing motion of heaving (y direction) and both of the angular motions of pitching (theta direction) and rolling (phi direction). An operating circuit 21 obtains signals corresponding to the displacement and angles of y, theta, phi from the signals corresponding to the displacement u6, u7, u8 of displacement sensors 6-8 and adds them to a proportional element 22, a differentiating element 23 and an integrating element 24. Then, the operating circuit 25 distributes the control inputs Dy, Dtheta, Dphi of respective y, theta, phi directions into the control inputs V2V5 of respective composite magnets 2-5.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁力を制御して非接触に物体を支持し、搬送
する磁気浮上搬送装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic levitation conveyance device that supports and conveys an object in a non-contact manner by controlling magnetic force.

(従来の技術) 第4図はこの種の磁気浮上搬送装置の従来の可動体の基
本構造を示す斜視図、第5図は搬送路Bに対して可動体
Aが浮上している状態を示す進行方向正面から見た図、
第6図は制御回路のブロック図、第7図は水平方向の制
御電磁石をも設けた場合の図、第8図は可動体Aが左右
に動いて複合磁石2の磁性面と搬送路Bとの間にずれが
生じた状態を示す図である。
(Prior Art) Fig. 4 is a perspective view showing the basic structure of a conventional movable body of this type of magnetic levitation conveyance device, and Fig. 5 shows a state where movable body A is floating with respect to conveyance path B. View from the front in the direction of travel,
FIG. 6 is a block diagram of the control circuit, FIG. 7 is a diagram in which a horizontal control electromagnet is also provided, and FIG. 8 is a diagram of the case where the movable body A moves left and right, and the magnetic surface of the composite magnet 2 and the conveyance path B. FIG.

この磁気浮上搬送装置は可動体Aと搬送路Bからなる。This magnetic levitation conveyance device consists of a movable body A and a conveyance path B.

可動体Aは、基台1の4隈に複合磁石2.3.4.5な
らびに搬送路Bとのすきま12を検出する変位センサ6
.7,8.9を、中央部に制御回路、電源等を収納した
収納箱11を搭載した構造になっている。複合磁石2(
複合磁石3゜4.5も同様)はその磁極部に永久磁石1
3.14が取り付けられており、かつコイル15が巻き
付けられている。複合磁石2は搬送路Bとの間にすきま
12をもって磁気吸引力を及ぼしており、すきま12の
変動を変位センサ6が検出し、変位信号を増幅回路】8
、微分回路17によりそれぞれ増幅、微分した後と電力
増幅1i18を経てフィードバックしてコイル15の電
流を制御し、荷重やすきまが変化したとき磁気吸引力を
変化させて、複合磁石2〜5と搬送路Bが接触しないよ
うになっている。複合磁石2に永久磁石13.14を組
み合わせであるのは永久磁石13.14から発生する磁
束による吸引力を利用することにより、コイル15に流
す電流を減らし省エネルギとするためである。
The movable body A has compound magnets 2,3,4.5 in four corners of the base 1 and a displacement sensor 6 that detects the gap 12 with the conveyance path B.
.. 7, 8, and 9, and a storage box 11 containing a control circuit, power supply, etc. is mounted in the center. Composite magnet 2 (
Composite magnet 3゜4.5 (same) has permanent magnet 1 at its magnetic pole.
3.14 is attached and a coil 15 is wound around it. The composite magnet 2 exerts a magnetic attraction force with a gap 12 between it and the conveyance path B, and the displacement sensor 6 detects the fluctuation of the gap 12 and sends the displacement signal to the amplification circuit]8
, after being amplified and differentiated by the differentiating circuit 17 and fed back through the power amplifier 1i18, the current in the coil 15 is controlled, and when the load or gap changes, the magnetic attraction force is changed, and the composite magnets 2 to 5 are conveyed. Road B is designed not to touch. The reason why the composite magnet 2 is combined with the permanent magnets 13 and 14 is to reduce the current flowing through the coil 15 and save energy by utilizing the attractive force due to the magnetic flux generated from the permanent magnets 13 and 14.

第4図、第5図に示す垂直方向に磁極を向けた複合磁石
2〜5を用いることにより、水平方向にも拘束力を持た
せ、可動体Aを非接触に支持することが可能である。と
いうのは第5図において可動体Aが左trに動いて、第
8図に示すように複合磁石2の磁極面と搬送路Bとの間
にずれが生じても、これを元へ戻そうとするずれ力が自
然に発生するからである。しかし、このずれの復元力は
制御された力でないため、減衰性がなく、可動体Aが横
ずれを起こすと元へ戻フて静止するのに時間がかかる。
By using composite magnets 2 to 5 whose magnetic poles are directed in the vertical direction as shown in FIGS. 4 and 5, it is possible to provide a restraining force in the horizontal direction and support the movable body A without contact. . This is because even if the movable body A moves to the left tr in Fig. 5 and a deviation occurs between the magnetic pole face of the composite magnet 2 and the conveyance path B as shown in Fig. 8, it is necessary to return it to its original position. This is because the shear force that occurs naturally occurs. However, since the restoring force of this shift is not a controlled force, there is no damping property, and when the movable body A causes a lateral shift, it takes time for it to return to its original position and come to rest.

これに対しては第7図に示すように水平方向にも磁気力
が作用する電磁石19.20を可動体Aに設け、これを
第6図と同様な制御回路によって制御し、進行時の安定
性を向上させる技術が用いられることもある。
To deal with this, as shown in Fig. 7, electromagnets 19 and 20 that apply magnetic force in the horizontal direction are installed on the movable body A, and this is controlled by a control circuit similar to that shown in Fig. 6 to stabilize the moving body. Techniques to improve sex may also be used.

電源、制御回路を搭載した形式の磁気浮上搬送装置は省
電力の観点から、第6図の複合磁石2のコイル15に流
れる電流を小さくする必要がある。
In a magnetic levitation transfer device equipped with a power source and a control circuit, from the viewpoint of power saving, it is necessary to reduce the current flowing through the coil 15 of the composite magnet 2 shown in FIG. 6.

これは、第9図に示すように、積分回路26を設けて、
電流信号の積分値をコイル15にフィードバックするこ
とが代表的な手法である。これは制御法の基本的な技術
であって周知のことであるが、特定の物理量の信号の積
分信号をフィードバックすることにより、該物理量の定
常値をOに収束させることができる。
This is achieved by providing an integrating circuit 26 as shown in FIG.
A typical method is to feed back the integral value of the current signal to the coil 15. This is a basic technique of the control method and is well known. By feeding back an integral signal of a signal of a specific physical quantity, the steady-state value of the physical quantity can be converged to O.

〔発明が解決しようとする問題点3 1個の複合磁石2についてこの電流の収束値を0とする
方法は採用が容易であるが、第4図の示すような4個の
複合磁石2〜5でヒーヴィングy、ピッチングθ、ロー
リングψの3個の空間自由度を制御しようとする場合に
は問題が生ずる。
[Problem 3 to be solved by the invention: The method of setting the current convergence value to 0 for one composite magnet 2 is easy to adopt, but when using four composite magnets 2 to 5 as shown in FIG. A problem arises when attempting to control the three spatial degrees of freedom of heaving y, pitching θ, and rolling ψ.

すなわち物体の3個の運動自由度を4個のアクチュエー
タを用いて拘束しようとすると過拘束になる場合がある
。電流を0に収束させる制御法を用いた場合、複合磁石
2の支えるべき負荷とすきまとの関係が一義的に定まっ
てしまい、4個の複合磁石がそれぞれこの状況となり、
可動体Aはこの過拘束の状況になってしまう。実際、実
験によると第4図の可動体Aが剛体の場合は非接触に支
持されない状態となる。
That is, if an attempt is made to constrain the three degrees of freedom of movement of an object using four actuators, over-constraint may occur. When using a control method that converges the current to 0, the relationship between the load that the composite magnet 2 should support and the clearance is uniquely determined, and each of the four composite magnets will be in this situation,
The movable body A ends up in this over-constrained situation. In fact, according to experiments, when the movable body A in FIG. 4 is a rigid body, it is not supported in a non-contact manner.

複合磁石を3個、変位センサも3個とすれば、電流がO
に拘束するル1#法を採用しても、3個の自由度を独立
な3個のアクチュエータで駆動するので過拘束とはなら
ず、すきまを保って安定に浮上させることができるが、
第5図に示す水平方向の拘束力が複合磁石の数が減少し
たため低下する。
If there are 3 composite magnets and 3 displacement sensors, the current will be O.
Even if the Le 1# method is adopted, the three degrees of freedom are driven by three independent actuators, so there is no over-restraint, and it is possible to keep the clearance and levitate stably.
The horizontal restraining force shown in FIG. 5 is reduced because the number of composite magnets is reduced.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の磁気浮上搬送装置は、複合磁石が可動体の4端
に各々計4個配置され、変位センサをそれらの信号から
可動体のヒーヴィング、ローリング、ピッチングの3運
動に相当する信号が得られるように3個備え、可動体の
ヒーヴィング、ローリング、ピッチング方向に対応する
複合磁石の制御の合成力が、前記各方向の運動に相当す
る信号に比例する量とその速度に比例する量とさらにこ
れら2贋の和の積分値をも含ませた量からなる信号に比
例した電流によって与えられることを特徴とする。
In the magnetic levitation conveyance device of the present invention, a total of four composite magnets are arranged at each of the four ends of the movable body, and signals corresponding to the three movements of heaving, rolling, and pitching of the movable body can be obtained from the signals of the displacement sensor. The combined force of controlling the compound magnets corresponding to the heaving, rolling, and pitching directions of the movable body is an amount proportional to the signal corresponding to the movement in each direction, an amount proportional to the speed thereof, and an amount proportional to the speed thereof, and It is characterized in that it is provided by a current proportional to a signal consisting of an amount including the integral value of the sum of two fakes.

(作用) したがワて、ピーヴイング、ローリング、ピッチング方
向の運動は互いに干渉がないので、各々安定し、また電
力には積分値が含まれているため各複合磁石のコイル電
流をOに収束させることができる。また、複合磁石が可
動体の4端に設置しであるので、水平方向の拘束力が低
下することはない。
(Function) However, since the movements in the peaving, rolling, and pitching directions do not interfere with each other, they are each stable, and since the electric power includes an integral value, the coil current of each composite magnet is converged to O. be able to. Furthermore, since the composite magnets are installed at the four ends of the movable body, the horizontal restraining force does not decrease.

(実施例〉 次に、本発明の実施例について図面を参照して説明する
(Example) Next, an example of the present invention will be described with reference to the drawings.

第1図は本発明の磁気浮上搬送装置の一実施例で、可動
体の構造を示す斜視図(IIJ御回路、電源は省略され
ている)である。
FIG. 1 is a perspective view showing the structure of a movable body (IIJ control circuit and power supply are omitted) showing one embodiment of the magnetic levitation conveyance device of the present invention.

第4図の従来例と同様に、基台lの4隅に複合磁石2,
3,4.5が対称に設けられている。さらに、基台1に
は、3個の変位センサ6〜8が、後述のようにヒーヴィ
ング(y方向)の並進運動、ピッチング(θ方向)、ロ
ーリング(ψ方向)の同角度運動が検出できるように設
けられている。
Similar to the conventional example shown in Fig. 4, composite magnets 2,
3, 4.5 are provided symmetrically. Furthermore, three displacement sensors 6 to 8 are mounted on the base 1 so that they can detect the same angular movements of heaving (y direction) translational movement, pitching (θ direction), and rolling (ψ direction) as described later. It is set in.

第2図は本実施例の磁気浮上搬送装置の概略斜視図であ
る。制御回路、電源等を納めた収納箱11を載せた可動
体Aが複合磁石4等によって搬送路Bに対して非接触に
支持され、可動体Aの移動経路の特定点において可動体
Aの下側に設けられたりニアモータ(図示せず)によっ
て非接触に駆動力を与えられ進行する。なお、搬送物は
収納箱11の上に載せることができる。
FIG. 2 is a schematic perspective view of the magnetic levitation conveyance device of this embodiment. A movable body A carrying a storage box 11 containing a control circuit, a power source, etc. is supported in a non-contact manner with respect to a conveyance path B by a composite magnet 4, etc. It moves forward by being provided with a driving force provided on the side or by a near motor (not shown) in a non-contact manner. Note that the conveyed object can be placed on the storage box 11.

第3図は本実施例における制御回路のブロック図である
FIG. 3 is a block diagram of the control circuit in this embodiment.

制御回路は、変位センサ6〜8の変位u8+u 7 +
 118に対応する信号から、y、θ、ψの変位、角度
に対応する信号を得るための演算回路21と、変位yに
関する比例要素22、微分要素23、積分要素24(そ
れぞれ第9図の増幅回路1B、微分回路17、積分回路
26に対応する)と、y、θ、ψの各方向の制御人力り
、、Dθ、D重を各複合磁石2.3,4.5の制御人力
V2 、 V3 、 V4 。
The control circuit calculates the displacement u8+u7+ of the displacement sensors 6 to 8.
An arithmetic circuit 21 for obtaining signals corresponding to displacements and angles of y, θ, and ψ from signals corresponding to (corresponding to the circuit 1B, the differential circuit 17, and the integral circuit 26), the human control force in each direction of y, θ, and ψ, the human control force V2 for each composite magnet 2.3, 4.5, and the control force V2 for Dθ and D weight, V3, V4.

Vs、に分配するための演算回路25と、電圧を電流に
変換する回路1B(第6図の電力増幅器18に対応する
)で構成されている。なお、θ、ψについての比例要素
、微分要素、積分要素についても同様であり、これらは
図示されていない。
It consists of an arithmetic circuit 25 for distributing voltage to Vs, and a circuit 1B (corresponding to the power amplifier 18 in FIG. 6) for converting voltage into current. Note that the same applies to proportional elements, differential elements, and integral elements for θ and ψ, and these are not shown.

以下、本実施例の磁気浮上搬送装置の可動体Aの制御に
ついて説明する。
Hereinafter, control of the movable body A of the magnetic levitation conveyance device of this embodiment will be explained.

複合磁石2〜5を制御して可動体Aが浮上したとし、変
位センサ6.7.8が検出したその平衡点からのすきま
変動us I u 7 * u8を第1図の座標y、θ
、ψと次式で表わすものとする。
Assume that the movable body A is levitated by controlling the composite magnets 2 to 5, and the gap fluctuation us I u 7 * u 8 from the equilibrium point detected by the displacement sensor 6.7.8 is expressed as the coordinates y and θ in FIG.
, ψ and the following equation.

ここで、T1は3×3のマトリクスで正則であるとする
。この時 であって、第1図では変位センサ6.7.8はそれぞれ
複合磁石2,3.4の近傍にある例を示しであるが、こ
れに限らず、式(2)を満たすように、すなわちすきま
変動u6 + u? +  uδが互いに独立なように
配置するとよい。
Here, it is assumed that T1 is a 3×3 matrix and regular. At this time, although FIG. 1 shows an example in which the displacement sensors 6, 7, and 8 are located near the composite magnets 2 and 3.4, the present invention is not limited to this. , that is, the clearance variation u6 + u? It is preferable to arrange them so that +uδ are mutually independent.

複合磁石2〜5の力は集中力と考え、磁気吸引力の平衡
点からの変動量Fn (n=2.3,4゜5)を線形化
して次式で表わす。
The force of the composite magnets 2 to 5 is considered to be a concentrated force, and the amount of variation Fn (n=2.3, 4°5) of the magnetic attraction force from the equilibrium point is linearized and expressed by the following equation.

F n =G @ u n + G 11 rl   
   ”” (3)ここで、u7は複合磁石2〜5のす
きま変動、inは電流の変動量、G、、G、はその係数
である。un (n=2.3,4.5)は、It、、1
゜をそれぞれ可動体の重心からZ、X方向における複合
磁石2,3,4.5までの長さとすると、次式で表わさ
れる。
F n = G @ u n + G 11 rl
``'' (3) Here, u7 is the gap variation between the composite magnets 2 to 5, in is the amount of current variation, and G is its coefficient. un (n=2.3, 4.5) is It,,1
If .degree. is the length from the center of gravity of the movable body to the composite magnets 2, 3, and 4.5 in the Z and X directions, respectively, it is expressed by the following equation.

T2は各複合磁石2,3,4.5のすきま変動の可動体
へ重心に関する運動3方向との関係を示す行列である。
T2 is a matrix showing the relationship between the gap variation of each composite magnet 2, 3, 4.5 and the three directions of movement of the movable body with respect to the center of gravity.

式(3)(4)の関係を用いると可動体Aの運動方程式
は次式で表わされる。
Using the relationships of equations (3) and (4), the equation of motion of movable body A is expressed by the following equation.

= 4G、J!、”θ十Gift(is÷16−i2−
f4)= 4(J2”θ+Gt j! 2 (−jz−
fs÷14◆ts)ここで、M、Jθ、J*はそれぞれ
可動体Aの質量、θ、ψ方向の慣性モーメントである。
= 4G, J! ,” θ ten Gift (is÷16−i2−
f4)=4(J2”θ+Gt j! 2 (−jz−
fs÷14◆ts) Here, M, Jθ, and J* are the mass of the movable body A, and the moments of inertia in the θ and ψ directions, respectively.

演算回路21は式(2)の計算を行なうものである。そ
して変位yに対応する信号は比例要素22、微分要素z
3、積分要素z4で処理され、信号qy。
The arithmetic circuit 21 performs the calculation of equation (2). The signal corresponding to the displacement y is a proportional element 22, a differential element z
3. Signal qy processed by integral element z4.

Dyは次式で表わされる。Dy is expressed by the following formula.

制御人力Dθ、D中についても同様である。演算回路2
5は式(4)の行列T2の計算を行ない、次式で表わさ
れる信号v2 * V3 * V4 、VBを求める。
The same applies to the control human power Dθ and D. Arithmetic circuit 2
5 calculates the matrix T2 of equation (4) to obtain signals v2*V3*V4 and VB expressed by the following equations.

すると、■2〜v4に比例する電流12〜i4はとなる
Then, the currents 12 to i4 proportional to (1)2 to v4 are as follows.

式(4)、(II)を参照して式(5)の右辺第2項を
計算すると、 G1Σtn= 4G+ktDy    = (12)と
なる。
When the second term on the right side of equation (5) is calculated with reference to equations (4) and (II), it becomes: G1Σtn=4G+ktDy=(12).

よって、式(5)は である。式(I2)の右辺第2項以降は制御の合成力で
ある。また、Qyは である。同様な計算過程からθ、ψについても次式が成
立する。
Therefore, equation (5) is. The second term and subsequent terms on the right side of equation (I2) are the resultant force of control. Moreover, Qy is. From a similar calculation process, the following equation holds true for θ and ψ.

式(12)中にはy以外の運動i標θ、ψおよびそれら
の速度は含まれず、かつ入力q、も式(13)よりy以
外の運動の信号を含まない。他のθ、ψについても同様
である。よって、y、θ、ψの運動は互いに干渉がなく
、各々の運動を個々に安定になるようにすれば、可動体
を安定に浮上させることができる。なお、k、、kv、
、に、、等の係数は例えばフルヴイッッの安定条件を適
用することにより決定できる。
Equation (12) does not include motion i marks θ, ψ other than y, and their speeds, and input q also does not include signals of motion other than y from equation (13). The same applies to the other θ and ψ. Therefore, the motions of y, θ, and ψ do not interfere with each other, and by making each motion individually stable, the movable body can be stably levitated. Note that k,,kv,
The coefficients of , , , etc. can be determined, for example, by applying the Fulvit stability condition.

信号り、は積分要素24があるため係数に、。Since the signal RI has an integral element 24, it becomes a coefficient.

k v、、 k pyを適切に設定するとOに収束させ
ることができ、他のDθ、Dφ も同様であって、した
がって、電流f2+  fan  f4r  ts+の
すべてを0にすることができる。
If k v, , k py are appropriately set, they can be converged to O, and the other Dθ and Dφ are also the same, so that all of the currents f2+ fan f4r ts+ can be set to zero.

ここで、第3図のブロック図についてさらに詳細に説明
する。I8 + I7 r I8は変位センサ6.7.
8が検出するすきま変動に対応する電圧変動であって、
演算回路21は式(2)のy、θ、ψの変位と角度に対
応する電圧を算出するものである。変位yに対応する電
圧を比例要素22、微分要素23を通して得、さらにこ
の両者の和の積分信号をもこれらに加えるように、積分
要素24が付加されている。定数に、、kv、、kp、
は先に述べたようによく知られたフルヴイッツの安定化
法等を利用してその値を設定する。角度変動θ、ψに対
応する信号についても同様な処理を行ない、信号De、
Dψを得、演算回路25に通す。演算回路25は式(1
0)に相当する計算を行なうものであって、V21 V
3.V4.v、に信号を分配する。これらの信号より電
力増幅器18で電圧に比例する電流12s  13+ 
 14+  Igを得る。
The block diagram of FIG. 3 will now be described in more detail. I8 + I7 r I8 is displacement sensor 6.7.
Voltage fluctuation corresponding to the gap fluctuation detected by 8,
The arithmetic circuit 21 calculates voltages corresponding to the displacements and angles of y, θ, and ψ in equation (2). An integral element 24 is added so as to obtain a voltage corresponding to the displacement y through a proportional element 22 and a differential element 23, and further add an integral signal of the sum of both to these elements. As constants, ,kv, ,kp,
As mentioned above, its value is set using the well-known Hurwitz stabilization method. Similar processing is performed on the signals corresponding to the angle fluctuations θ and ψ, and the signals De,
Dψ is obtained and passed to the arithmetic circuit 25. The arithmetic circuit 25 calculates the equation (1
0), which performs calculations corresponding to V21 V
3. V4. Distributes the signal to v,. From these signals, the power amplifier 18 generates a current 12s 13+ that is proportional to the voltage.
Obtain 14+ Ig.

(発明の効果〕 以上説明したように本発明は、可動体の4端に複合磁石
を配置し、かつこれら4個の複合磁石によって発生する
可動体のヒーヴィング、ローリング、ピッチングの3種
類の運動の制御の合成力を各方向の運動に相当する信号
に比例する量とその速度に比例する量とさらにこれら2
量の和の積分値をも含ませた量からなる信号に比例した
電流によって与えることにより5各運動が各々安定し、
また各複合磁石の電流を0に収束させることができるの
で低電力化でき、さらに複合磁石が可動体の4端に設置
しであるので、水平方向の拘束力が低下することがない
という効果がある。
(Effects of the Invention) As explained above, the present invention arranges composite magnets at the four ends of a movable body, and allows the three types of motion of the movable body, heaving, rolling, and pitching, to be generated by these four composite magnets. The resultant force of control is an amount proportional to the signal corresponding to the movement in each direction, an amount proportional to the speed, and these two
By applying a current proportional to a signal consisting of a quantity including the integral value of the sum of the quantities, each of the five movements is stabilized,
In addition, since the current of each composite magnet can be converged to 0, power consumption can be reduced.Furthermore, since the composite magnets are installed at the four ends of the movable body, the horizontal restraint force does not decrease. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の磁気浮上搬送装置の一実施例で、可動
体の構造を示す斜視図(制御回路、電源は省略されてい
る)、第2図は本実施例の磁気浮、、ui送装置の概略
斜視図、第3図は本実施例における制御回路のブロック
図、′fJJ4図はの磁気浮上搬送装置の従来の可動体
の基本構造を示す斜視図、第5図は搬送路Bに対して可
動体Aが浮上している状態を示す進行方向正面から見た
図、第6図は制御回路のブロック図、第7図は水平方向
の制御電磁石をも設けた場合の図、第8図は可動体Aが
左右に動いて複合磁石2の磁性面と搬送路Bとの間にず
れが生じた状襲を示す図、第9図は制御回路の他の例の
ブロック図である。 A−・−可動体、   B・・・搬送路。 1・−基台、    2.]、4.5−複合磁石、6.
7.8−・変位センサ、 I8−・電力増幅回路、 21.25−演算回路、22
−一比例要素、   23・−微分要素、24・−積分
要素。 $5 図 第6図 第7図 第8図 二 第9図
Fig. 1 is an embodiment of the magnetic levitation conveyance device of the present invention, and is a perspective view showing the structure of the movable body (the control circuit and power supply are omitted). FIG. 3 is a block diagram of the control circuit in this embodiment. FIG. FIG. 6 is a block diagram of the control circuit, FIG. 7 is a diagram when a horizontal control electromagnet is also provided, and FIG. Figure 8 is a diagram showing a situation where the movable body A moves left and right and a misalignment occurs between the magnetic surface of the composite magnet 2 and the conveyance path B, and Figure 9 is a block diagram of another example of the control circuit. . A--Movable body, B... Conveyance path. 1.-base, 2. ], 4.5-Composite magnet, 6.
7.8-・Displacement sensor, I8-・Power amplifier circuit, 21.25-Arithmetic circuit, 22
-1 proportional element, 23.-differential element, 24.-integral element. $5 Figure 6 Figure 7 Figure 8 Figure 2 Figure 9

Claims (1)

【特許請求の範囲】 1、搬送路と可動体とからなり、永久磁石と電極石とを
組み合わせた垂直方向に磁極面を向けた複合磁石と該複
合磁石の磁極面と前記搬送路の対向面とのすきまを検出
する変位センサとが前記可動体に搭載され、さらに前記
複合磁石のコイル電流を制御する制御回路と電源とを有
し、前記搬送路に対して前記可動体を非接触に支持する
磁気浮上搬送装置において、 前記複合磁石が可動体の4端に各々計4個配置され、前
記変位センサをそれらの信号から前記可動体のヒーヴィ
ング、ローリング、ピッチングの3運動に相当する信号
が得られるように3個備え、可動体のヒーヴィング、ロ
ーリング、ピッチング方向に対応する複合磁石の制御の
合成力が、前記各方向の運動に相当する信号に比例する
量とその速度に比例する量とさらにこれら2量の和の積
分値をも含ませた量からなる信号に比例した電流によっ
て与えられることを特徴とする磁気浮上搬送装置。 2、ヒーヴィング、ローリング、ピッチング方向の制御
力に対応する制御信号を4個の複合磁石の信号に分配す
る際に、各複合磁石のすきま変動の可動体重心に関する
、前記運動3方向との関係を表わす行列を用いて分配す
る特許請求の範囲第1項記載の磁気浮上搬送装置。
[Scope of Claims] 1. A composite magnet consisting of a conveyance path and a movable body, which is a combination of a permanent magnet and an electrode stone and whose magnetic pole surface is oriented in the vertical direction, and a surface facing the magnetic pole surface of the composite magnet and the conveyance path. a displacement sensor that detects a gap between the magnet and the composite magnet is mounted on the movable body, and further includes a control circuit and a power source for controlling a coil current of the composite magnet, and supports the movable body in a non-contact manner with respect to the conveyance path. In the magnetic levitation conveyance device, a total of four composite magnets are arranged at each of four ends of the movable body, and signals corresponding to the three movements of heaving, rolling, and pitching of the movable body are obtained from the signals of the displacement sensor. The combined force of the control of the compound magnets corresponding to the heaving, rolling, and pitching directions of the movable body is an amount proportional to the signal corresponding to the movement in each direction, an amount proportional to the speed thereof, and an amount proportional to the speed thereof. A magnetic levitation conveyance device characterized in that a current is provided by a current proportional to a signal including an integral value of the sum of these two quantities. 2. When distributing the control signals corresponding to the control forces in the heaving, rolling, and pitching directions to the signals of the four composite magnets, the relationship between the movable center of gravity of the gap fluctuation of each composite magnet and the three directions of motion is determined. 2. A magnetically levitated conveyance device according to claim 1, wherein the magnetic levitation conveyance device distributes data using a matrix representing the distribution.
JP5121587A 1987-03-07 1987-03-07 Magnetic levitation carrying device Pending JPS63220702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5121587A JPS63220702A (en) 1987-03-07 1987-03-07 Magnetic levitation carrying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5121587A JPS63220702A (en) 1987-03-07 1987-03-07 Magnetic levitation carrying device

Publications (1)

Publication Number Publication Date
JPS63220702A true JPS63220702A (en) 1988-09-14

Family

ID=12880694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5121587A Pending JPS63220702A (en) 1987-03-07 1987-03-07 Magnetic levitation carrying device

Country Status (1)

Country Link
JP (1) JPS63220702A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5359490A (en) * 1989-08-24 1994-10-25 Kabushiki Kaisha Yaskawa Denki Seisakusho Method of controlling moving element of magnetic levitation and transport system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5359490A (en) * 1989-08-24 1994-10-25 Kabushiki Kaisha Yaskawa Denki Seisakusho Method of controlling moving element of magnetic levitation and transport system

Similar Documents

Publication Publication Date Title
US6684794B2 (en) Magnetically levitated transportation system and method
US6361268B1 (en) Frictionless transport apparatus and method
JP2009284567A (en) Magnetic float control device
JPS6115560A (en) Linear step motor
KR960010485A (en) Maglev Carrier
JP2967822B2 (en) Floating transfer device
JP2949726B2 (en) Moving element control method of magnetic levitation transfer device
CN107249926A (en) Suspension control system for transportation system
JPS63220702A (en) Magnetic levitation carrying device
JP3529853B2 (en) Magnet orbit arrangement type magnetic levitation transfer device
JP3376155B2 (en) Magnet orbit arrangement type magnetic levitation transfer device
JP2001231111A (en) Magnetic levitation apparatus and electromagnet used therefor
Nakagawa et al. Magnetic levitation control of a thin steel plate by means of gap length correction commands
Chuang et al. Proposal of electro-magnetic-suspension system with tilting control
JPH02219455A (en) Linear motor supporting mechanism
JPS61224807A (en) Levitating conveyor
JPS61102106A (en) Levitating type conveyor
JPS61154402A (en) Magnetic levitation moving apparatus
JPH0615441Y2 (en) Magnetic levitation device
JP2941344B2 (en) Suction type magnetic levitation device
JPS62110472A (en) Non-contact type actuator
JPH0556085B2 (en)
JPS60197188A (en) Controller of synchronous linear motor
Oka et al. A three‐degrees‐of‐freedom Maglev system with actuators and permanent magnets
JPH05336614A (en) Superconducting magnetic bearing carrier