JPH08152464A - Flux-gate magnetic sensor - Google Patents

Flux-gate magnetic sensor

Info

Publication number
JPH08152464A
JPH08152464A JP31768294A JP31768294A JPH08152464A JP H08152464 A JPH08152464 A JP H08152464A JP 31768294 A JP31768294 A JP 31768294A JP 31768294 A JP31768294 A JP 31768294A JP H08152464 A JPH08152464 A JP H08152464A
Authority
JP
Japan
Prior art keywords
magnetic field
coil
bias
sensor
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31768294A
Other languages
Japanese (ja)
Inventor
Takeichiro Ohashi
武一郎 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oyo Corp
Original Assignee
Oyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oyo Corp filed Critical Oyo Corp
Priority to JP31768294A priority Critical patent/JPH08152464A/en
Publication of JPH08152464A publication Critical patent/JPH08152464A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a flux-gate magnetic sensor by which both the direction and the magnitude of a magnetic field can be measured without installing a phase detection circuit by impressing a bias magnetic field to a sensor body and moving the range of a magnetic field as an object to be measured to a linear region from a nonlinear region. CONSTITUTION: An exciting circuit 38 supplies an AC exciting signal (at a frequency (f)) having an amplitude, at which a core 30 is saturated, to a coil 32 for excitation. A BPF 40 takes out secondary harmonics 2f from a coil 34 for detection. A detection circuit 42 detects the secondary harmonics 2f from the BPF 40. A bias magnetic field HB is applied in advance to a sensor body 36 from a bias-magnetic-field generation source 44, and a magnetic field H as an object to be measured is measured in such a way that the sum H+HB of the bias magnetic field HB and the magnetic field H is shifted to a linear region from a nonlinear region. Generally, the range of the magnetic field H as the object to be measured is known in advance. As a result, when the bias magnetic field HB is selected so as to match the range, the magnitude and the direction of the magnetic field can be found without detecting a plane. As a result, a phase detection circuit is not required, and an apparatus can be simplified.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、フラックスゲート型磁
気センサに関し、更に詳しく述べると、センサ本体の近
傍にバイアス磁界発生源を設けることによって、位相検
出を行わなくても磁界の向きと大きさの両方を計測でき
るようにしたフラックスゲート型磁気センサに関するも
のである。この種の磁気センサは高感度で指向性が鋭い
ので、例えば地磁気の検出などに有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluxgate type magnetic sensor. More specifically, by providing a bias magnetic field generating source near the sensor body, the direction and magnitude of the magnetic field can be detected without phase detection. The present invention relates to a fluxgate type magnetic sensor capable of measuring both of the above. Since this type of magnetic sensor has high sensitivity and sharp directivity, it is useful for detecting geomagnetism, for example.

【0002】[0002]

【従来の技術】フラックスゲート型磁気センサは、高透
磁率磁性材料(例えば、ニッケル−鉄合金)の磁気的非
線形性を利用した磁気センサであり、高感度で扱い易
く、指向性が鋭いので、磁力の方向成分を測るためなど
に使われている。このフラックスゲート型磁気センサの
原理は、高透磁率材料からなるコアに励磁用と検出用の
コイルを巻装したセンサ本体を使用し、励磁用コイルに
コアが飽和する振幅の交流励磁信号を流すことによって
コアを励磁し、検出用コイルの出力電圧から外部磁界を
求めるというものである。
2. Description of the Related Art A fluxgate type magnetic sensor is a magnetic sensor utilizing the magnetic non-linearity of a high permeability magnetic material (for example, nickel-iron alloy), and is highly sensitive, easy to handle, and has a sharp directivity. It is used to measure the direction component of magnetic force. The principle of this fluxgate type magnetic sensor is to use a sensor body in which an exciting coil and a detecting coil are wound around a core made of a high magnetic permeability material, and an AC excitation signal of an amplitude that causes the core to saturate is applied to the exciting coil. This excites the core and obtains the external magnetic field from the output voltage of the detection coil.

【0003】従来のフラックスゲート型磁気センサの一
般的な構成例を図8に示す。センサ本体10の励磁用コ
イル11に、励磁回路12からコア13が飽和する振幅
の交流励磁信号(周波数f)を供給し、検出用コイル1
4の出力信号から偶数次高調波(通常は2次高調波2
f)をバンドパスフィルタ15によって取り出す。そし
て、周波数逓倍回路16で励磁信号を2倍に逓倍した参
照信号2fと前記の2次高調波2fとの位相差を位相検
出回路17で検出し、検波回路18で検波することで外
部磁界の向きと大きさを求める。位相検出回路17は、
磁界の大きさだけを計測すればよい時には省略すること
も可能であるが、磁界の向きも判定しなければならない
時には必要となる。これは、偶数次高調波を検波する
と、正方向と負方向の磁界に対して対称的な出力電圧が
得られるためである。
FIG. 8 shows a general configuration example of a conventional flux gate type magnetic sensor. The exciting coil 11 of the sensor body 10 is supplied with an AC exciting signal (frequency f) having an amplitude that saturates the core 13 from the exciting circuit 12, and the detecting coil 1
4 output signal to even harmonics (usually 2nd harmonic 2
f) is taken out by the bandpass filter 15. Then, the phase detection circuit 17 detects the phase difference between the reference signal 2f obtained by multiplying the excitation signal by the frequency multiplication circuit 16 and the second harmonic 2f, and the detection is performed by the detection circuit 18 to detect the external magnetic field. Find the orientation and size. The phase detection circuit 17
It can be omitted when only the magnitude of the magnetic field needs to be measured, but it is necessary when the direction of the magnetic field must be determined. This is because when the even harmonics are detected, a symmetrical output voltage is obtained with respect to the positive and negative magnetic fields.

【0004】計測原理は次の通りである。図9に示すよ
うに、容易に飽和する高透磁率材料からなるコア(磁化
曲線を符号aで示す)の励磁用コイルに、正弦波的に変
化する電流を流したとする。計測すべき外部直流磁界が
加わっていなければ、磁化曲線の対称性から出力波形も
対称な波形となるため、偶数次の高調波成分は含まれな
い(実線で示す)。しかし外部直流磁界ΔHが加わる
と、破線で示すように非対称となり偶数次の高調波成分
が現れる。この偶数次の高調波成分(通常は2次高調波
成分)を検波すると、出力電圧の大きさは直流磁界の大
きさにほぼ比例する。
The measuring principle is as follows. As shown in FIG. 9, it is assumed that a sinusoidally changing current is applied to an exciting coil of a core (magnetization curve is indicated by reference symbol a) made of a highly permeable material that is easily saturated. If the external DC magnetic field to be measured is not applied, the output waveform will also be a symmetric waveform due to the symmetry of the magnetization curve, so the even harmonic components are not included (shown by the solid line). However, when an external DC magnetic field ΔH is applied, it becomes asymmetric as shown by the broken line, and even harmonic components appear. When this even harmonic component (usually the second harmonic component) is detected, the magnitude of the output voltage is almost proportional to the magnitude of the DC magnetic field.

【0005】[0005]

【発明が解決しようとする課題】図8に示す従来のフラ
ックスゲート型磁気センサにおいて、多くの場合、位相
検出回路の部分が最も複雑で、要求される部品点数も多
く、組み立て後も調整が必要となる。そのため、この位
相検出回路の部分は、磁気センサを構成する上でかなり
コストや手間を要することになる。
In the conventional fluxgate type magnetic sensor shown in FIG. 8, in many cases, the phase detection circuit part is the most complicated, the number of required parts is large, and adjustment is required even after assembly. Becomes Therefore, this phase detection circuit portion requires considerable cost and labor in constructing the magnetic sensor.

【0006】本発明の目的は、位相検出回路が無くて
も、磁界の向きと大きさの両方を計測できるフラックス
ゲート型磁気センサを提供することである。
An object of the present invention is to provide a fluxgate type magnetic sensor which can measure both the direction and the magnitude of a magnetic field without a phase detection circuit.

【0007】[0007]

【課題を解決するための手段】本発明に係るフラックス
ゲート型磁気センサは、高透磁率磁性材料からなるコア
に励磁用コイル及び検出用コイルを巻装したセンサ本体
と、該励磁用コイルにコアが飽和する振幅の交流励磁信
号を供給する励磁回路と、前記検出用コイルから特定の
偶数次高調波を取り出すバンドパスフィルタと、該バン
ドパスフィルタの出力信号に対して直列に挿入したダイ
オードと並列に配置したコンデンサとを組み合わせた検
波回路と、前記センサ本体の近傍に位置し該センサ本体
にバイアス磁界を印加して計測対象磁界範囲を非線形領
域から線形領域に移動させるバイアス磁界発生源とを具
備している。本発明の特徴は、従来必要であった励磁信
号の周波数逓倍回路及び複雑な位相検出回路を不要と
し、その代わりにバイアス磁界発生源を付設した点であ
る。
A fluxgate magnetic sensor according to the present invention is a sensor body in which an exciting coil and a detecting coil are wound around a core made of a high-permeability magnetic material, and the exciting coil has a core. An excitation circuit that supplies an alternating-current excitation signal with an amplitude that saturates, a bandpass filter that extracts a specific even-order harmonic from the detection coil, and a diode that is inserted in series with the output signal of the bandpass filter in parallel And a bias magnetic field generation source that is located near the sensor body and applies a bias magnetic field to the sensor body to move the magnetic field range to be measured from a non-linear region to a linear region. are doing. A feature of the present invention is that a frequency multiplication circuit for an excitation signal and a complicated phase detection circuit, which are conventionally required, are not required, and a bias magnetic field generation source is additionally provided instead.

【0008】本発明で用いるバイアス磁界発生源として
は、永久磁石でもよいし、定電流が流れるバイアス用コ
イルでもよい。これらは通常、検出用コイルの軸方向に
磁界が向くように配置し、筐体内に組み込んでセンサ部
として一体化する。バイアス用コイルの場合は、検出用
コイルの外周に該検出用コイルと同心に巻装し、それに
一定のバイアス磁界用電流を供給する定電流源を接続す
るするのがよい。
The bias magnetic field generating source used in the present invention may be a permanent magnet or a bias coil through which a constant current flows. Usually, these are arranged so that the magnetic field is oriented in the axial direction of the detection coil, and they are incorporated in a housing to be integrated as a sensor unit. In the case of the bias coil, it is preferable to wind the detection coil concentrically with the detection coil and connect a constant current source for supplying a constant bias magnetic field current thereto.

【0009】[0009]

【作用】通常、ダイオードを用いた検波回路により偶数
次高調波を検波すると、正方向と負方向の磁界に対して
対称的な出力電圧が得られる。また、磁界の絶対値が大
きい範囲では磁界に対して出力電圧は線形となるが、磁
界の絶対値が小さい範囲ではダイオードの非線形性のた
めに出力電圧は磁界に対して非線形となる。従って、そ
のままでは磁界の向きを判定することができないし、非
線形領域では出力電圧から磁界の大きさを簡単に求める
ことができない。
In general, when even-order harmonics are detected by a detection circuit using a diode, a symmetrical output voltage is obtained with respect to the positive and negative magnetic fields. Further, the output voltage is linear with respect to the magnetic field in the range where the absolute value of the magnetic field is large, but the output voltage is non-linear with respect to the magnetic field due to the nonlinearity of the diode in the range where the absolute value of the magnetic field is small. Therefore, the direction of the magnetic field cannot be determined as it is, and the magnitude of the magnetic field cannot be easily obtained from the output voltage in the nonlinear region.

【0010】そこで本発明では、センサ本体にバイアス
磁界発生源から、一定の直流バイアス磁界を印加する。
これによって、センサ本体に印加される外部磁界として
は、計測したい磁界にバイアス磁界が重畳されたものと
なる。バイアス磁界の大きさを適切に選定すれば、非線
形領域を含む計測範囲を、線形領域に移動することがで
きる。そうすると出力電圧から外部磁界の大きさを簡単
に求めることができ、その外部磁界から既知のバイアス
磁界を差し引くことで、容易に計測したい磁界の向きと
大きさを求めることができる。
Therefore, in the present invention, a constant DC bias magnetic field is applied to the sensor body from the bias magnetic field generation source.
As a result, the external magnetic field applied to the sensor body is a magnetic field to be measured with a bias magnetic field superimposed thereon. By properly selecting the magnitude of the bias magnetic field, the measurement range including the non-linear region can be moved to the linear region. Then, the magnitude of the external magnetic field can be easily obtained from the output voltage, and by subtracting a known bias magnetic field from the external magnetic field, the direction and magnitude of the magnetic field to be measured can be easily obtained.

【0011】[0011]

【実施例】図1は本発明に係るフラックスゲート型磁気
センサの一実施例を示す構成図である。この磁気センサ
は、高透磁率磁性材料(例えば、ニッケル−鉄合金な
ど)からなるコア30に励磁用コイル32及び検出用コ
イル34を巻装したセンサ本体36と、該励磁用コイル
32にコア30が飽和する振幅の交流励磁信号(周波数
f)を供給する励磁回路38と、前記検出用コイル34
からの2次高調波2fを取り出すバンドパスフィルタ4
0と、該バンドパスフィルタ40からの出力信号に対し
て直列に挿入したダイオードDと並列に配置したコンデ
ンサCとを組み合わせて2次高調波を検波する検波回路
42と、前記センサ本体36の近傍に位置し該センサ本
体36にバイアス磁界を印加して計測対象磁界範囲を非
線形領域から線形領域に移動させるバイアス磁界発生源
44とを具備している。
1 is a block diagram showing an embodiment of a fluxgate type magnetic sensor according to the present invention. This magnetic sensor includes a sensor body 36 in which an exciting coil 32 and a detecting coil 34 are wound around a core 30 made of a high-permeability magnetic material (for example, nickel-iron alloy), and the exciting coil 32 has a core 30. Excitation circuit 38 for supplying an AC excitation signal (frequency f) having an amplitude that saturates, and the detection coil 34.
Bandpass filter 4 for extracting the second harmonic 2f from the
0 and a detection circuit 42 for detecting a second harmonic by combining a diode D inserted in series with the output signal from the bandpass filter 40 and a capacitor C arranged in parallel, and the vicinity of the sensor body 36. And a bias magnetic field generation source 44 which is located at the position where the bias magnetic field is applied to the sensor main body 36 to move the magnetic field range to be measured from the non-linear region to the linear region.

【0012】本発明は、ダイオードによる検波特性が、
磁界の絶対値の大きい範囲では線形であることに注目
し、予めセンサ本体36にバイアス磁界発生源44から
バイアス磁界HB を印加しておき、計測対象となる磁界
Hとの和H+HB が線形領域にくるようにして計測する
ものである。一般に計測対象となる磁界Hの範囲は予め
分かっているので、それにあわせてバイアス磁界HB
選定することにより、位相を検出しなくても磁界の大き
さと向きを求めることができる。
According to the present invention, the detection characteristic of the diode is
Paying attention to the fact that it is linear in the range where the absolute value of the magnetic field is large, the bias magnetic field H B is applied to the sensor body 36 in advance, and the sum H + H B with the magnetic field H to be measured is linear. The measurement is made so that it comes to the area. Since the range of the magnetic field H to be measured is generally known in advance, the magnitude and direction of the magnetic field can be obtained without detecting the phase by selecting the bias magnetic field H B accordingly.

【0013】この計測原理を図2を用いて更に詳しく説
明する。図2に示す曲線は、ダイオードによる検波特性
を示している。計測対象となる磁界の範囲を、−H1
H≦H2 とする。HB −H1 >H0 、即ちHB >H1
0 となるようなバイアス磁界HB を選定し、予めセン
サ本体36に印加しておく。バイアス磁界HB の発生源
は、永久磁石やコイルに定電流を流すなど、どのような
方法でもよいが、安定であることが必要である。このよ
うにすると、本来計測すべき磁界の範囲−H1≦H≦H
2 に対して、センサ本体36に加わる磁界Hi (Hi
H+HB )は、 HB −H1 ≦Hi ≦HB +H2 となり、これに対して検波後の出力電圧は、V1 ≦V≦
2 の範囲で線形を保つことができる。従って、線形部
分の出力電圧Vとセンサ本体に印加されている磁界Hi
との関係を、 V=aHi +b … と表すことができる。ここでa,bは予め較正により求
めておくことができる定数である。それ故、センサ本体
に印加されている磁界Hi は、 Hi =(V−b)/a … として求めることができる。一方、Hi =H+HB であ
り、HB は既知であるから、次式から磁界Hを求めるこ
とができる。 H=(V−b)/a−HB … 上式から求めた磁界Hの符号により磁界の向きも知るこ
とができる。
This measuring principle will be described in more detail with reference to FIG. The curve shown in FIG. 2 shows the detection characteristic of the diode. The range of the magnetic field to be measured is -H 1
Let H ≦ H 2 . H B −H 1 > H 0 , that is, H B > H 1 +
A bias magnetic field H B that gives H 0 is selected and applied to the sensor body 36 in advance. The bias magnetic field H B may be generated by any method such as passing a constant current through a permanent magnet or a coil, but it needs to be stable. By doing this, the range of the magnetic field to be originally measured is −H 1 ≦ H ≦ H
2 , the magnetic field H i applied to the sensor body 36 (H i =
H + H B ) is H B −H 1 ≦ H i ≦ H B + H 2 , whereas the output voltage after detection is V 1 ≦ V ≦
Linearity can be maintained in the range of V 2 . Therefore, the output voltage V of the linear portion and the magnetic field H i applied to the sensor body are
Can be expressed as V = aH i + b. Here, a and b are constants that can be obtained in advance by calibration. Therefore, the magnetic field H i applied to the sensor body can be obtained as H i = (V−b) / a. On the other hand, since H i = H + H B and H B is known, the magnetic field H can be obtained from the following equation. H = (V−b) / a−H B ... The direction of the magnetic field can also be known from the sign of the magnetic field H obtained from the above equation.

【0014】センサ本体とバイアス磁界発生源の一例を
図3に示す。センサ本体50は、高透磁率磁性材料(具
体的には、例えばニッケル−鉄合金)からなる平行な2
本のコア52a,52bを1組にし、それぞれに励磁用
コイル54a,54bを巻装して励磁磁界の向きが逆向
きとなるように接続し、それらの外側に検出用コイル5
6を設ける。こうすることにより、検出側出力の偶数次
高調波は加算され、奇数次の高調波は減算されて零とす
ることができるので、偶数次のS/Nは非常に良くな
る。バイアス磁界発生源として円柱状の永久磁石58を
用い、それを検出用コイル56の軸方向に磁界が向くよ
うにセンサ本体50から距離Lだけ離して筐体59内に
配置し、センサ部とする。この場合、筐体59内でセン
サ本体50と永久磁石58との距離Lを自由に調整でき
るようにすることによって、バイアス磁界の強さを調整
する。
An example of the sensor body and the bias magnetic field generation source is shown in FIG. The sensor main body 50 is made of a magnetic material having high magnetic permeability (specifically, nickel-iron alloy, for example) and is parallel to each other.
The cores 52a and 52b of the book are made into one set, and the exciting coils 54a and 54b are respectively wound and connected so that the directions of the exciting magnetic fields are opposite to each other, and the detecting coil 5 is provided outside them.
6 is provided. By doing so, the even harmonics of the output on the detection side can be added, and the odd harmonics can be subtracted to zero, so that the even S / N becomes very good. A cylindrical permanent magnet 58 is used as a bias magnetic field generation source, and the permanent magnet 58 is arranged in the housing 59 at a distance L from the sensor main body 50 so that the magnetic field is oriented in the axial direction of the detection coil 56 to form a sensor unit. . In this case, the strength of the bias magnetic field is adjusted by freely adjusting the distance L between the sensor body 50 and the permanent magnet 58 in the housing 59.

【0015】図4は、上記のようなフラックスゲート型
磁気センサを用いて、バイアス磁界HB を加えた場合
(実線で示す)と、加えないでそのまま計測した場合
(破線で示す)に得られる検波後の出力電圧を比較した
ものである。外部磁界は、磁気センサをソレノイドコイ
ル中に入れて、ソレノイドコイルに流す電流を変えるこ
とによって変化させ、種々の値について計測した。図4
から分かるように、検波後の出力電圧によってソレノイ
ドコイル中の磁界を向きも含めて求めることができた。
FIG. 4 is obtained by using the flux gate type magnetic sensor as described above when the bias magnetic field H B is applied (shown by a solid line) and when the bias magnetic field H B is not applied and measured as it is (shown by a broken line). It is a comparison of output voltages after detection. The external magnetic field was changed by putting a magnetic sensor in the solenoid coil and changing the current passed through the solenoid coil, and various values were measured. FIG.
As can be seen from the above, the magnetic field in the solenoid coil including the direction could be obtained by the output voltage after detection.

【0016】図5は、上記のフラックスゲート型磁気セ
ンサを用いて地磁気を検出した例である。磁気センサを
水平面内で回転させると、検波後の出力電圧は正弦的に
変化し、磁北で最大、反対の南方向で最小となる。図中
のほぼ中央に水平に引いた実線はバイアス磁界に対応し
ており、出力電圧がこれより大きい時は磁界の向きが正
方向、小さい時は負方向であることを示している。
FIG. 5 shows an example in which geomagnetism is detected using the above fluxgate type magnetic sensor. When the magnetic sensor is rotated in the horizontal plane, the output voltage after detection changes sinusoidally, which is maximum in magnetic north and minimum in the opposite south direction. The solid line drawn horizontally in the approximate center of the figure corresponds to the bias magnetic field, and indicates that the direction of the magnetic field is positive when the output voltage is higher than this and negative when the output voltage is low.

【0017】これらの例から分かるように、適当なバイ
アス磁界を加えることによって、簡単な検波回路を用い
るだけで、位相を考慮した回路を用いた時と同様に、磁
界の大きさと向きを求めることができる。
As can be seen from these examples, by applying an appropriate bias magnetic field, it is possible to obtain the magnitude and direction of the magnetic field just by using a simple detection circuit, as in the case of using a circuit considering the phase. You can

【0018】図6は3軸センサを構成した例である。こ
のような多軸センサを構成する場合は、永久磁石を1個
で済ますことも可能である。原点から永久磁石58の端
面までの距離L、永久磁石58の軸の角度θ,φを調整
する。X軸、Y軸、Z軸の各センサ本体50は、ここで
は図3に示すものと同様の構成としたので、それについ
ての説明は省略する。
FIG. 6 shows an example in which a three-axis sensor is constructed. When configuring such a multi-axis sensor, it is possible to use only one permanent magnet. The distance L from the origin to the end surface of the permanent magnet 58 and the angles θ and φ of the axes of the permanent magnet 58 are adjusted. The X-axis, Y-axis, and Z-axis sensor main bodies 50 have the same configuration as that shown in FIG. 3 here, so description thereof will be omitted.

【0019】図3あるいは図6において、永久磁石の代
わりに、その位置にバイアス用コイルを配置してもよ
い。その場合、バイアス用コイルに一定のバイアス磁界
用電流を供給する定電流源を接続する。該定電流源は、
その電流値を所望の値に自由に調整できるような構成と
し、定電流を流すことで、所望のバイアス磁界を印加す
ることができる。
In FIG. 3 or 6, instead of the permanent magnet, a bias coil may be arranged at that position. In that case, a constant current source for supplying a constant bias magnetic field current is connected to the bias coil. The constant current source is
It is possible to apply a desired bias magnetic field by making the current value freely adjustable to a desired value and applying a constant current.

【0020】図7はセンサ本体にバイアス用コイルを巻
装した例である。Aは図2に示すのと同様の並列コアの
場合である。検出用コイル56の外側に同心状にバイア
ス用コイル60を巻き付けてセンサ部とする。そしてバ
イアス用コイル60には定電流源61を接続する。Bで
はリングコアの場合であり、リングコア62に励磁用コ
イル64を巻き付け、その外側に検出用コイル66を配
置する。そして該検出用コイル66の外側に同心状にバ
イアス用コイル70を巻き付ける。このバイアス用コイ
ル70にも定電流源71を接続する。いずれにしても、
このようなコイル配置は、センサ部を小形化できるため
好ましい。巻数と通電電流値でバイアス磁界の強さを調
整する。バイアス磁界は巻数と電流値の積に比例する。
FIG. 7 shows an example in which a bias coil is wound around the sensor body. A is the case of a parallel core similar to that shown in FIG. A bias coil 60 is concentrically wound around the detection coil 56 to form a sensor unit. A constant current source 61 is connected to the bias coil 60. In B, the ring core is used, and the exciting coil 64 is wound around the ring core 62, and the detecting coil 66 is arranged outside thereof. Then, a bias coil 70 is concentrically wound around the detection coil 66. A constant current source 71 is also connected to the bias coil 70. In any case,
Such a coil arrangement is preferable because the sensor unit can be downsized. The strength of the bias magnetic field is adjusted by the number of turns and the current value. The bias magnetic field is proportional to the product of the number of turns and the current value.

【0021】本発明のベースとなるセンサ本体の構成
は、従来用いられている種々のタイプであってよい。例
えばコアの形態としては、単一コア、並列コア、リング
コア、ワイヤコア、チューブコア、ヘリカルコアなどが
あり、励磁用コイルによる励磁磁界が外部磁界に平行な
タイプ、直交するタイプ、および両者を混合したタイプ
がある。本発明は、これら全てのタイプに適用できる。
なおバイアス用コイルに定電流を流す方式では、目的に
応じて通電電流値を変えることによりバイアス値を変更
することも容易であり、また交流電流を重ねて流すこと
により感度チェックも可能である。
The structure of the sensor body on which the present invention is based may be of various types conventionally used. For example, the form of the core includes a single core, a parallel core, a ring core, a wire core, a tube core, a helical core, and the like, in which the exciting magnetic field by the exciting coil is parallel to the external magnetic field, orthogonal, and mixed There are types. The present invention is applicable to all these types.
In the method of passing a constant current through the bias coil, it is easy to change the bias value by changing the value of the energizing current depending on the purpose, and the sensitivity can be checked by passing alternating currents.

【0022】[0022]

【発明の効果】本発明は上記のように、磁界の向きと大
きさの両方を計測するために従来必要であった位相検出
回路が不要となるため、装置が簡素化され、組み立て後
の調整も容易となり、極めて扱い易いものとなる。
As described above, according to the present invention, since the phase detecting circuit which is conventionally required for measuring both the direction and the magnitude of the magnetic field is not required, the apparatus is simplified and the adjustment after the assembly is performed. Is also easy and extremely easy to handle.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るフラックスゲート型磁気センサの
一実施例を示す構成図。
FIG. 1 is a configuration diagram showing an embodiment of a fluxgate type magnetic sensor according to the present invention.

【図2】その測定原理の説明図。FIG. 2 is an explanatory diagram of the measurement principle.

【図3】センサ本体と永久磁石との配置関係の一例を示
す説明図。
FIG. 3 is an explanatory diagram showing an example of a positional relationship between a sensor body and a permanent magnet.

【図4】ソレノイドコイル中の磁界計測の一例を示す説
明図。
FIG. 4 is an explanatory diagram showing an example of magnetic field measurement in a solenoid coil.

【図5】地磁気の計測の一例を示す説明図。FIG. 5 is an explanatory diagram showing an example of geomagnetic measurement.

【図6】3軸センサ本体と永久磁石との配置関係の一例
を示す説明図。
FIG. 6 is an explanatory diagram showing an example of a positional relationship between a triaxial sensor body and a permanent magnet.

【図7】センサ本体とバイアス用コイルとの配置関係の
例を示す説明図。
FIG. 7 is an explanatory diagram showing an example of a positional relationship between a sensor body and a bias coil.

【図8】従来のフラックスゲート型磁気センサの例を示
す構成図。
FIG. 8 is a configuration diagram showing an example of a conventional flux gate type magnetic sensor.

【図9】その測定原理の説明図。FIG. 9 is an explanatory diagram of the measurement principle.

【符号の説明】[Explanation of symbols]

30 コア 32 励磁用コイル 34 検出用コイル 36 センサ本体 38 励磁回路 40 バンドパスフィルタ 42 検波回路 44 バイアス磁界発生源 30 core 32 excitation coil 34 detection coil 36 sensor body 38 excitation circuit 40 bandpass filter 42 detection circuit 44 bias magnetic field generation source

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高透磁率磁性材料からなるコアに励磁用
コイル及び検出用コイルを巻装したセンサ本体と、該励
磁用コイルにコアが飽和する振幅の交流励磁信号を供給
する励磁回路と、前記検出用コイルからの特定の偶数次
高調波を取り出すバンドパスフィルタと、該バンドパス
フィルタの出力信号に対して直列に挿入したダイオード
と並列に配置したコンデンサとを組み合わせた検波回路
と、前記センサ本体の近傍に位置し該センサ本体にバイ
アス磁界を印加して計測対象磁界範囲を非線形領域から
線形領域に移動させるバイアス磁界発生源とを具備して
いることを特徴とするフラックスゲート型磁気センサ。
1. A sensor body in which an exciting coil and a detecting coil are wound around a core made of a high-permeability magnetic material, and an exciting circuit for supplying the exciting coil with an AC exciting signal having an amplitude with which the core is saturated. A bandpass filter for extracting a specific even harmonic from the detection coil, a detection circuit in which a diode inserted in series with the output signal of the bandpass filter and a capacitor arranged in parallel are combined, and the sensor A flux gate type magnetic sensor, comprising: a bias magnetic field generation source that is located near the main body and applies a bias magnetic field to the sensor main body to move the magnetic field range to be measured from a non-linear region to a linear region.
【請求項2】 バイアス磁界発生源が永久磁石であり、
検出用コイルの軸方向に磁界が向くように、センサ本体
と永久磁石とを筐体内に組み込んで一体化した請求項1
記載の磁気センサ。
2. The bias magnetic field generation source is a permanent magnet,
The sensor body and the permanent magnet are integrated in a housing so that the magnetic field is oriented in the axial direction of the detection coil.
The magnetic sensor described.
【請求項3】 バイアス磁界発生源は、バイアス用コイ
ルと、それに定電流を供給する定電流源とからなり、該
バイアス用コイルを検出用コイルの外周に該検出用コイ
ルと同心に巻装する請求項1記載の磁気センサ。
3. The bias magnetic field generation source comprises a bias coil and a constant current source for supplying a constant current thereto, and the bias coil is wound around the outer circumference of the detection coil and concentrically with the detection coil. The magnetic sensor according to claim 1.
JP31768294A 1994-11-28 1994-11-28 Flux-gate magnetic sensor Pending JPH08152464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31768294A JPH08152464A (en) 1994-11-28 1994-11-28 Flux-gate magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31768294A JPH08152464A (en) 1994-11-28 1994-11-28 Flux-gate magnetic sensor

Publications (1)

Publication Number Publication Date
JPH08152464A true JPH08152464A (en) 1996-06-11

Family

ID=18090851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31768294A Pending JPH08152464A (en) 1994-11-28 1994-11-28 Flux-gate magnetic sensor

Country Status (1)

Country Link
JP (1) JPH08152464A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011015871A (en) * 2009-07-10 2011-01-27 Sanyo Product Co Ltd Game machine
JP2019138868A (en) * 2018-02-15 2019-08-22 東北電力株式会社 Dc current detection method for photovoltaic facility and dc current detection device therefor, and dc circuit breaker for photovoltaic facility

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011015871A (en) * 2009-07-10 2011-01-27 Sanyo Product Co Ltd Game machine
JP2019138868A (en) * 2018-02-15 2019-08-22 東北電力株式会社 Dc current detection method for photovoltaic facility and dc current detection device therefor, and dc circuit breaker for photovoltaic facility

Similar Documents

Publication Publication Date Title
JP6249206B2 (en) Current transducer for measuring current
Ripka New directions in fluxgate sensors
EP2871485B1 (en) Current detection device
US20200300944A1 (en) Magnetic field detection device and method of detecting megnetic field
US11269023B2 (en) Magnetic field detection device and method of detecting magnetic field
JPH03218475A (en) Method and device for measuring current
US5432445A (en) Mirror image differential induction amplitude magnetometer
JPH0257991A (en) Magnetic flux gate magnetic meter having wide temperature range accuracy and adjustement of magnetic flux gate for temperature compensation
US5751112A (en) CRT magnetic compensating circuit with parallel amorphous wires in the sensor
JP2005069829A (en) Magnetic field measuring method and field measuring device for rolling stock
US4972146A (en) Saturble core device with DC component elimination for measuring an external magnetic field
JP2008107119A (en) Current sensor
JP2000055998A (en) Magnetic sensor device and current sensor device
JP3651268B2 (en) Magnetic measurement method and apparatus
Ripka et al. Tuned current-output fluxgate
JPH08152464A (en) Flux-gate magnetic sensor
JPH11281678A (en) Current sensor
JP2004239828A (en) Flux gate magnetic field sensor
JPH0784021A (en) Very weak magnetism measuring apparatus and non-destructive inspection method
JPH04296663A (en) Current measuring device
JP3399185B2 (en) Magnetic detection device and magnetic detection method
JPS6057277A (en) Self-excitation type magnetism detecting method
JP2002286821A (en) Magnetic field detection apparatus
US5831424A (en) Isolated current sensor
JP2000266786A (en) Current sensor