JPS63219613A - Heterogeneous poromeric hollow fiber and production thereof - Google Patents

Heterogeneous poromeric hollow fiber and production thereof

Info

Publication number
JPS63219613A
JPS63219613A JP4835187A JP4835187A JPS63219613A JP S63219613 A JPS63219613 A JP S63219613A JP 4835187 A JP4835187 A JP 4835187A JP 4835187 A JP4835187 A JP 4835187A JP S63219613 A JPS63219613 A JP S63219613A
Authority
JP
Japan
Prior art keywords
fiber
hollow fiber
ratio
porous
porous layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4835187A
Other languages
Japanese (ja)
Inventor
Toru Takemura
武村 徹
Jun Kamo
純 加茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP4835187A priority Critical patent/JPS63219613A/en
Publication of JPS63219613A publication Critical patent/JPS63219613A/en
Pending legal-status Critical Current

Links

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To obtain the titled lightweight fiber outstanding in heat retentivity and strength, suitable for sloth sector such as woven and nonwoven fabrics and synthetic fiber wadding and construction material sector, etc., by melt spinning of a thermoplastic polymer into hollow fiber followed by drawing under specified conditions. CONSTITUTION:A thermoplastic polymer such as polyester or polyamide is subjected to melt spinning at a draft ratio <=3,000 using a nozzle for hollow fiber production to form into hollow fiber. Thence, this fiber is drawn at a draw ratio ranging from 1.1 to 50, in such a temperature atmosphere as to be lower than the melting point of said polymer by >=10 deg.C at a deformation rate >=8X10<2>%/min, thus obtaining the objective fiber made up of (1) a porous layer 1 containing numerous fine pores 2 with an average diameter within the fiber section D 0.01-50mu and ratio of the average length oriented in the fiber direction L to said diameter D: L/D=2-100 and (2) two dense non-porous layers 3 and 3' in the outer and inner circumferences of the fiber, respectively.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は合成綿、不織布、織布等の衣料分野や建材分野
等に適用できる保温性に優れ、がっ軽量で強度に優れる
不均質微多孔質の中空繊維及びその製造方法に関するも
のである。
Detailed Description of the Invention (Industrial Field of Application) The present invention is a non-uniform fabric made of synthetic cotton, non-woven fabric, woven fabric, etc., which has excellent heat retention properties and is lightweight and strong, which can be applied to the clothing field and the building material field. The present invention relates to a porous hollow fiber and a method for producing the same.

(従来の技術) 従来より熱可塑性ポリマーを多孔化する手段としていく
つかの方法が提案されてきた。例えば、特開昭47−1
4418号にはポリマー混合物にシリカやタルク等の無
機物を混合し、溶融成形後延伸することにより多孔化し
た繊維状物を成形する手法が開示されている。この手法
では熱可塑性ポリマー以外に添加物が不可欠であり、成
形後の繊維状物から添加物が脱落し易いため、強度及び
保温性の面で安定した製品とは言いがたい。
(Prior Art) Several methods have been proposed as means for making thermoplastic polymers porous. For example, JP-A-47-1
No. 4418 discloses a method of forming a porous fibrous material by mixing a polymer mixture with an inorganic substance such as silica or talc, melt-molding the mixture, and then stretching the mixture. This method requires additives in addition to the thermoplastic polymer, and since the additives tend to fall off from the fibrous material after molding, it cannot be said that the product is stable in terms of strength and heat retention.

また、ハードエラスティックな特性を利用して多孔質中
空糸膜を得る方法が特開昭52−15627号、特開昭
57−84702号に開示されてい、るが、この方法で
は延伸前の結晶構造を制御することが極めて重要な要因
となるため、多孔化できる素材がアイツタクチイックポ
リプロピレン、高密度ポリエチレンと言った特定のポリ
マーに限定されてしまい、汎用性のある技術とはいい難
い。
Furthermore, methods for obtaining porous hollow fiber membranes using hard elastic properties are disclosed in JP-A-52-15627 and JP-A-57-84702. Because controlling the structure is an extremely important factor, the materials that can be made porous are limited to specific polymers such as tactical polypropylene and high-density polyethylene, so it is difficult to say that this technology is versatile.

その上、本技術ではその多孔質構造は繊維の厚み方向に
均質に分布しており、不均質な多孔質構造は得られない
Moreover, in this technique, the porous structure is uniformly distributed in the thickness direction of the fiber, and a non-uniform porous structure cannot be obtained.

更に、ポリエステルのNil加工手法(例えば、アルカ
リ処理)に見られるように後処理により多孔化する方法
があるが、このような方法ではアルカリ溶解物が繊維に
付着残存する欠点があり、また繊維の表面部から多孔化
していくため表面部に非多孔質層を形成させることがで
きない。しかも、処理できるポリマー素材が限定される
ため当該技術も汎用性のないものである。
Furthermore, there are methods to make the fibers porous through post-treatment, such as the Nil processing method for polyester (for example, alkali treatment), but such methods have the disadvantage that alkali-dissolved substances remain attached to the fibers, and Since the surface becomes porous starting from the surface, a non-porous layer cannot be formed on the surface. Furthermore, the technology is not versatile because the polymer materials that can be processed are limited.

(発明が解決しようとする問題点) つまり、上記したような従来の手法では、得られる繊維
に不純物が付着・残存したり、原料となるポリマーの種
類に制約を受けたり、或は繊維の表面部までも均質に多
孔化されたりして、形態・強度・保温性の各面で安定性
に欠き、或は全ての種類のポリマーに適用できず汎用性
に乏しいという問題点があった。
(Problems to be solved by the invention) In other words, with the conventional methods described above, impurities may adhere to or remain on the obtained fibers, there may be restrictions on the type of polymer used as a raw material, or the surface of the fiber may There are problems in that even parts of the polymer are homogeneously porous, resulting in a lack of stability in terms of shape, strength, and heat retention, or inability to be applied to all types of polymers, resulting in poor versatility.

本発明は、これらの点に鑑みてなされたもので、従来の
中空繊維以上に軽量で保温性に優れ、かつ強度的にも形
態的にも安定した内部に不均質な微多孔質を有する中空
繊維を提供すると共に同繊維の製造方法の開発をもその
目的とするものである。
The present invention has been made in view of these points, and is a hollow fiber that is lighter than conventional hollow fibers, has excellent heat retention, and has a non-uniform microporous interior that is stable in terms of strength and shape. The purpose is to provide fibers and to develop methods for producing the same.

(問題点を解決するための手段) このために本発明者等は、前記従来技術の欠点を改良す
べく鋭意検討した結果、本発明に到達したものである。
(Means for Solving the Problems) For this reason, the inventors of the present invention have conducted extensive studies to improve the drawbacks of the prior art, and as a result, have arrived at the present invention.

保温性を高めるためには空気層が存在することが重要で
あり、既に中空繊維状物が保温材料として公知であるが
、本発明者等は従来の物よりも更に保温性に優れる中空
繊維を見出した。即ち、本発明では、中空繊維の内部に
特定の微細な孔構造を有し、繊維外周部及び内周部に緻
密な非多孔質構造を有する不均質微多孔質の中空繊維を
開発したものである。
The presence of an air layer is important in order to improve heat retention, and hollow fibers are already known as heat retention materials, but the inventors have developed a hollow fiber that has even better heat retention than conventional materials. I found it. That is, the present invention has developed a heterogeneous microporous hollow fiber that has a specific fine pore structure inside the hollow fiber and a dense non-porous structure at the outer and inner periphery of the fiber. be.

本発明の中空繊維は軽量で保温性に優れる上に機械的強
度にも優れるものである。更に熱可塑性ポリマーであれ
ば、どのような素材にも応用できる極めて汎用性の高い
技術である。
The hollow fiber of the present invention is lightweight and has excellent heat retention properties as well as excellent mechanical strength. Furthermore, it is an extremely versatile technology that can be applied to any material as long as it is a thermoplastic polymer.

本発明は前記価れた特性をもつ繊維として、「熱可塑性
ポリマーからなり、繊維方向に配列した微細孔を有する
不均質微多孔質中空繊維であって、繊維断面内の平均直
径りが0.01μm〜50μm、繊維方向の平均の長さ
しとDの比L/Dが2〜100である微細孔から形成さ
れる多孔質層と、繊維外周部及び内周部に緻密な二つの
非多孔質層とを有する」ことを特徴とし、また同繊維の
製造方法として「熱可塑性ポリマーをドラフト比が30
00以下で中空繊維状に溶融成形後、該ポリマーのガラ
ス転移温度より300℃低い温度以上かつ融点より10
℃低い温度以下の温度雰囲気で、かつ変形速度が8×1
02%/min以上の条件で、延伸比が1.1〜50の
範囲で延伸する」ことを特徴とするものであり、これら
の構成をもって上記問題点の解決手段とするものである
The present invention provides fibers with the above-mentioned excellent properties as "heterogeneous microporous hollow fibers made of a thermoplastic polymer and having micropores arranged in the fiber direction, and having an average diameter in the fiber cross section of 0.5". A porous layer formed of micropores with a ratio L/D of 01 μm to 50 μm and an average length in the fiber direction and D of 2 to 100, and two dense non-porous layers on the outer and inner periphery of the fibers. The fiber is produced by using a thermoplastic polymer with a draft ratio of 30.
After melt molding into a hollow fiber shape at a temperature of 0.00 or less, the temperature is 300 °C lower than the glass transition temperature of the polymer and 10 °C lower than the melting point.
In a temperature atmosphere below ℃ low temperature and with a deformation rate of 8×1
02%/min or more at a stretching ratio in the range of 1.1 to 50. These configurations are intended to solve the above problems.

本発明の不均質微多孔質中空繊維は、その微細な孔構造
が極めてユニークである。即ち、繊維断面内に平均直径
りが0.01μIIl〜50μmで繊維方向に配列し、
その平均長さしと平均直径りの比L/Dが2〜100の
細長い微細孔を数多く有する多孔質層と、繊維外周部及
び内周部に緻密な非多孔質層とを有するものである。非
多孔質層の厚みは繊維肉厚の5%以上かつ70%以下が
好ましい。本発明の中空繊維では、中空部分及び微細孔
部分が空気層となり保温性が良好となる。微細孔の平均
直径が0.01μm以下では保温性が不足であり、50
μm以上では強度を保持する点で不十分である。非多孔
質層の厚みが繊維直径の最長径の70%以上であると保
温性に劣る。
The heterogeneous microporous hollow fiber of the present invention is extremely unique in its fine pore structure. That is, the fibers are arranged in the fiber direction with an average diameter of 0.01μIIl to 50μm within the fiber cross section,
It has a porous layer having many elongated micropores whose average length to average diameter ratio L/D is 2 to 100, and a dense non-porous layer on the outer and inner periphery of the fibers. . The thickness of the non-porous layer is preferably 5% or more and 70% or less of the fiber wall thickness. In the hollow fiber of the present invention, the hollow portion and the micropore portion form an air layer, resulting in good heat retention. If the average diameter of the micropores is less than 0.01 μm, the heat retention is insufficient;
If the thickness is more than μm, it is insufficient in terms of maintaining strength. If the thickness of the non-porous layer is 70% or more of the longest diameter of the fibers, the heat retention property will be poor.

微細孔の占める割合(空孔率)は20%以上90%以下
の範囲にあることが好ましい。中空繊維の中空率は5%
以上95%以下の範囲にあることが好ましい。中空率が
95%以上では中空繊維の機械的強度が低下し、つぶれ
たり折れたりする。
The proportion occupied by micropores (porosity) is preferably in the range of 20% or more and 90% or less. Hollow percentage of hollow fiber is 5%
It is preferable that it is in the range of 95% or more. If the hollowness ratio is 95% or more, the mechanical strength of the hollow fibers decreases, causing them to collapse or break.

また、中空率が5%以下では保温性が劣る。繊維形態は
円形断面に限定されるものではなく、必要に応じて各種
の異径断面にしうろことはいうまでもない。繊維の太さ
は特に限定されるものではなく、用途に応じて任意のサ
イズのものが選択される。
Further, if the hollowness ratio is 5% or less, the heat retention property is poor. It goes without saying that the fiber form is not limited to a circular cross section, but can be made into various cross-sections with different diameters as necessary. The thickness of the fibers is not particularly limited, and any size can be selected depending on the purpose.

このような不均質な微多孔質の中空繊維を得るためのポ
リマー素材としては、ポリエステル、ポリアミド、ポリ
オレフィン、ポリアセタール、ポリカーボネート、ポリ
ウレタン、ポリフェニレンサルファイド、ポリスルフォ
ン等の熱可塑性を示すポリマ一群の中から適宜用いるこ
とができる。また、単一ポリマーのみならず二成分以上
の混合物としても用いることが可能である。
As a polymer material for obtaining such a heterogeneous microporous hollow fiber, a thermoplastic polymer such as polyester, polyamide, polyolefin, polyacetal, polycarbonate, polyurethane, polyphenylene sulfide, polysulfone, etc. can be used. Can be used. Moreover, it is possible to use not only a single polymer but also a mixture of two or more components.

このような不均質微多孔質中空繊維は溶融押出し法によ
り中空繊維状に成形後、特定の条件で延伸することによ
り得られる。重要な要件は紡糸ドラフト比を3000以
下好ましくは2000以下で紡糸し、続いてポリマーの
融点(Tm)より10℃低い温度以下、好ましくは(T
m −50) ”C以下の温度雰囲気において、8X1
0”%/min以上の変形速度、より好ましくは10”
%/min以上の変形速度で延伸することが重要である
。特に、変形速度の効果は大きく、8×102%/mi
n以下の変形速度では本発明の不均質微多孔質中空繊維
は得られない。延伸比は1.1〜50の範囲で任意に選
択できる。この延伸により初めて本発明の不均質微多孔
質構造が達成され、必要に応じてポリマーのガラス転移
温度以上の温度雰囲気を通過させて、所謂熱セットを行
うことも差し支えない。
Such heterogeneous microporous hollow fibers can be obtained by forming hollow fibers by melt extrusion and then stretching the fibers under specific conditions. Important requirements are spinning at a spinning draft ratio of 3000 or less, preferably 2000 or less, and then spinning at a temperature 10°C lower than the melting point (Tm) of the polymer, preferably (Tm) or less.
m-50) "8X1 in a temperature atmosphere below C.
Deformation rate of 0”%/min or more, more preferably 10”
It is important to stretch at a deformation rate of %/min or higher. In particular, the effect of deformation rate is large, 8×102%/mi
The heterogeneous microporous hollow fiber of the present invention cannot be obtained at a deformation rate of n or less. The stretching ratio can be arbitrarily selected within the range of 1.1 to 50. The heterogeneous microporous structure of the present invention is achieved for the first time through this stretching, and if necessary, so-called heat setting may be performed by passing through an atmosphere at a temperature higher than the glass transition temperature of the polymer.

第・1図は本発明の一態様である不均質微多孔質中空繊
維の断面モデル図である。1が多孔質層であり、2が微
細孔である。この微細孔2は繊維方向に配列し細長く伸
びているのが大きな特徴である。図では微細孔2は互い
に独立しているが、隣接する微細孔2.2が貫通してい
ても差し支えない。3及び3′は前記多孔質層を挾んで
中空繊維断面の外周層と内周層に形成される緻密な非多
孔質層である。4が中空繊維の中空部分である。
FIG. 1 is a cross-sectional model diagram of a heterogeneous microporous hollow fiber that is one embodiment of the present invention. 1 is a porous layer, and 2 is a micropore. A major feature of the micropores 2 is that they are arranged in the fiber direction and elongate. In the figure, the micropores 2 are independent from each other, but adjacent micropores 2.2 may penetrate through them. 3 and 3' are dense non-porous layers formed on the outer and inner layers of the hollow fiber cross section, sandwiching the porous layer. 4 is the hollow part of the hollow fiber.

(実施例) 以下、実施例により本発明を更に詳細に説明する。(Example) Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 ポリエチレンテレフタレート(固有粘度〔η〕=0.7
2)のチップを公知の方法で乾燥後、二重管構造を有す
る中空繊維製造用ノズルを用いて、285℃で溶融しド
ラフト比250の条件で中空繊維を製造した。得られた
繊維を延伸温度30℃、変形速度5.5 X 10’%
/minの条件で延伸比が7.0倍になるまで連続的に
延伸した。延伸に伴い微細孔の形成のために繊維が白化
する現象が認められた。延伸後の繊維の形態変化から推
察した空孔率は47%であった。走査型電子顕微鏡によ
り繊維の微細孔を観察した所、繊維は内径が20μmで
外径が30μmであり、繊維断面に平均直径が0.7μ
mで繊維方向の平均の長さが7.5μmの孔が無数存在
する多孔質層と外周側非多孔質層の厚みが0.9μm(
肉厚の18%)、内周側非多孔質層の厚みが0.8μm
(肉厚の16%)の二つの非多孔質層が認められた。
Example 1 Polyethylene terephthalate (intrinsic viscosity [η] = 0.7
After drying the chips of 2) by a known method, they were melted at 285° C. using a hollow fiber manufacturing nozzle having a double tube structure to produce hollow fibers at a draft ratio of 250. The obtained fiber was stretched at a temperature of 30°C and a deformation rate of 5.5 x 10'%.
The film was continuously stretched under the conditions of /min until the stretching ratio reached 7.0 times. A phenomenon in which the fibers whitened due to the formation of micropores during stretching was observed. The porosity estimated from the change in the shape of the fibers after drawing was 47%. When micropores in the fibers were observed using a scanning electron microscope, the inner diameter of the fibers was 20 μm, the outer diameter was 30 μm, and the fiber cross section had an average diameter of 0.7 μm.
The thickness of the porous layer in which there are countless pores with an average length of 7.5 μm in the fiber direction and the outer non-porous layer is 0.9 μm (
(18% of the wall thickness), the thickness of the inner non-porous layer is 0.8 μm
Two non-porous layers (16% of wall thickness) were observed.

比較例1 実施例1と同一条件で製造したポリエチレンテレフタレ
ート中空繊維原糸を、延伸温度が30℃、変形速度が2
.OX 10”%/winの条件で延伸比が7.0倍に
なるまで連続的に延伸した。延伸に伴い繊維が白化する
現象は認められず、走査型電子顕微鏡により観察したと
ころ微細孔は全く認められなかった。
Comparative Example 1 A polyethylene terephthalate hollow fiber filament produced under the same conditions as Example 1 was stretched at a stretching temperature of 30°C and a deformation rate of 2.
.. It was continuously stretched under the conditions of OX 10"%/win until the stretching ratio became 7.0 times. No whitening phenomenon of the fibers was observed during stretching, and observation using a scanning electron microscope showed that there were no micropores at all. I was not able to admit.

実施例2 ポリブチレンテレフタレート(〔η) =0.91)の
チップを公知の方法で乾燥後、二重管構造を有する中空
繊維製造ノズルを用いて、250℃で溶融しドラフト比
330の条件で中空繊維を製造した。得られた繊維を延
伸温度30℃で変形速度9.6 X 10’%/min
の条件で延伸比が6.0倍になるまで連続的に延伸した
。延伸糸の内径は17μm、外径は29μmであり、延
伸前後の繊維の形態変化から推察した空孔率は38%で
あった。走査型電子顕微鏡により微細孔の構造を観察し
たところ、繊維断面内に平均直径が0.2μmで繊維方
向の平均の長さが4μmの微細孔が無数存在する多孔質
層と、外周側非多孔質の厚みが1.2μm(肉厚の20
%)、内周側非多孔質層の厚みが1.1μm(肉厚の1
8%)の二つの非多孔質層が認められた。
Example 2 Chips of polybutylene terephthalate ([η) = 0.91) were dried by a known method, and then melted at 250°C using a hollow fiber manufacturing nozzle with a double tube structure and at a draft ratio of 330. A hollow fiber was produced. The obtained fiber was stretched at a deformation rate of 9.6 x 10'%/min at a temperature of 30°C.
The film was continuously stretched under the following conditions until the stretching ratio reached 6.0 times. The drawn yarn had an inner diameter of 17 μm and an outer diameter of 29 μm, and the porosity estimated from the change in the shape of the fibers before and after drawing was 38%. When the structure of micropores was observed using a scanning electron microscope, it was found that there was a porous layer with numerous micropores with an average diameter of 0.2 μm and an average length in the fiber direction of 4 μm in the fiber cross section, and a non-porous layer on the outer periphery. The thickness of the material is 1.2μm (20μm of wall thickness)
%), and the thickness of the inner non-porous layer is 1.1 μm (1.1 μm of wall thickness).
Two non-porous layers of 8%) were observed.

実施例3 ポリフェニレンサルファイド(Philips Pet
ro−Ieum社製 ライドンGPO2)のチップを1
50℃+ 3 h r熱風乾燥後、二重管構造を有する
中空繊維製造用ノズルを用いて、290℃で溶融しドラ
フト比490の条件で中空繊維を製造した。得られた繊
維を延伸温度25℃で変形速度6.8 x 10’%/
l1linの条件で延伸比が5.0倍になるまで一連続
的に延伸した。延伸後の内径は16μm、外径は28μ
mで、延伸前後の形態変化から推察した空孔率は40%
であった。走査型電子顕微鏡により微細孔構造を観察し
たところ、繊維断面内に平均直径が0.15μmで繊維
方向の平均の長さが3.7μmの微細孔が無数存在する
多孔質層と、外周側非多孔質層の厚みが1.3μm(肉
厚の22%)、内周側非多孔質層の厚みが1.1μm(
肉厚の18%)の二つの非多孔質層が認められた。
Example 3 Polyphenylene sulfide (Philips Pet
1 ro-Ieum Rydon GPO2) chip
After drying with hot air at 50° C. for 3 hours, hollow fibers were manufactured using a hollow fiber manufacturing nozzle having a double tube structure and melting at 290° C. at a draft ratio of 490. The obtained fiber was stretched at a deformation rate of 6.8 x 10'%/at a drawing temperature of 25°C.
The film was continuously stretched under the conditions of l1lin until the stretching ratio became 5.0 times. Inner diameter after stretching is 16μm, outer diameter is 28μm
m, the porosity estimated from the shape change before and after stretching is 40%.
Met. When the micropore structure was observed using a scanning electron microscope, it was found that there is a porous layer in which there are countless micropores with an average diameter of 0.15 μm and an average length in the fiber direction of 3.7 μm in the cross section of the fiber, and a non-porous layer on the outer peripheral side. The thickness of the porous layer is 1.3 μm (22% of the wall thickness), and the thickness of the inner non-porous layer is 1.1 μm (
Two non-porous layers (18% of the wall thickness) were observed.

(発明の効果) 以上、詳細に説明した如く、本発明に係る不均質微多孔
質中空繊維は、特定の径をもち繊維方向に特定の長さを
もって配列された微細な細長い孔が繊維断面の内部に中
空部分を取り囲むようにして多数集まった状態で形成さ
れると共に、繊維の外周部及び内周部が緻密な非多孔質
層として形成されているため、前記中空部分の存在に加
えて多数の微細な孔が独立した状態で存在することによ
り、繊維を著しく軽量化すると共に繊維自体の保温性が
一段と高められ、更には繊維外周部及び内周部の上記非
多孔質層の存在により繊維の形態が安定化すると共に十
分な強度を保持する。
(Effects of the Invention) As explained above in detail, the heterogeneous microporous hollow fiber according to the present invention has fine elongated pores having a specific diameter and a specific length arranged in the fiber direction in the cross section of the fiber. In addition to the existence of the hollow part, a large number of fibers are formed in a state where they are gathered together to surround a hollow part, and the outer peripheral part and the inner peripheral part of the fiber are formed as a dense non-porous layer. The existence of fine pores in an independent state reduces the weight of the fiber significantly and further increases the heat retention of the fiber itself.Furthermore, the presence of the non-porous layer on the outer and inner periphery of the fiber makes the fiber The shape of the material is stabilized and sufficient strength is maintained.

また、本発明に係る不均質微多孔質中空繊維の製造方法
は、特定された条件の下で同方法を実施する限り、熱可
塑性であればどのような原料ポリマーによっても上記構
造を有する不均質微多孔質の中空繊維を確実に得ること
のできるものであり、極めて汎用性に冨んだ有効な方法
である。
In addition, the method for producing a heterogeneous microporous hollow fiber according to the present invention can produce a heterogeneous microporous hollow fiber having the above structure using any thermoplastic raw material polymer, as long as the method is carried out under specified conditions. This is an extremely versatile and effective method that can reliably obtain microporous hollow fibers.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一態様である不均質微多孔質中空繊維のモ
デル断面図である。 図の主要部分の説明 1・−多孔質層 2−微細孔 3−・・・(外周側)非多孔質層 3’−(内周側)非多孔質層 4−中空部分 斗甲冒都付
The figure is a cross-sectional view of a model of a heterogeneous microporous hollow fiber that is one embodiment of the present invention. Explanation of the main parts of the diagram 1 - Porous layer 2 - Fine pores 3 - (outer periphery side) non-porous layer 3' - (inner periphery side) non-porous layer 4 - hollow part

Claims (1)

【特許請求の範囲】 1、熱可塑性ポリマーからなり、繊維方向に配列した微
細孔を有する不均質微多孔質の 中空繊維であって、繊維断面内の平均直径 Dが0.01μm〜50μm、繊維方向の配列平均長さ
Lと前記平均直径Dの比L/Dが2〜 100である多数の微細孔から形成される多孔質層と、
繊維外周部及び内周部に緻密な 二つの非多孔質層とから構成されることを 特徴とする不均質微多孔質中空繊維。 2、熱可塑性ポリマーをドラフト比が3000以下で中
空繊維状に溶融成形後、該ポリマー の融点より10℃低い温度以下の温度雰囲気中でかつ変
形速度が8×10^2%/min以上の条件で、延伸比
が1.1〜50の範囲で延伸することを特徴とする不均
質微多孔質中空繊 維の製造方法。
[Scope of Claims] 1. A heterogeneous microporous hollow fiber made of a thermoplastic polymer and having micropores arranged in the fiber direction, the fiber having an average diameter D in the fiber cross section of 0.01 μm to 50 μm. a porous layer formed from a large number of micropores having a ratio L/D of the average length L in the direction and the average diameter D of 2 to 100;
A heterogeneous microporous hollow fiber comprising two dense non-porous layers on the outer periphery and the inner periphery of the fiber. 2. After melt-molding a thermoplastic polymer into a hollow fiber shape with a draft ratio of 3000 or less, in an atmosphere at a temperature 10°C lower than the melting point of the polymer and at a deformation rate of 8 x 10^2%/min or more. A method for producing a heterogeneous microporous hollow fiber, which comprises stretching at a stretching ratio of 1.1 to 50.
JP4835187A 1987-03-03 1987-03-03 Heterogeneous poromeric hollow fiber and production thereof Pending JPS63219613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4835187A JPS63219613A (en) 1987-03-03 1987-03-03 Heterogeneous poromeric hollow fiber and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4835187A JPS63219613A (en) 1987-03-03 1987-03-03 Heterogeneous poromeric hollow fiber and production thereof

Publications (1)

Publication Number Publication Date
JPS63219613A true JPS63219613A (en) 1988-09-13

Family

ID=12800951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4835187A Pending JPS63219613A (en) 1987-03-03 1987-03-03 Heterogeneous poromeric hollow fiber and production thereof

Country Status (1)

Country Link
JP (1) JPS63219613A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100667626B1 (en) 2006-03-28 2007-01-11 주식회사 코오롱 Micro porous synthetic fiber and method of manufacturing for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100667626B1 (en) 2006-03-28 2007-01-11 주식회사 코오롱 Micro porous synthetic fiber and method of manufacturing for the same

Similar Documents

Publication Publication Date Title
US5043216A (en) Porous polyethylene fibers
JPS58115161A (en) Polypropylene spun yarn fleece having low drape coefficient
KR950002843A (en) Ultra fine fiber products and manufacturing method thereof
KR101758204B1 (en) Twisted Composite Yarn Based Nanofibers and Method for Manufacturing the Same
JPH0124888B2 (en)
US20050221075A1 (en) Low density light weight filament and fiber
JPS63219613A (en) Heterogeneous poromeric hollow fiber and production thereof
JP2651094B2 (en) Speaker cone and method of manufacturing the same
JPS63219614A (en) Heterogeneous poromeric fiber and production thereof
JPS59216915A (en) Ultrafine fiber structure and production thereof
JPS63182413A (en) Polyphenylene sulfone fiber and production thereof
JPS6244045B2 (en)
JP2000073230A (en) Production of polyester fiber
CN115287799B (en) Carboxylated chitosan hollow yarn and preparation method thereof
KR20050062136A (en) Polyester spunbonded nonwoven fabrics for air filter and preparation method thereof
JPS6047926B2 (en) Porous polyester hollow fiber and its manufacturing method
KR100318332B1 (en) Manufacturing method of porous hollow fiber
JPH02133608A (en) Porous polyolefin hollow fiber
JPH04300318A (en) Porous polypropylene fiber and its production
JP3396527B2 (en) Dividable porous fiber, segmented porous fiber, and fiber sheet using the same
JPH01270907A (en) Production of porous polypropylene hollow fiber or film
JPS60261510A (en) Manufacture of laminated hollow yarn
JPS6420312A (en) Nonuniform finely porous fiber and production thereof
JPH03130411A (en) Ultrafine fiber and its production
JPH02112404A (en) Cellular polyethylene hollow yarn and production thereof