JPH045525A - Noncontact type displacement detector - Google Patents

Noncontact type displacement detector

Info

Publication number
JPH045525A
JPH045525A JP10692790A JP10692790A JPH045525A JP H045525 A JPH045525 A JP H045525A JP 10692790 A JP10692790 A JP 10692790A JP 10692790 A JP10692790 A JP 10692790A JP H045525 A JPH045525 A JP H045525A
Authority
JP
Japan
Prior art keywords
detectors
windings
coils
output
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10692790A
Other languages
Japanese (ja)
Other versions
JP3097094B2 (en
Inventor
Atsushi Kenjo
見城 篤
Tatsuo Komori
小森 竜夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP02106927A priority Critical patent/JP3097094B2/en
Publication of JPH045525A publication Critical patent/JPH045525A/en
Application granted granted Critical
Publication of JP3097094B2 publication Critical patent/JP3097094B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To accurately detect the quantity of displacement of a body to be detected by arranging two detectors opposite each other as for the center of the body, connecting the coils of the detectors in series and applying opposite- phase AC voltages across the coils, and taking a detection signal out of the connection point between the coils. CONSTITUTION:An oscillator 4 supplies exciting voltages V1 and V2 to the coils 2a and 3a. When the body 1 is displaced, the coils 2 and 3 are varied in inductance with the displacement quantity and, therefore, vary impedance. The sensor output V0 is taken out of the connection point A between the coils 2a and 3a by dividing the exciting voltages V1 and V2 at the impedance ratio of the coils 2a and 3a, and rectified synchronously by the synchronous rectifier 6 of a converter 5 to generate a synchronous rectification output VR. The output VR is inputted to an LPF 7, which cuts its carrier frequency component to generate a displacement detection output VC.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、軸振動測定器や磁気軸受などの振動制御等に
用いる非接触式の変位検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a non-contact displacement detection device used for vibration control of shaft vibration measuring instruments, magnetic bearings, and the like.

(従来の技術) 従来の非接触式変位検出装置は、例えば、渦電流を利用
して被検出体の変位検出を行っているが、変位検出器及
び被検出体の温度変化による出力変動があった。この変
動を相殺するために被検出体の2つの面に夫々対向して
2個の変位検出器を配置させ、該2個の検出器から取り
出された2つの検出信号を演算回路で1つの検出信号に
変換するようにしていた。
(Prior art) Conventional non-contact displacement detection devices use, for example, eddy current to detect the displacement of a detected object, but there are output fluctuations due to temperature changes in the displacement detector and the detected object. Ta. In order to offset this variation, two displacement detectors are placed facing each other on two surfaces of the object to be detected, and the two detection signals taken out from the two detectors are combined into one detection signal using an arithmetic circuit. I was trying to convert it into a signal.

(発明が解決しようとする課題) 従来の非接触式変位検出装置は前記のような構造である
ため、該2個の変位検出器から取り出された2つの検出
信号を演算回路で1つの検出信号に変換する必要があり
、このため、回路構成が複雑であり且つ各検出器と演算
回路間を結線するための配線数も多く、コストが高いと
いう問題点があった。
(Problem to be Solved by the Invention) Since the conventional non-contact displacement detection device has the above-mentioned structure, two detection signals taken out from the two displacement detectors are combined into one detection signal by an arithmetic circuit. Therefore, there were problems in that the circuit configuration was complicated and the number of wires for connecting each detector and the arithmetic circuit was large, resulting in high cost.

又、真空、活性ガス雰囲気中等の特殊環境中で変位検出
装置を使用する場合には軸受のグリス等からのガスの発
生や腐食を防ぐために被検出体または検出器をステンレ
ス箔のような導体で囲む対策が講じられる。この場合、
従来の渦電流を利用した非接触式変位検出装置では、被
検出体の変位を検出することは不可能であった。
In addition, when using the displacement detection device in special environments such as vacuum or active gas atmosphere, the object to be detected or the detector should be covered with a conductor such as stainless steel foil to prevent gas generation from bearing grease and corrosion. Measures will be taken to enclose the area. in this case,
With conventional non-contact displacement detection devices that utilize eddy currents, it has been impossible to detect displacement of an object to be detected.

そこで、本発明は上述した課題を解決するために、2つ
の検出器を使用し温度による変動を相殺する構造にする
と共に、検出信号を単一検出信号出力にし、且つ被検出
体または検出器を導体箔で囲んだ場合にも被検出体の変
位を検出できるようにすることを目的とする。
Therefore, in order to solve the above-mentioned problems, the present invention has a structure in which two detectors are used to offset the fluctuations due to temperature, a single detection signal is output, and the detection object or the detector is It is an object of the present invention to enable displacement of a detected object to be detected even when surrounded by conductive foil.

(課題を解決するための手段) 本発明に依れば、上述の目的は、被検出体の変位を検出
する非接触式変位検出装置において、各々巻線を有する
2個の検出器の一方を磁性体からなる被検出体の一の面
に対向配置し、他方を前記被検出体の中心に関し前記一
の面と反対側の他の面に対向配置し、前記2個の検出器
の巻線同士を直列に接続し、各巻線の両端に逆位相の励
磁用交流電圧を印加して、前記2個の検出器の巻線の接
続点より出力を取り出し、検出信号とすることにより達
成される。
(Means for Solving the Problems) According to the present invention, the above-mentioned object is to provide a non-contact displacement detection device for detecting displacement of a detected object, in which one of two detectors each having a winding is The windings of the two detectors are arranged opposite to one surface of a detected object made of a magnetic material, and the other is arranged opposite to another surface opposite to the first surface with respect to the center of the detected object. This is achieved by connecting the two detectors in series, applying an excitation AC voltage of opposite phase to both ends of each winding, and taking out the output from the connection point of the windings of the two detectors and using it as a detection signal. .

(作用) 磁性体からなる被検出体のその中心に関し互いに反対側
の2つの面に対向配置された2個の検出器の直列に接続
された巻線の各々の両端に逆位相の励磁用交流電圧を印
加する。2つの巻線のインダクタンスによる各巻線にお
ける電圧降下の差分が両巻線の接続点から単一の検出信
号として取り出される。
(Function) An excitation alternating current of opposite phase is applied to both ends of each of the series-connected windings of two detectors arranged facing each other on two opposite sides of the object to be detected, which is made of a magnetic material, with respect to its center. Apply voltage. The difference in voltage drop in each winding due to the inductance of the two windings is extracted as a single detection signal from the connection point of both windings.

(実施例) 先ず、本発明の非接触式変位検出装置の基本構成を第4
図乃至第6図を参照して説明する。
(Example) First, the basic configuration of the non-contact displacement detection device of the present invention will be explained as follows.
This will be explained with reference to FIGS. 6 to 6.

第4図に示すように、本発明の変位検出装置は、基本的
には、夫々第1、第2の検出器を成し直列に接続された
2個の巻線Ml、M2と、該巻線M l。
As shown in FIG. 4, the displacement detection device of the present invention basically consists of two windings Ml and M2, which form first and second detectors and are connected in series. Line M l.

M2に夫々励磁用交流電圧Vl、V2を互いに逆位相で
印加するように該巻線M+、M2に接続された発振器A
 C1,A C2とにより構成され、前記第1、第2の
検出器は磁性体から成る図示しない被検出体の2つの面
に、夫々対向して配置される。
An oscillator A connected to the windings M+ and M2 so as to apply excitation alternating current voltages Vl and V2 to M2 respectively in opposite phases.
C1, AC2, and the first and second detectors are arranged facing each other on two surfaces of an object to be detected (not shown) made of a magnetic material.

上記巻線Ml、M2は磁極面積及び透磁率が相等しいよ
うに設計される。
The windings M1 and M2 are designed to have the same magnetic pole area and magnetic permeability.

第1、第2検出器の巻線Ml、M2の両端に印加される
電圧をVとすると V=Vl−V2 で表わされる。
Letting V be the voltage applied across the windings Ml and M2 of the first and second detectors, it is expressed as V=Vl-V2.

交流電圧の角周波数をQ)とすると、巻線M l。If the angular frequency of the alternating current voltage is Q), then the winding Ml.

M2のインピーダンスZl、Z2は、Z+=ωL1、Z
2=ωL2となる。ここで、Ll、L2は巻線M t 
The impedance Zl, Z2 of M2 is Z+=ωL1, Z
2=ωL2. Here, Ll and L2 are windings M t
.

M2のインダクタンスである。従って、巻線M 1゜M
2における電圧降下をVLI、 VL2とすれば、とな
り、巻線Ml、M2の接続点の出力(以下「センサ出力
」という)Voは、 わされる。
This is the inductance of M2. Therefore, the winding M 1゜M
If the voltage drops at 2 are VLI and VL2, then the output (hereinafter referred to as "sensor output") Vo at the connection point of the windings M1 and M2 is given by:

次に、検出器の巻線の磁極と被検出体1との位置関係が
センサ出力Voに与える影響について述べる。
Next, the influence of the positional relationship between the magnetic pole of the winding of the detector and the detected object 1 on the sensor output Vo will be described.

第5図において各巻線Ml、M2の磁極と被検出体lと
の距離をg’+g2とする。被検出体lが磁極間の中心
に位置する場合(第5図に示す位置)、即ちg 1= 
g 2=hoの時、磁極の面積をS、透磁率わされるの
で、L+=L2となり、 この時のセンサ出力VOは、 となる。
In FIG. 5, the distance between the magnetic poles of the windings Ml and M2 and the detected object l is g'+g2. When the detected object l is located at the center between the magnetic poles (the position shown in FIG. 5), that is, g 1=
When g2=ho, the area of the magnetic pole is S and the magnetic permeability is subtracted, so L+=L2, and the sensor output VO at this time is as follows.

次に、被検出体1が第5図の位置からM2側にXたけ移
動した場合、即ちgl:>gzの時は、と表わされ、 この時のセンサ出力Voは、 一方、被検出体1が第5図の位置からM1側にXだけ移
動した場合、即ち、g 1(g 2の時は、と表わされ
、 この時のセンサ出力Voは、 となる。
Next, when the detected object 1 moves from the position shown in FIG. 5 to the M2 side by an amount of X, that is, when gl:>gz, the sensor output Vo at this time is 1 moves from the position shown in FIG. 5 to the M1 side by X, that is, when g 1 (g 2), the sensor output Vo at this time is expressed as follows.

このように、センサ出力VOは、磁極を2個組み合わせ
ることにより、巻線Ml、M2の両端に印加される電圧
Vが一定であるので被検出体の移動量Xと比例した値を
執ることがわかる。
In this way, by combining two magnetic poles, the voltage V applied to both ends of the windings Ml and M2 is constant, so the sensor output VO can take a value proportional to the amount of movement X of the detected object. Recognize.

又、磁極と被検出体1間にステンレス箔のような非磁性
体の導体が介在した場合にも、上述の如く、センサ出力
VOは、Ll、L2の変化には関係しないため、センサ
出力Voは被検出体1の移動量Xに比例した値を執るこ
とになる。
Furthermore, even if a non-magnetic conductor such as stainless steel foil is interposed between the magnetic pole and the detected object 1, the sensor output VO is not related to changes in Ll and L2 as described above. takes a value proportional to the amount of movement X of the detected object 1.

次に被検出体、検出器が温度変化により変形した場合の
、センサ出力Voに与える影響について述べる。
Next, the effect on the sensor output Vo when the detected object and the detector are deformed due to temperature changes will be described.

第6図において、例えば、被検出体lの変形量をyとし
た場合について考えると、被検出体が磁極間の中心に位
置する時、即ちg1=g2:=hOの時の巻線のインダ
クタンスLl、L2は、と表わされる。
In FIG. 6, for example, if we consider the case where the amount of deformation of the detected object l is y, the inductance of the winding when the detected object is located at the center between the magnetic poles, that is, g1=g2:=hO. Ll and L2 are expressed as follows.

従って、L1=L2となり、センサ出力VOは■ ■o=L1+L2(Ll−L2)=Oとなる。Therefore, L1=L2, and the sensor output VO is (2) o=L1+L2 (Ll-L2)=O.

このことから、温度変化により被検出体lが変形しても
巻線Ml、M2のインダクタンスの変化は相殺されるこ
とになリセンサ出力Voは同等影響されない。
From this, even if the detected object l is deformed due to a temperature change, the changes in the inductance of the windings Ml and M2 are canceled out, and the resensor output Vo is not equally affected.

次に、本発明の実施例について詳細に説明する。Next, embodiments of the present invention will be described in detail.

第2図は、本発明の一実施例に係る非接触式変位検出装
置の全体構成のブロック図である。同図に示すように、
円形断面を有する被検出体1の2つの面1a、It)に
夫々対向して2つの検出器2゜3の巻線2a、3aが配
置され、該巻線2a、3aは互いに直列に接続され、そ
れらの両端は発振器4に接続され、該発振器から夫々互
いに逆位相の励磁用交流電圧(以下「励磁電圧」と云う
)vl。
FIG. 2 is a block diagram of the overall configuration of a non-contact displacement detection device according to an embodiment of the present invention. As shown in the figure,
Windings 2a and 3a of two detectors 2 and 3 are arranged opposite to two surfaces 1a and It) of a detected object 1 having a circular cross section, respectively, and the windings 2a and 3a are connected to each other in series. , both ends of which are connected to an oscillator 4, from which excitation alternating current voltages (hereinafter referred to as "excitation voltages") vl having mutually opposite phases are applied.

v2が印加される。発振器4は、変換器5の同期整流器
6にも接続され、後者に前記励磁電圧と同一の周波数の
同期整流周基単信号Rerを供給する。
v2 is applied. The oscillator 4 is also connected to the synchronous rectifier 6 of the converter 5 and supplies the latter with a synchronously rectified radical signal Rer of the same frequency as the excitation voltage.

該同期整流器6のセンサ出力入力端にはmj記巻線2a
、3aの接続点Aが接続され、センサ出力VOを供給す
る。同期整流器6の出力側は変換器5のローパスフィル
タフに接続される。
A winding 2a marked mj is connected to the sensor output input terminal of the synchronous rectifier 6.
, 3a are connected to supply the sensor output VO. The output of the synchronous rectifier 6 is connected to a low-pass filter of the converter 5.

上記構成の非接触式変位検出装置の作動を第3図を参照
して説明すると、発振器4は第3図(a)に示す励磁電
圧Vl、V2を巻線2a、3aに夫々供給する。被検出
体lが変位する(第3図(b))と、その変位量に応じ
て巻線2,3のインダクタンスが変化し、従ってそれら
のインピーダンスが変化する。巻線2a、3aの接続点
からセンサ出力Voが巻線2a、3aの両端に加えられ
た励磁電圧Vl、V2を巻線2a、3aのインピーダン
ス比で分圧した出力として取り出され(第3図(C))
、変換器5の同期整流器6に供給される。同期整流器6
は発振器4からの同期整流用基準信号Refを基準とし
て前記入力されたセンサ出力Voを同期整流し、同期整
流出力vRとして出力する(第3図(d))。ローパス
フィルタ7は入力された同期整流出力vRのキャリア周
波数分をカットし、出力を変位検出装置出力VCとして
出力する(第3図(e))。
The operation of the non-contact displacement detection device having the above configuration will be explained with reference to FIG. 3. The oscillator 4 supplies excitation voltages Vl and V2 shown in FIG. 3(a) to the windings 2a and 3a, respectively. When the detected object 1 is displaced (FIG. 3(b)), the inductance of the windings 2 and 3 changes according to the amount of displacement, and therefore their impedance changes. The sensor output Vo is taken out from the connection point of the windings 2a and 3a as an output obtained by dividing the excitation voltages Vl and V2 applied to both ends of the windings 2a and 3a by the impedance ratio of the windings 2a and 3a (Fig. 3). (C))
, to the synchronous rectifier 6 of the converter 5. Synchronous rectifier 6
synchronously rectifies the inputted sensor output Vo using the synchronous rectification reference signal Ref from the oscillator 4 as a reference, and outputs it as a synchronous rectification output vR (FIG. 3(d)). The low-pass filter 7 cuts the carrier frequency of the input synchronous rectification output vR and outputs the output as the displacement detection device output VC (FIG. 3(e)).

第1図は第2図の被検出体1と検出器2,3の配置を詳
細に示した図である。被検出体としての軸体lの外周」
二の直径方向反対側の面1a、lbには検出器2.3の
コア2b、3bが夫々対向して配され、該コアに巻線2
a、3aがその軸線を各対向する而1a、+bに直角に
して巻装される。
FIG. 1 is a diagram showing in detail the arrangement of the detected object 1 and the detectors 2 and 3 shown in FIG. The outer periphery of the shaft l as the object to be detected”
The cores 2b and 3b of the detector 2.3 are disposed facing each other on the diametrically opposite surfaces 1a and lb of the detector 2.3.
3a and 3a are wound with their axes perpendicular to the opposing sides 1a and +b.

発振器4からの励磁電圧Vl、’V2により巻線2a、
3aが励磁されるとコア2b、3bと軸体lとを通る磁
束φ1.φ2が形成され、軸体lの変位量に応じた電圧
のセンサ出力Voが巻線2a。
The winding 2a, by the excitation voltage Vl, 'V2 from the oscillator 4,
3a is excited, magnetic flux φ1.3a passes through cores 2b, 3b and shaft l. φ2 is formed, and the sensor output Vo of the voltage according to the amount of displacement of the shaft body l is the winding 2a.

3aの接続点Aから出力される。It is output from connection point A of 3a.

第7図は上述した第1図の実施例の変形例を示し、この
変形例は、第1図の実施例に対し、巻線2a、3aをそ
れらの軸線が軸体1の対向面1a。
FIG. 7 shows a modification of the embodiment shown in FIG. 1, which is different from the embodiment shown in FIG.

1bに対して平行になるようにコア2b、3bに巻装し
た点が異なる。
The difference is that the cores 2b and 3b are wound in parallel to 1b.

第8図は本発明の別の実施例による被検出体lと検出器
2,3の配置を示す図である。この実施例は、第1図、
第7図の実施例において被検出体lの外側に検出器2,
3を配置したのに対し、被検出体1の内側に検出器2,
3を配したものである。
FIG. 8 is a diagram showing the arrangement of the detected object l and the detectors 2 and 3 according to another embodiment of the present invention. This embodiment is shown in FIG.
In the embodiment shown in FIG.
Detector 2 is placed inside the object 1 to be detected.
3 is arranged.

第8図に示すように、被検出体lは中空円筒体から成り
、コア2b、3bは共通の単一部材により一体に形成さ
れ、被検出体1の内周の直径方向反対側の2つの面1a
、lbに夫々対向して配される。−巻線2a、3aはそ
れらの軸線が夫々対向する面1a、lbに対し直角にな
るようにコア2b、3bに巻装される。
As shown in FIG. 8, the object 1 to be detected consists of a hollow cylindrical body, the cores 2b and 3b are integrally formed from a common single member, and two Surface 1a
, lb, respectively. - the windings 2a, 3a are wound around the cores 2b, 3b in such a way that their axes are perpendicular to the opposing surfaces 1a, lb, respectively;

第9図は上述した第8図の実施例の変形例を示す図であ
り、この変形例は、第8図の構成に対し、コア2b、3
bの形状が異なり、各コア2b。
FIG. 9 is a diagram showing a modification of the embodiment shown in FIG.
Each core 2b has a different shape.

3bは2つの巻装部2b1,2b2;3b+、3b2を
有し、これらの巻装部2b+、2b2;3bt。
3b has two winding parts 2b1, 2b2; 3b+, 3b2, and these winding parts 2b+, 2b2; 3bt.

3b2に巻線2a、3aが夫々巻装されている点が異な
る。
The difference is that windings 2a and 3a are respectively wound around 3b2.

第10図は被検出体1を導体箔9で囲んだ実施例を示す
。この実施例は前述した第1図の実施例と同様の構成に
おいて例えばステンレス等の非磁性体から成り、厚さ0
.1〜0.2mmの導体箔9を被検出体の軸体1と検出
器2,3との間に介在するように軸体Iの外周を覆って
配したものである。
FIG. 10 shows an embodiment in which the detected object 1 is surrounded by a conductive foil 9. This embodiment has the same structure as the embodiment shown in FIG.
.. A conductive foil 9 having a thickness of 1 to 0.2 mm is arranged to cover the outer periphery of the shaft I so as to be interposed between the shaft 1 of the object to be detected and the detectors 2 and 3.

この構成において、発振器4からの励磁電圧Vl、V2
により、巻線2a、3aが励磁されると、コア2b、3
bに発生した磁束φ1.φ2が導体箔9を通り抜けて被
検出体1を通る第1図と同様の磁路が形成される。これ
により、被検出体(軸体)1の変位量に応じた電圧のセ
ンサ出力VDが巻線2a、3aの接続点Aから出力され
る。このように、本発明は渦電流を利用するものではな
いから、導体箔の介在に同等影響されることなく被検出
体1の変位量を検出することができる。
In this configuration, the excitation voltages Vl, V2 from the oscillator 4
When the windings 2a and 3a are excited, the cores 2b and 3
The magnetic flux φ1.b generated at φ2 passes through the conductor foil 9 and passes through the detected object 1, forming a magnetic path similar to that shown in FIG. As a result, a sensor output VD of a voltage corresponding to the amount of displacement of the detected object (shaft body) 1 is output from the connection point A of the windings 2a and 3a. In this way, since the present invention does not utilize eddy currents, it is possible to detect the amount of displacement of the detected object 1 without being equally affected by the presence of conductive foil.

第11図は第7図の実施例と同様の構成において被検出
体1を導体箔9で囲んだ構成である。
FIG. 11 shows a configuration similar to that of the embodiment shown in FIG. 7, in which the detected object 1 is surrounded by a conductive foil 9.

この構成に依っても上述の第7図と同様の磁路が形成さ
れ、導体箔9の介在にもかかわらず被検出体lの変位量
を検出できる。
With this configuration as well, a magnetic path similar to that shown in FIG.

第12図は第8図の実施例と同様の構成において検出器
2.3を導体箔で囲んだ構成、又、第13図は第9図の
実施例と同様の構成において検出器2,3を導体箔で囲
んだ構成を夫々示すもので、これらの構成においても第
8図、第9図と同様の磁路が形成され、導体箔の介在に
もかかわらず、被検出体1の変位量を検出できる。
12 shows a configuration similar to the embodiment shown in FIG. 8, with the detectors 2 and 3 surrounded by conductive foil, and FIG. 13 shows a configuration similar to the embodiment shown in FIG. 8 and 9. In these configurations, magnetic paths similar to those shown in FIGS. 8 and 9 are formed, and the amount of displacement of the detected object 1 is determined despite the presence of the conductive foil. can be detected.

第14図は更に別の実施例を示し、この実施例は、上述
した各実施例が被検出体としてl個の軸体の変位を検出
する一軸検出構成のものであるのに対して、複数の軸体
の変位を検出する多軸検出構成のものである。
FIG. 14 shows yet another embodiment, and while each of the above-mentioned embodiments has a uniaxial detection configuration that detects the displacement of l shaft bodies as objects to be detected, this embodiment has a plurality of It has a multi-axis detection configuration that detects the displacement of the shaft body.

第14図において、図示しない被検出体としての第1乃
至第Nの軸体の各々には、前述した各実施例と同様の直
列接続された検出器巻線2a、 3aが対向して配され
る。第1乃至第Nの軸体の検出器巻線2a、3aは互い
に並列接続される。並列接続された第1乃至第Nの軸体
の検出器巻線2a。
In FIG. 14, detector windings 2a and 3a connected in series, similar to those in each of the previously described embodiments, are arranged facing each other on each of the first to Nth shaft bodies as objects to be detected (not shown). Ru. The detector windings 2a and 3a of the first to Nth shaft bodies are connected in parallel to each other. Detector windings 2a of the first to Nth shaft bodies connected in parallel.

3aには、発振器4が接続され励磁電圧を検出器巻線に
印加する。各列の検出器巻線2 a +  3 aの接
続点は夫々の変換器5に接続され、該接続点出力Voを
供給する。変換器5は前述した一軸検出構成のものと同
様に構成することができ、変位検出装置の出力VCを出
力する。
An oscillator 4 is connected to 3a to apply an excitation voltage to the detector winding. The junction of the detector windings 2 a + 3 a of each column is connected to a respective converter 5 and supplies the junction output Vo. The converter 5 can be configured in the same manner as the uniaxial detection configuration described above, and outputs the output VC of the displacement detection device.

このように、本発明の非接触式変位検出装置を多軸検出
構成とした場合は各列の検出器巻線は単一の発振器を共
有できるので、配線数が更に少なくなり一層の低コスト
化を図ることができる。
In this way, when the non-contact displacement detection device of the present invention has a multi-axis detection configuration, the detector windings in each row can share a single oscillator, which further reduces the number of wiring lines and further reduces costs. can be achieved.

(発明の効果) 以上説明したように、本発明に依る非接触式変位検出装
置は、各々巻線を有する2個の検出器の一力を磁性体か
らなる被検出体の一の面に対向配置し、他方を前記被検
出体の中心に関し前記一の面と反対側の他の面に対向配
置し、前記2個の検出器の巻線同士を直列に接続し、各
巻線の両端に逆位相の励磁用交流電圧を印加して、前記
2個の検出器の巻線の接続点より出力を取り出し、検出
信号とするようにしたので、温度による出力変動がない
ことはもとより、演算回路が不要であり、4゜ 構成が簡単で且つ配線数が減少でき低コスト化を図るこ
とができると云う優れた効果を奏することができる。更
に渦電流の利用ではなく、磁束の変化を検出する構成で
あるため、被検出体と検出器間に導体箔が介在した場合
でも、被検出体の変位量を正確に検出できるものである
(Effects of the Invention) As explained above, the non-contact displacement detection device according to the present invention directs one force of two detectors each having a winding to one surface of a detected object made of a magnetic material. The windings of the two detectors are connected in series, and the other is arranged facing the other surface opposite to the first surface with respect to the center of the detected object, and the windings of the two detectors are connected in series, and the opposite ends of each winding are connected to each other in series. By applying a phase excitation AC voltage, the output is taken out from the connection point of the windings of the two detectors and used as a detection signal, so not only is there no output fluctuation due to temperature, but the arithmetic circuit is It is unnecessary, the 4° configuration is simple, and the number of wiring lines can be reduced, resulting in excellent effects such as cost reduction. Furthermore, since the configuration detects changes in magnetic flux rather than using eddy currents, the amount of displacement of the detected object can be accurately detected even when a conductive foil is interposed between the detected object and the detector.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る一軸検出構成を示す配
置図、第2図は本発明の一実施例を示すブロック図、第
3図は第2図の各部の信号の波形図、第4図は本発明の
非接触式変位検出装置の基本構成図、第5図は被検出体
が磁極間の中心にある状態を示す図、86図は被検出体
が温度変化により変位した状態を示す図、第7図乃至第
13図は本発明に係る一軸検出構成の他の実施例を示す
配置図であり、第7図は被検出体の外側に検出器を配置
した実施例、第8図、第9図は被検出体の内側に検出器
を配置した実施例、第10図〜第13図は検出器と被検
出体の間に導体箔を介在させた実施例を夫々示す図、第
14図は本発明に係る多軸検出構成の実施例を示す配置
図である。 1・・・被検出体、2,3・・・検出器、2a、3a・
・・検出器巻線、4・・・発振器、5・・・変換器、6
・・・同期整流器。
FIG. 1 is a layout diagram showing a uniaxial detection configuration according to an embodiment of the present invention, FIG. 2 is a block diagram showing an embodiment of the present invention, and FIG. 3 is a waveform diagram of signals in each part of FIG. Fig. 4 is a basic configuration diagram of the non-contact displacement detection device of the present invention, Fig. 5 is a diagram showing a state in which the object to be detected is at the center between the magnetic poles, and Fig. 86 is a state in which the object to be detected is displaced due to temperature change. FIGS. 7 to 13 are layout diagrams showing other embodiments of the uniaxial detection configuration according to the present invention, and FIG. Figures 8 and 9 show examples in which the detector is placed inside the object to be detected, and Figures 10 to 13 show examples in which a conductive foil is interposed between the detector and the object to be detected. , FIG. 14 is a layout diagram showing an embodiment of the multi-axis detection configuration according to the present invention. 1... Detected object, 2, 3... Detector, 2a, 3a.
...Detector winding, 4...Oscillator, 5...Converter, 6
...Synchronous rectifier.

Claims (1)

【特許請求の範囲】[Claims] 1、被検出体の変位を検出する非接触式変位検出装置に
おいて、各々巻線を有する2個の検出器の一方を磁性体
からなる被検出体の一の面に対向配置し、他方を前記被
検出体の中心に関し前記一の面と反対側の他の面に対向
配置し、前記2個の検出器の巻線同士を直列に接続し、
各巻線の両端に逆位相の励磁用交流電圧を印加して、前
記2個の検出器の巻線の接続点より出力を取り出し、検
出信号とすることを特徴とする非接触式変位検出装置。
1. In a non-contact displacement detection device that detects the displacement of a detected object, one of the two detectors each having a winding is placed opposite to one surface of the detected object made of a magnetic material, and the other The windings of the two detectors are arranged opposite to each other on another surface opposite to the one surface with respect to the center of the detected object, and the windings of the two detectors are connected in series;
A non-contact displacement detection device characterized in that an excitation AC voltage of opposite phase is applied to both ends of each winding, and an output is taken out from a connection point of the windings of the two detectors and used as a detection signal.
JP02106927A 1990-04-23 1990-04-23 Non-contact displacement detector Expired - Fee Related JP3097094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02106927A JP3097094B2 (en) 1990-04-23 1990-04-23 Non-contact displacement detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02106927A JP3097094B2 (en) 1990-04-23 1990-04-23 Non-contact displacement detector

Publications (2)

Publication Number Publication Date
JPH045525A true JPH045525A (en) 1992-01-09
JP3097094B2 JP3097094B2 (en) 2000-10-10

Family

ID=14446046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02106927A Expired - Fee Related JP3097094B2 (en) 1990-04-23 1990-04-23 Non-contact displacement detector

Country Status (1)

Country Link
JP (1) JP3097094B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003520949A (en) * 2000-01-20 2003-07-08 ハイ スピード テック オイ リミテッド Method and position sensor for determining position of rotor of electric machine
JP2012233806A (en) * 2011-05-02 2012-11-29 Okuma Corp Stator and resolver
WO2014024979A1 (en) * 2012-08-08 2014-02-13 東海旅客鉄道株式会社 Device for detecting damage to support structure for armature shaft

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299592A (en) * 1993-04-13 1994-10-25 Maruei Concrete Kogyo Kk Retarding basin constructed of divided culvert
CN114326275B (en) 2020-09-29 2023-05-26 中强光电股份有限公司 Optical processing turntable and projection device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003520949A (en) * 2000-01-20 2003-07-08 ハイ スピード テック オイ リミテッド Method and position sensor for determining position of rotor of electric machine
JP2012233806A (en) * 2011-05-02 2012-11-29 Okuma Corp Stator and resolver
US9136737B2 (en) 2011-05-02 2015-09-15 Okuma Corporation Stator and resolver
WO2014024979A1 (en) * 2012-08-08 2014-02-13 東海旅客鉄道株式会社 Device for detecting damage to support structure for armature shaft
JP2014036498A (en) * 2012-08-08 2014-02-24 Central Japan Railway Co Breakage detection device for armature shaft support structure
US9389202B2 (en) 2012-08-08 2016-07-12 Central Japan Railway Company Damage detecting device for supporting structure for armature shaft

Also Published As

Publication number Publication date
JP3097094B2 (en) 2000-10-10

Similar Documents

Publication Publication Date Title
EP2413153B9 (en) Magnetic detection device
KR100468833B1 (en) A device for detecting magnetic field and a module for detecting magnetic field using the same
CN110494760B (en) Magnetic sensor
JP3445362B2 (en) AC current sensor
JP2015219061A (en) Magnetic field detection sensor and magnetic field detection device using the same
JP2002039793A (en) Induction-type length measuring system
JPH11223505A (en) Induction type position measurement device
JP2002318250A (en) Current detector and overload current protective device using the same
EP0380562B1 (en) Magnetometer employing a saturable core inductor
JPH07506655A (en) magnetic bearing regulator
US5194805A (en) Inductance-type displacement sensor for eliminating inaccuracies due to external magnetic fields
EP0706057B1 (en) Magnetic image sensor using Matteucci effect
JPH045525A (en) Noncontact type displacement detector
US8947074B1 (en) Inductive position sensor
JPH083499B2 (en) Current detector
US9151639B2 (en) Two-dimensional inductive position sensing system
US20110133727A1 (en) Inductive Position Sensor
JP5106816B2 (en) Voltage measuring device and power measuring device
JP2617498B2 (en) Magnetic sensor
JPH037765Y2 (en)
US20230251074A1 (en) Linear inductive position sensor
JP2535503B2 (en) Geomagnetic direction sensor
JPH08201061A (en) Thin film magnetic sensor
RU2166765C1 (en) Gear measuring current of package of buses
JPH0342378Y2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070811

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080811

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees