JPS63218884A - Magnetic field sensor - Google Patents

Magnetic field sensor

Info

Publication number
JPS63218884A
JPS63218884A JP26097787A JP26097787A JPS63218884A JP S63218884 A JPS63218884 A JP S63218884A JP 26097787 A JP26097787 A JP 26097787A JP 26097787 A JP26097787 A JP 26097787A JP S63218884 A JPS63218884 A JP S63218884A
Authority
JP
Japan
Prior art keywords
negative feedback
magnetic field
coil
sensor
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26097787A
Other languages
Japanese (ja)
Inventor
Kaneo Mori
佳年雄 毛利
Masao Shigeta
重田 政雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Publication of JPS63218884A publication Critical patent/JPS63218884A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To improve linearity and a temperature characteristics and thereby to improve accuracy in detection, by winding a coil for negative feedback on a magnetic core and thereby forming a negative feedback loop which supplies a part of an output of a processing circuit to said coil for negative feedback. CONSTITUTION:Sensor elements 1A and 1B are formed by winding coils 3A, 3B, 6A, 6B for detecting a magnetic field and coils 4A, 4B, 5A, 5B respectively on the opposite ends of magnetic cores AF1 and AF2 each of which uses three zero-magnetostrictive amorphous wires, which form a magnetic core having a length of 20-30mm and high permeability, for instance. In a geomagnetic azimuth sensor constructed in this way, the sensor elements 1A and 1B are driven with oscillation frequencies set by processing circuits 2A and 2B, respectively, and a difference between the intensities of magnetic fields generated in the respective coils 3A and 6A and 3B and 6B of the sensor elements 1A and 1B is taken out in the processing circuits 2A and 2B and outputted therefrom as analog outputs EOUT1, EONF1, EOUT2, EONF2. By applying negative feedback in this way, linearlity and a temperature characteristic are improved conspicuously.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、磁心に磁界検出用コイルを巻回して成るセン
サ部の出力を処理回路で処理することで所望のセンサ出
力を得るようにした磁界センサに関するものである。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention provides a desired sensor output by processing the output of a sensor section, which is formed by winding a magnetic field detection coil around a magnetic core, in a processing circuit. The present invention relates to a magnetic field sensor that obtains the following characteristics.

(従来の技術) 磁界センサの一例として、微弱な地磁気を測定し位置及
び方位を検知する地磁気方位センサが挙げられる。
(Prior Art) An example of a magnetic field sensor is a geomagnetic orientation sensor that measures weak geomagnetism to detect position and orientation.

従来の地磁気方位センサとして第6図に示すものが知ら
れている。これは同図に示すように例えばパーマロイか
ら成るリング法磁心周囲にドライブ用コイルGoを巻回
し、その上にX方向検出コイルC×及びY方向検出コイ
ルCYを交差させる用に巻回したものを検出部DETと
し、発振器からの信号をドライブコイルGoに入力し、
そのときの地磁気の水平成分に基づく各検出コイルCx
As a conventional geomagnetic azimuth sensor, one shown in FIG. 6 is known. As shown in the figure, a drive coil Go is wound around a ring method magnetic core made of, for example, permalloy, and an X-direction detection coil C× and a Y-direction detection coil CY are wound on top of it to cross each other. The detection unit is DET, and the signal from the oscillator is input to the drive coil Go.
Each detection coil Cx based on the horizontal component of the earth's magnetism at that time
.

CYに得られる信号をそれぞれフィルタ、交流増幅器、
同期整流器、直流増幅器を介してアナログ出力EX、E
Yとして得るようにしている。尚、発振器からの出力を
周波数てい倍回路及び位相可変回路を介して同期整流器
に入力して同期をとっている。
The signals obtained in CY are filtered, AC amplifiers,
Analog output EX, E via synchronous rectifier and DC amplifier
I am trying to get it as Y. Note that synchronization is achieved by inputting the output from the oscillator to a synchronous rectifier via a frequency multiplier circuit and a phase variable circuit.

以上の様にして第7図に示すような方位各θに対応する
アナログ出力E@得ることができ、これによって方位を
検知するようになっている。第7図において、E×はS
inカーブを示し、EYはCOSカーブを示している。
As described above, analog outputs E@ corresponding to each azimuth θ as shown in FIG. 7 can be obtained, and the azimuth can be detected by this. In Figure 7, Ex is S
The in curve is shown, and EY is the COS curve.

しかしながら、前記構成の装置にあっては、パーマロイ
からなるリング状の磁心を用いているため検出部DET
が大型化しく例えば直径が20乃至30m、厚さが5乃
至10mにもなる)、また、リングコアに複数の巻線を
施さなければならないため組立に時間がかかるという問
題がある。またパーマロイを用いているため撮動や衝撃
に弱く、更には1時側巻線たるドライブコイルに与える
周波数(例えば500乃至2kllz)に基づく2次側
誘起電圧をX軸出力、Y軸出力として取り出す構造であ
るため駆動周波数が低く安定性に欠け、特にドリフトが
大きいという問題があった。
However, in the device with the above configuration, since a ring-shaped magnetic core made of permalloy is used, the detection part DET
The ring core is large in size (for example, the diameter is 20 to 30 m and the thickness is 5 to 10 m), and since a plurality of windings must be applied to the ring core, it takes time to assemble. In addition, since permalloy is used, it is susceptible to photography and shock, and furthermore, the secondary side induced voltage based on the frequency (for example, 500 to 2 kllz) applied to the drive coil, which is the 1 o'clock side winding, is extracted as the X-axis output and Y-axis output. Because of this structure, the driving frequency was low and stability was lacking, and there was a problem in that the drift was especially large.

そこで、本願出願人は、第8図に示すように、ワイヤ状
の高透磁率磁心AF1.AF2と、該磁心に直交座標に
おけるX軸方向似向う一対のコイル及びY軸方向に向う
一対のコイルとがそれぞれ所定間隔を保って巻回された
検出部1A、1Bと、各軸方向のコイルから得られる信
号をそれぞれ処理する処理回路2A、2Bとから成り、
地磁気を前記検出部1A、1Bで検出し、このときに各
処理回路2A、2Bから得られる出力E。1.Eo2に
基づいて方位を検知する地磁気方位センサを提案しく特
願昭6O−056586)、上記問題点の解決を図った
Therefore, as shown in FIG. 8, the applicant of the present application developed a wire-shaped high permeability magnetic core AF1. AF2, detection units 1A and 1B in which a pair of coils facing the X-axis direction and a pair of coils facing the Y-axis direction in orthogonal coordinates are wound around the magnetic core at a predetermined interval, respectively, and coils in each axis direction. It consists of processing circuits 2A and 2B that respectively process the signals obtained from the
Earth's magnetism is detected by the detection units 1A and 1B, and output E obtained from each processing circuit 2A and 2B at this time. 1. We have proposed a geomagnetic orientation sensor that detects orientation based on Eo2 (Japanese Patent Application No. 6O-056586), aiming to solve the above problems.

(発明が解決しようとする問題点) しかしながら、上記の地磁気方位センサにおいては、第
6図に示すのに比して小型、軽量でおり、且つ組立が容
易で処理回路も簡単でおり、安定性、信頼性が高いもの
の、特にリニアリティ(直線性)及び温度特性の点で未
だ不十分であり、改善の必要性を生じた。尚、リニアリ
ティ及び温度特性は地磁気方位センサに限らず、磁界セ
ンサ一般において検出精度の向上を図る上で極めて重要
となるのはいうまでもない。
(Problems to be Solved by the Invention) However, the above-mentioned geomagnetic direction sensor is smaller and lighter than the one shown in FIG. Although this method has high reliability, it is still insufficient particularly in terms of linearity and temperature characteristics, creating a need for improvement. It goes without saying that linearity and temperature characteristics are extremely important not only for geomagnetic azimuth sensors but also for magnetic field sensors in general in order to improve detection accuracy.

この発明はかかる事情に鑑みて成されたもので、その目
的とするところは、リニアリティ及び温度特性を向上さ
せることにより、検出精度の向上を図った磁界センサを
提供することにある。
The present invention was made in view of the above circumstances, and an object thereof is to provide a magnetic field sensor with improved detection accuracy by improving linearity and temperature characteristics.

[発明の構成] (問題点を解決するための手段) 本発明は、磁心に磁界検出用コイルを巻回し、この磁界
検出用コイルの検出出力を処理回路で処理することで所
望のセンサ出力を得るようにしたセンサにおいて、前記
磁心に負帰還用コイルを巻回し、前記処理回路出力の一
部をこの負帰還用コイルに供給する負帰還ループを形成
したものである。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a method of winding a magnetic field detection coil around a magnetic core and processing the detection output of the magnetic field detection coil in a processing circuit to obtain a desired sensor output. In the sensor, a negative feedback coil is wound around the magnetic core, and a negative feedback loop is formed to supply a part of the output of the processing circuit to the negative feedback coil.

(作 用) 前記負帰還用コイルに、前記処理回路の出力の一部を供
給し負帰還をかけることにより、り二アリテイ及び温度
特性を向上させている。
(Function) By supplying a part of the output of the processing circuit to the negative feedback coil and applying negative feedback, the linearity and temperature characteristics are improved.

(実施例) 以下実施例により本発明を具体的に説明する。(Example) The present invention will be specifically explained below using Examples.

ここでは、磁界センサの一例としての地磁気方位センサ
に本発明を適用した場合について説明する。
Here, a case will be described in which the present invention is applied to a geomagnetic azimuth sensor as an example of a magnetic field sensor.

第1図は本発明の一実施例を示す概略図であり、これは
、水平面に対してX、Y軸方向に交差配置した2個のセ
ンサ部1A、1Bと、各センサ部IA、1Bから得られ
る信号を処理してX方向出力EOtlT 1 、EON
F 1とY方向出力EOtlT2−EONF2とをそれ
ぞれ得る処理回路2A、2Bとから構成されている。
FIG. 1 is a schematic diagram showing an embodiment of the present invention, which includes two sensor sections 1A and 1B arranged intersectingly in the X and Y axis directions with respect to a horizontal plane, and from each sensor section IA and 1B. The obtained signals are processed and outputs in the X direction EOtlT 1 , EON
It is comprised of processing circuits 2A and 2B that obtain F1 and Y-direction outputs EOtlT2-EONF2, respectively.

前記各センサ部1A、1Bはそれぞれ例えば20乃至3
omm長の高透磁率磁心たる零磁歪アモルフフ・スワイ
ヤ(組成はCO66F e 4 S ! 13815原
子%、110μm型)を3本用いた磁心AFt 、AF
2の両端に、磁界検出用コイル3A、3B、6A。
Each of the sensor sections 1A and 1B has, for example, 20 to 3
Magnetic core AFt, AF using three zero magnetostriction amorphous wires (composition: CO66F e 4 S! 13815 at%, 110 μm type), which are 0mm long high magnetic permeability magnetic cores.
Magnetic field detection coils 3A, 3B, and 6A are installed at both ends of 2.

6B、負帰還用コイル4A、4B、5A、5Bを巻回し
て成る一bのでおる。各コイルの巻回数は例えば200
ターンであり、巻き付けられたコイルの厚みは約1#ど
なっている。そして、それぞれのコイル3A、4A、5
A、6A及び38.48゜58.68のコイル端末を対
応する処理回路2A。
6B, and 1B output coil formed by winding negative feedback coils 4A, 4B, 5A, and 5B. For example, the number of turns of each coil is 200.
It is a turn, and the thickness of the wound coil is about 1#. And each coil 3A, 4A, 5
Processing circuit 2A corresponding to coil terminals A, 6A and 38.48° 58.68.

2Bに接続している。Connected to 2B.

尚、前記各検出部の構成は必ずしも等価21a心を用い
た場合に限定されず、例えば第5図の如く所定の長さを
有するアモルファスワイヤ10Aの端部に磁界検出用コ
イル3A及び負帰還用コイル4Aを巻回したものと、同
じくアモルファスワイヤ10Bの端部に磁界検出用コイ
ル6Aを巻回したものとを各コイル3A、6Aが逆方向
になるように平行配置してX軸センサ部を構成し、同じ
様にして2個のアモルファスワイヤ10G、10Dの各
端部にコイル38.4B、58.68を設け、これを平
行配置してY軸センサ部を構成してもよい。
Note that the configuration of each of the detection units is not necessarily limited to the case where an equivalent 21a core is used; for example, as shown in FIG. The X-axis sensor section is constructed by arranging a coil 4A wound around the end of the amorphous wire 10B and a magnetic field detection coil 6A wound around the end of the amorphous wire 10B in parallel so that the coils 3A and 6A are oriented in opposite directions. Similarly, coils 38.4B and 58.68 may be provided at each end of the two amorphous wires 10G and 10D, and these may be arranged in parallel to form the Y-axis sensor section.

前記処理回路2A、2Bは共に同様な構成となっている
ので、その具体例として一方の処理回路2Aの構成を第
2図に示す。
Since both the processing circuits 2A and 2B have the same structure, the structure of one of the processing circuits 2A is shown in FIG. 2 as a specific example.

センサ部1Aを構成する磁界検出様コイル3A6Aより
引き出されたリード線J21.I!2はそれぞれトラン
ジスタTr1.Tr2及び信号線J23゜14を介して
フィルタ回路11の入力端に接続されている。各トラン
ジスタTr1 、Tr2のベースには、各信号線A1.
I2に接続された点流回路(コンデンサCB、抵抗Re
からなる)の出力がクロスされて印加されるようになっ
ている。また信号線J’3,14間には付加抵抗RL、
RLが直列接続され、これと並列に可変抵抗VRが接続
され、この可変抵抗VRの摺動子と前記抵抗RL。
A lead wire J21. drawn out from the magnetic field detection coil 3A6A constituting the sensor section 1A. I! 2 are transistors Tr1. It is connected to the input end of the filter circuit 11 via Tr2 and signal line J23.14. At the base of each transistor Tr1, Tr2, each signal line A1.
A DC circuit connected to I2 (capacitor CB, resistor Re
) are applied in a crossed manner. Additionally, an additional resistor RL is connected between the signal lines J'3 and J'14.
RL are connected in series, and a variable resistor VR is connected in parallel with the slider of the variable resistor VR and the resistor RL.

RLの直列接続点とは共通接地されている。また、検出
様コイル3A、6aの他端には電源電圧E(正極側)が
印加され、フィルタ回路11から出力圧0゜丁1が取り
出せることとなる。即ち、この回路の処断は等価2磁心
を用いたマルチバイブレータブリッジとして構成されて
いる。尚、フィルタ回路11は、抵抗R1,、R4及び
コンデンサC1、C2より成る簡易なものを適用してい
る。
The series connection point of RL is commonly grounded. Further, a power supply voltage E (positive electrode side) is applied to the other ends of the detection coils 3A and 6a, and an output pressure of 0°/1 can be taken out from the filter circuit 11. That is, the processing of this circuit is configured as a multivibrator bridge using two equivalent magnetic cores. The filter circuit 11 is a simple one consisting of resistors R1, R4 and capacitors C1, C2.

そして、フィルタ回路11の出力は、後段に配置された
差動増幅回路12に取り込まれるようになっている。こ
の差動増幅回路12は、演算増幅器13の反転入力端(
−)に抵抗R2、R3を接続し、非反転入力端(+)に
抵抗R5,Reを接続し、抵抗R3の他端を演算増幅器
13の出力端に接続し、抵抗R6の他端を接地して成り
、抵抗R2、Rs又はR3、Reの値を変えることによ
り利得調整を行うことができるようになっている。
The output of the filter circuit 11 is then taken into a differential amplifier circuit 12 arranged at a subsequent stage. This differential amplifier circuit 12 has an inverting input terminal (
-), resistors R5 and Re are connected to the non-inverting input terminal (+), the other end of resistor R3 is connected to the output terminal of operational amplifier 13, and the other end of resistor R6 is grounded. The gain can be adjusted by changing the values of the resistors R2, Rs or R3, Re.

この差向増幅回路12の出力E。NF 1の一部は負帰
還経路14を介して負会館用コイル4A、5Aに供給さ
れるようになっている。すなわち、負帰還経路14は、
演算増幅器13の出力端に負帰還抵抗Rfを接続し、こ
の抵抗Rfの他端に負帰還用コイル4Aの一旦を接続し
、該コイル4Aの他端に不明開用コイル5Aの一端を接
続し、該コイル5Aの他端を接地することにより形成さ
れる。
Output E of this differential amplifier circuit 12. A portion of NF 1 is supplied to the negative hall coils 4A and 5A via the negative feedback path 14. That is, the negative feedback path 14 is
A negative feedback resistor Rf is connected to the output end of the operational amplifier 13, a negative feedback coil 4A is connected to the other end of this resistor Rf, and one end of the unknown opening coil 5A is connected to the other end of the coil 4A. , is formed by grounding the other end of the coil 5A.

尚、負帰還量は負帰還抵抗Rfの値を変えることによっ
て調整することができる。
Note that the amount of negative feedback can be adjusted by changing the value of the negative feedback resistor Rf.

以上の如き構成の地磁気方位センサは、処理回路2A、
2Bで設定された駆動周波数(例えば100乃至500
)12)により各セン+j部IA。
The geomagnetic azimuth sensor configured as described above includes a processing circuit 2A,
Drive frequency set in 2B (for example 100 to 500
) 12) for each sen + j part IA.

1Bが駆動され、このときの各センサ部1A。1B is driven, and each sensor section 1A at this time.

1Bの各コイル3Aと6A、3Bと6Bに生ずる磁界の
強さの差分が各処理回路2A、2Bで取り出され、アナ
ログ出力EO(IT 1 、EONF 1及びE   
2. EoN「2として出力される。
The difference in magnetic field strength generated between each coil 3A and 6A, 3B and 6B of 1B is taken out by each processing circuit 2A, 2B, and an analog output EO (IT 1 , EONF 1 and E
2. EoN "Output as 2.

tlT 次に、この地磁気方位センサの試験結果について説明す
る。
tlT Next, test results of this geomagnetic direction sensor will be explained.

第3図は磁界の強さに対するアナログ出力を、負帰還在
り無しのそれぞれの場合について測定したものである。
FIG. 3 shows analog outputs measured with respect to magnetic field strength with and without negative feedback.

負帰還無しの状態は負帰還抵抗Rfを取り外した状態で
おり、結果的に第8図の構成に等しくなる。この状態に
おいてはE。olを測定し、他方、負帰還有りの場合に
はE。N、を測定している。センサ部周囲温度は負帰還
有り無しのそれぞれにおいて30℃、200℃一定とし
た。
The state without negative feedback is the state in which the negative feedback resistor Rf is removed, and the result is the same as the configuration shown in FIG. 8. In this state, E. ol is measured, and on the other hand, E in the case of negative feedback. N, is being measured. The ambient temperature of the sensor part was kept constant at 30° C. and 200° C. with and without negative feedback, respectively.

なお、電流は100mA、各コイルの巻回数は200タ
ーン、差動増幅回路12の利得は50倍、負帰還抵抗R
fの値は500Ωとしている。
In addition, the current is 100 mA, the number of turns of each coil is 200 turns, the gain of the differential amplifier circuit 12 is 50 times, and the negative feedback resistor R
The value of f is 500Ω.

第3図より明らかなように、負帰還をかけることにより
、リニアリティ及び温度特性が著しく改善される。この
ため、負帰還をかけた状態での検出精度は、負帰還をか
けない状態に比べて飛躍的に向上する。
As is clear from FIG. 3, by applying negative feedback, the linearity and temperature characteristics are significantly improved. Therefore, the detection accuracy in a state where negative feedback is applied is dramatically improved compared to a state where negative feedback is not applied.

尚、以上のような構成の地磁気方位センサによって地磁
気を測定した結果、各処理回路から得られたアナログ出
力と方位角との関係は第4図に示す様になる。
As a result of measuring geomagnetism using the geomagnetic azimuth sensor configured as described above, the relationship between the analog output obtained from each processing circuit and the azimuth angle is as shown in FIG.

本発明は上記実施例に限されず、種々の変形実施が可能
である。例えば上記実施例では地磁気方位センサについ
て説明したが、他の磁界ゼンサについても本発明を適用
することができる。
The present invention is not limited to the above-mentioned embodiments, and various modifications are possible. For example, in the embodiments described above, a geomagnetic direction sensor has been described, but the present invention can also be applied to other magnetic field sensors.

また、前記実施例では磁心の両端に磁界検出用コイルと
負帰還用コイルを設けてセンサ部1A。
Further, in the embodiment described above, a magnetic field detection coil and a negative feedback coil are provided at both ends of the magnetic core to form the sensor section 1A.

1Bを構成した場合を示したが、これに限らず、第9図
に示すように磁心の一端のみに磁界検出用コイルと負帰
還用コイルを設けてセンサ部IA。
1B is shown, but the sensor part IA is not limited to this, and as shown in FIG. 9, a magnetic field detection coil and a negative feedback coil are provided only at one end of the magnetic core.

1Bを構成した場合においても上記同様な効果を得るこ
とができる。
Even in the case of configuring 1B, the same effect as described above can be obtained.

[発明の効果] 以上詳述したように本発明によれば、リニアリティ及び
温度特性を向上させることにより、検出精度の向上を図
った磁界センサを提供することができる。
[Effects of the Invention] As detailed above, according to the present invention, it is possible to provide a magnetic field sensor with improved detection accuracy by improving linearity and temperature characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例概略説明図、第2図はその処
理回路の一例を示す回路図、第3図は本発明の効果を示
す特性図、第4図は本実施例の測定結果を示す特性図、
第5図は本発明の他側を示す概略図、第6図は従来装置
の概略図、第7図はその測定結果を示す特性図、第8図
は本願出願人が先に提案した地磁気方位センサの概略図
、第9図は本発明の他の実施例を示す概略図である。 1A、IB・・・センサ部、 2A、2B・・・処理回路、 3A、3B、6A、6B・・・磁界検出用コイル、4A
、4B、5A、5B・・・負帰遠用コイル、14・・・
負帰還経路、AFL 、AF2・・・磁心。 第3図 ブ「イす〔1自θ ガ イf 角θ 第9図
Fig. 1 is a schematic explanatory diagram of one embodiment of the present invention, Fig. 2 is a circuit diagram showing an example of its processing circuit, Fig. 3 is a characteristic diagram showing the effects of the present invention, and Fig. 4 is a measurement of the present embodiment. Characteristic diagram showing the results,
Fig. 5 is a schematic diagram showing the other side of the present invention, Fig. 6 is a schematic diagram of the conventional device, Fig. 7 is a characteristic diagram showing the measurement results, and Fig. 8 is the geomagnetic direction proposed earlier by the applicant. FIG. 9 is a schematic diagram of a sensor showing another embodiment of the present invention. 1A, IB...Sensor section, 2A, 2B...Processing circuit, 3A, 3B, 6A, 6B...Magnetic field detection coil, 4A
, 4B, 5A, 5B... Negative return coil, 14...
Negative feedback path, AFL, AF2...magnetic core. Fig.3

Claims (4)

【特許請求の範囲】[Claims] (1)磁心に磁界検出用コイルを巻回し、この磁界検出
用コイルの検出出力を処理回路で処理するようにした磁
界センサにおいて、磁心に巻回した磁界検出用コイルの
近傍に負帰還用コイルを設けた第1のセンサ部と第2の
センサ部とを交差配置し、前記負帰還用コイルに前記処
理回路の出力の一部を供給する負帰還経路とを備えたこ
とを特徴とする磁界センサ。
(1) In a magnetic field sensor in which a magnetic field detection coil is wound around a magnetic core and the detection output of this magnetic field detection coil is processed by a processing circuit, a negative feedback coil is installed near the magnetic field detection coil wound around the magnetic core. A magnetic field characterized in that a first sensor section and a second sensor section are arranged in an intersecting manner, and a negative feedback path supplies a part of the output of the processing circuit to the negative feedback coil. sensor.
(2)前記各センサ部は1つの磁心の一端に磁界検出用
コイルと負帰還用コイルが設けられている特許請求の範
囲第1項記載の磁界センサ。
(2) The magnetic field sensor according to claim 1, wherein each sensor section is provided with a magnetic field detection coil and a negative feedback coil at one end of one magnetic core.
(3)前記各センサ部は1つの磁心の両端に磁界検出用
コイルと負帰還用コイルが設けられている特許請求の範
囲第1項記載の磁界センサ。
(3) The magnetic field sensor according to claim 1, wherein each sensor section is provided with a magnetic field detection coil and a negative feedback coil at both ends of one magnetic core.
(4)前記各センサ部の磁心は等価2磁心である特許請
求の範囲第1項記載の磁界センサ。
(4) The magnetic field sensor according to claim 1, wherein the magnetic cores of each sensor section are equivalent two magnetic cores.
JP26097787A 1986-10-15 1987-10-15 Magnetic field sensor Pending JPS63218884A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-245070 1986-10-15
JP24507086 1986-10-15

Publications (1)

Publication Number Publication Date
JPS63218884A true JPS63218884A (en) 1988-09-12

Family

ID=17128146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26097787A Pending JPS63218884A (en) 1986-10-15 1987-10-15 Magnetic field sensor

Country Status (1)

Country Link
JP (1) JPS63218884A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108469593A (en) * 2018-04-02 2018-08-31 南京麦科尼传感技术有限公司 A kind of comprehensive magnetic field gradient sensor of high-resolution orthogonal fluxgate based on amorphous wire orthogonal array
JP2019174438A (en) * 2018-03-29 2019-10-10 旭化成エレクトロニクス株式会社 Magnetic detection device
JP2022100322A (en) * 2018-03-29 2022-07-05 旭化成エレクトロニクス株式会社 Magnetic detection device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4968767A (en) * 1972-10-31 1974-07-03
JPS5046380A (en) * 1973-08-28 1975-04-25
JPS51120260A (en) * 1975-04-14 1976-10-21 Mishima Kosan Co Ltd Magnetic oscillation type gradio-meter
JPS5660368A (en) * 1979-10-23 1981-05-25 Nippon Telegr & Teleph Corp <Ntt> Magnetic field vector detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4968767A (en) * 1972-10-31 1974-07-03
JPS5046380A (en) * 1973-08-28 1975-04-25
JPS51120260A (en) * 1975-04-14 1976-10-21 Mishima Kosan Co Ltd Magnetic oscillation type gradio-meter
JPS5660368A (en) * 1979-10-23 1981-05-25 Nippon Telegr & Teleph Corp <Ntt> Magnetic field vector detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019174438A (en) * 2018-03-29 2019-10-10 旭化成エレクトロニクス株式会社 Magnetic detection device
JP2022100322A (en) * 2018-03-29 2022-07-05 旭化成エレクトロニクス株式会社 Magnetic detection device
CN108469593A (en) * 2018-04-02 2018-08-31 南京麦科尼传感技术有限公司 A kind of comprehensive magnetic field gradient sensor of high-resolution orthogonal fluxgate based on amorphous wire orthogonal array

Similar Documents

Publication Publication Date Title
JP3096413B2 (en) Magnetic sensing element, magnetic sensor, geomagnetic detection type azimuth sensor, and attitude control sensor
JP2923307B2 (en) Current sensor
KR101329240B1 (en) Non-contact current measuring apparatus using flux gate
KR100804389B1 (en) Exciting coil driving circuit of magnetic sensor
JP5091468B2 (en) Eddy current sensor and sensor coil
US5194805A (en) Inductance-type displacement sensor for eliminating inaccuracies due to external magnetic fields
Bushida et al. Amorphous wire MI micro magnetic sensor for gradient field detection
JPS63218884A (en) Magnetic field sensor
US4739263A (en) Magnetic sensor using the earth&#39;s magnetism
JPS5932353A (en) Reciprocally driven actuator
JP2535503B2 (en) Geomagnetic direction sensor
JPS6215484A (en) Earth magnetism azimuth sensor
JPH09126780A (en) Magnetic direction sensor
US3398360A (en) Magnetic body detector sensitive only to magnetic field variations within a predetermined range
JP3746354B2 (en) Magnetic field detector
JPH045525A (en) Noncontact type displacement detector
GB2319621A (en) Magnetic sensor
JPS5930409Y2 (en) Direction detection device
JPS6044883A (en) Apparatus for detecting minute magnetic body
KR890003516B1 (en) Phase compensating circuit for electronic azimuth
JPH08152464A (en) Flux-gate magnetic sensor
CN115993560A (en) Magnetic sensor
JPH0342378Y2 (en)
JPS6145450Y2 (en)
JP2000009818A (en) Magnetic sensor, magnetic filed zero proximity detecting device, and magnetic field zero detecting device