JPS63218339A - Manufacture of composite girder material - Google Patents

Manufacture of composite girder material

Info

Publication number
JPS63218339A
JPS63218339A JP62052047A JP5204787A JPS63218339A JP S63218339 A JPS63218339 A JP S63218339A JP 62052047 A JP62052047 A JP 62052047A JP 5204787 A JP5204787 A JP 5204787A JP S63218339 A JPS63218339 A JP S63218339A
Authority
JP
Japan
Prior art keywords
resin
fiber
mandrel
pressure
hardened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62052047A
Other languages
Japanese (ja)
Other versions
JPH0552777B2 (en
Inventor
Shiro Yamamoto
山本 至郎
Mikio Nishikawa
西川 幹雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP62052047A priority Critical patent/JPS63218339A/en
Publication of JPS63218339A publication Critical patent/JPS63218339A/en
Publication of JPH0552777B2 publication Critical patent/JPH0552777B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Rod-Shaped Construction Members (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To make it effective in manufacturing girder materials having various cross sections, exellent in productivity and profitable in cost by a method wherein a resin-impregnated fiber is wound round a mandrel and, after being semi- hardened, removed from the mandrel, deformed in an intended shape and finally the resin is hardened under the state that said intended shape is maintained. CONSTITUTION:Resin and fiber are selected and the winding angle is selected to be 5-30 deg. or 60-88 deg.. A resin-impregnated fiber is wound round a mandrel, to which Teflon coating is applied. When the predetermined winding is finished, the fiber is semi-hardened as wound up. When the predetermined viscosity or 10<3>-10<7> P is attained by the resin of the fiber, the fiber is removed from the mandrel. Firstly, the central parts of the fiber are joined by pressure to each other and, after that, the remaining loop-shaped parts are also joined by pressure for hardening. For industrial production, an intermediate stock 1, which is produced by FW (filament winding) method is joined by pressure with pressure-joining rollers 5 and bonded with pressure-joining heaters 6. If necessary, the fiber is finally hardened in a curing oven under the state that the shape of the fiber is kept with an auxiliary shape retaining tool.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、繊維強化プラスチックス(以下、FRPと
いう)の梁桁材及びその製造方法、特にフィラメントワ
インタング法(以下、FW法と略称)によってfill
ストランドに樹脂を含浸させ、マンドレルに巻き上げる
方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a beam girder material made of fiber reinforced plastics (hereinafter referred to as FRP) and a method for manufacturing the same, in particular, a method for filling by the filament wine tongue method (hereinafter referred to as FW method).
It relates to a method of impregnating a strand with resin and winding it onto a mandrel.

[従来の技術及びその問題点] 軽量かつ高強度の桁材として、繊維と樹脂からなる複合
材料の梁桁材は既に考案され、その製造方法は公知であ
る。
[Prior Art and Problems Therewith] A beam girder material made of a composite material made of fibers and resin has already been devised as a lightweight and high-strength girder material, and its manufacturing method is well known.

たとえば特公昭61−12781号公報には実質的には
伝統的なプリプレグ法による複合材料の梁桁材が、特開
昭61−179731号公報及び第4回次世代産業基盤
技術シンポジウム−金属・複合材料技術−子稿集には所
謂レジントランスファーモールタング法(以下、RTM
法と略称)による複合材料の梁桁材が記されている。
For example, Japanese Patent Publication No. 61-12781 discloses beam girder materials made of composite materials using essentially the traditional prepreg method, while Japanese Patent Publication No. 61-179731 and the 4th Next Generation Industrial Infrastructure Technology Symposium - Metal/Composite Materials Technology -The so-called resin transfer Mortang method (hereinafter referred to as RTM) was used for the secondary manuscript collection.
Composite material beam and girder materials according to the method (abbreviated as "method") are described.

これらの方法によるFRPWAの桁材は、他の方法、た
とえばミルドファイバー等の短繊維を含む樹脂の射出成
形等の方法に比べて繊維含有率(以下、vl と略称)
が高く、繊維物性を良く活用はしているが、生産性等に
問題があり、殊に連続生産、自動化生産、大量生産等に
は必ずしも適しているとは言えない。
FRPWA beam materials made by these methods have a lower fiber content (hereinafter abbreviated as vl) than other methods, such as injection molding of resin containing short fibers such as milled fibers.
Although the fiber properties are well utilized, there are problems with productivity, etc., and it cannot be said that it is particularly suitable for continuous production, automated production, mass production, etc.

これらの方法と同様にvl が高く、繊維の物性を最大
限に活用出来る方法としてフィラメントワインデング法
があるがパイプ・ボンベ等の種々の用途には用いられて
いるが梁桁相等構造材料としては管状物のみにほぼ限ら
れている。
Similar to these methods, the filament winding method has a high vl and can make maximum use of the physical properties of fibers. Although it is used for various purposes such as pipes and cylinders, it is not suitable for use as a structural material for beams and girders. Almost limited to tubular objects.

本発明者は上記問題点について種々検討をした結果、多
様な断面の桁材の製造に有効でかつ、生産性にも優れコ
スト的にも比較的有利な本発明方法を完成するに至った
As a result of various studies regarding the above-mentioned problems, the present inventors have completed the method of the present invention, which is effective in manufacturing girder members of various cross sections, has excellent productivity, and is relatively advantageous in terms of cost.

複合材料梁桁材は元来プリプレグ法で考えられた。つま
り、引き揃えた薄層の繊維列に熱硬化性の樹脂の原料を
浸透させ、これを半硬化させて(Bステージとげ称され
る)繊維を含んだ半硬化樹脂である中間体とし、所要の
大きざ、形状に切り取り、張り合わせて構造材料の形状
にし、完全に硬化させて複合材料梁桁材とする。特公昭
61−12781号公報記載の発明も実質的にはこの方
法である。この方法は手間が掛かり容易な製造方法では
無いので改善が考えられ、例えば所謂RTM法が考えら
れている。この方法では予め繊維を所要の複合材料梁桁
材の形に為しておき、このili維形酸形成物脂を浸透
させて樹脂成形物とする。一般に繊維形成物は金型に収
めて置き、熱硬化性樹脂を未硬化又は原料で圧入、浸透
させる。特開昭61−179731号公報記載の発明も
実質的にはこの方法である。この方法でも補強繊維形成
物の組立てとこの構造体への樹脂の注入・浸透が課題に
なっている。
Composite beam girder materials were originally conceived using the prepreg method. In other words, a thermosetting resin raw material is infiltrated into a thin layer of aligned fiber rows, and this is semi-cured (referred to as a B-stage thorn) to form a semi-cured resin intermediate containing fibers. The material is cut to the desired size and shape, pasted together to form a structural material, and completely cured to form a composite beam girder material. The invention described in Japanese Patent Publication No. 61-12781 is also substantially based on this method. Since this method is time-consuming and not an easy manufacturing method, improvements are being considered, such as the so-called RTM method. In this method, fibers are formed in advance into the shape of a required composite material beam beam material, and this fiber-forming acid-forming resin is permeated into the fibers to form a resin molded product. Generally, the fiber formed product is placed in a mold, and an uncured thermosetting resin or a raw material is press-fitted and infiltrated into the mold. The invention described in JP-A-61-179731 is also substantially based on this method. Even with this method, there are challenges in assembling the reinforcing fiber product and injecting and permeating the resin into this structure.

[問題を解決するための手段] 上記の問題を解決するために、本発明者は、FW法の利
用を考えた。
[Means for Solving the Problem] In order to solve the above problem, the inventor considered the use of the FW method.

複合材料梁桁材をFW法で作ることは既に知られている
。FW法では管状の成形物が作られ、従ってこの方法で
管状の構造材料を作ることはしばしば考えられている。
It is already known that composite beam girders can be made using the FW method. The FW method produces tubular moldings, and it is therefore often considered to produce tubular structural materials with this method.

本発明者はこれ等と異り、フィラメントワインデング技
術を複合材料中間素材を作る手段として取り取り上げ、
単なる円管状材料ではなく、■・1−ビーム等の非円管
状材料を複合材料で合理的に作る方法を検討し、本発明
に至った。
The present inventor differs from these methods by taking up filament winding technology as a means of making intermediate materials for composite materials.
We investigated a method for rationally making non-circular tubular materials, such as 1-beam, not just circular tubular materials, using composite materials, and arrived at the present invention.

従って、本方法では大別して中間素材の製造と中間素材
からの梁桁材の製造が課題となる。
Therefore, the problems in this method are broadly divided into the production of intermediate materials and the production of beam girder materials from intermediate materials.

繊維と樹脂の複合材料の中間素材をFW法で作るに際し
て、最終製品を念頭において中間素材として如何なる性
質を持たせるかを考え、どのようなm維・樹脂を選び、
どのように巻き上げるかは最も重要な課題である。しか
しながらこのFW法特製品中間素材として取扱う場合、
如何に上手にマンドレルから外すかも極めて重要な課題
である。
When making an intermediate material for a composite material of fiber and resin using the FW method, we consider what kind of properties the intermediate material should have, keeping in mind the final product, and what kind of m-fiber and resin to choose.
The most important issue is how to wind it up. However, when handling this FW method special product intermediate material,
How to skillfully remove it from the mandrel is also an extremely important issue.

中間素材として取扱う場合には樹脂の硬化は完了してお
らず、従って粘着性と変形し易さは付きまとってしまう
。中間素材として取扱う場合、マンドレルから外さずに
取扱うこともしばしばなされるが本発明者は最終製品の
成形の際の便宜も考慮して外すことを考えた。マンドレ
ルを変形させることも出来るが繰りかえし使用を考える
と離脱することが好ましい。マンドレルからの離脱に際
してはある種のポリエステル、テフロン等をマンドレル
に巻き付け、又はコーテングすることが好ましい。しか
しながらこれだけでは問題は解決せず取り外しに際して
力を加えると変形してしまう。
When handled as an intermediate material, the resin has not completely cured, and therefore remains sticky and easily deformed. When handled as an intermediate material, it is often handled without removing it from the mandrel, but the inventor of the present invention considered removing it in consideration of convenience in molding the final product. Although it is possible to deform the mandrel, it is preferable to detach it from the mandrel in consideration of repeated use. When detached from the mandrel, it is preferable to wrap or coat the mandrel with some kind of polyester, Teflon, etc. However, this alone does not solve the problem and deforms when force is applied during removal.

この変形量を所定の範囲に収めるには取り外し時の樹脂
の粘度が重要な因子であり、且つ、繊維の巻き上げ角度
が重要な問題であることが判った。
It has been found that the viscosity of the resin at the time of removal is an important factor in keeping the amount of deformation within a predetermined range, and the winding angle of the fibers is also an important issue.

取り外し時の樹脂の粘度は少なくとも103ボイズは必
要であり、繊維の巻き上げ角度は複数であることが重要
であり、巻き上げ軸に対して浅い角度と深い角度を併用
することが好ましい。この巻き上げ角度の異なる複数の
層の形成は樹脂の取り外し時の粘度と共に取り外しのた
めの力を加えた際の変形の起り易さに大きな影響を与え
、軸に対して平行に近い角度と直角に近い角度の沿うほ
うを含ませることが好ましい。
The viscosity of the resin at the time of removal is required to be at least 103 voids, and it is important that the fibers be rolled up at multiple angles, and it is preferable to use a combination of shallow angles and deep angles with respect to the winding axis. The formation of multiple layers with different winding angles has a great effect on the viscosity of the resin when it is removed, as well as on the ease with which deformation occurs when force is applied for removal. It is preferable to include the side along which the angle is closest.

かくして、平面及び/又は外側に凸の面で構成される筒
状体の中間素材、即ち、軸に垂直な平面で切断した断面
が、直線及び/又は外側に凸の曲線で構成されるところ
の筒状体の中間素材が得られる。
Thus, the intermediate material of the cylindrical body is composed of flat and/or outwardly convex surfaces, i.e., where the cross section cut by a plane perpendicular to the axis is composed of straight lines and/or outwardly convex curves. A cylindrical intermediate material is obtained.

中間素材の製品への成形に際して変形させて硬化するが
、I−Tビーム等を成形するに際して管状中間素材を圧
しつぶす際、如何に実施するかが重要な課題になる。樹
脂の粘度、樹脂と繊維の比率等にもよるか本発明者の検
討結果によれば局部の変形が補強繊維かガラス繊維、炭
素繊維では1mm以上、アラミド繊維の場合には0.5
mm以上でないと最終製品の強度が著しく低下してしま
う。また、樹脂量は繊維の0.4倍以上、樹脂粘度は1
07ポイズ以下でなければ同様に強度が低下してしまう
。繊維巻き上げ方向については梁桁材の強度の問題から
複数角度で巻き上げたものが好ましく、中間素材のマン
ドレルからの離脱も含めて軸に対して5〜30°の層と
60〜88°の層が存在することが好ましい。
When forming an intermediate material into a product, it is deformed and hardened, but an important issue is how to crush the tubular intermediate material when forming an IT beam or the like. This may depend on the viscosity of the resin, the ratio of resin to fiber, etc.According to the study results of the present inventors, the local deformation is 1 mm or more for reinforcing fibers, glass fibers, or carbon fibers, and 0.5 mm for aramid fibers.
If it is not more than mm, the strength of the final product will be significantly reduced. In addition, the amount of resin is more than 0.4 times that of fiber, and the resin viscosity is 1
If it is less than 0.07 poise, the strength will similarly decrease. Regarding the fiber winding direction, it is preferable to wind the fiber at multiple angles due to the strength of the beam girder material, and there are layers at 5 to 30 degrees and layers at 60 to 88 degrees with respect to the axis, including the separation of the intermediate material from the mandrel. It is preferable.

この変形に際して中間素材の内部に新たに少尉の樹脂を
加えることが出来るし、加えることが好ましい場合があ
る。中間素材の樹脂の硬化か進み過ぎ、接着力を低下さ
せた時等である。また、この際、補強繊維を追加するこ
とも出来るが当初の繊維方向の計画の際に適当に計画出
来れば基本的には必要としない。
During this transformation, it is possible, and sometimes preferable, to add new ensign resin to the interior of the intermediate material. This happens when the resin in the intermediate material hardens too much, reducing adhesive strength. Further, at this time, reinforcing fibers may be added, but they are basically not necessary if the fiber direction can be planned appropriately at the time of initial planning.

かくして、少なくとも平面か外側に凹の面を有する筒状
体又は棒状体(丸棒、角棒、L、I又はT字棒他)が得
られる。即ち、これを軸に垂直な平面で切断した断面が
、少なくとも直線部或いは外に凹の曲線で構成される筒
状又は棒状体が得られる。
In this way, a cylindrical body or a rod-shaped body (round bar, square bar, L-, I- or T-shaped bar, etc.) having at least a flat or concave surface on the outside is obtained. That is, a cylindrical or rod-shaped body whose cross section taken along a plane perpendicular to the axis is formed of at least a straight line or an outwardly concave curve is obtained.

[作用] 上記方法においては、繊維と樹脂からなる良好な複合材
料梁桁材が安価に出来る。また、この方法の採用により
自動化と連続化に近い方法が採用できる。
[Function] In the above method, a good composite beam girder material made of fibers and resin can be produced at low cost. Moreover, by adopting this method, a method close to automation and continuity can be adopted.

即ち、従来のプリプレグ法のように素材の張り合わせも
必要ではなく、中間素材の変形硬化で製品が作り得るし
、RTM法のように繊維補強構造を作ることも、この構
造に樹脂を押し込むことも必要ではない。つまり樹脂と
補強繊維を一体とした中間素材を比較的容易に得、この
中間素材を同様に容易に変形・硬化して製品に出来る。
In other words, unlike the conventional prepreg method, it is not necessary to bond materials together, and products can be created by deforming and curing intermediate materials.It is also possible to create a fiber-reinforced structure as in the RTM method, and it is not possible to inject resin into this structure. Not necessary. In other words, it is relatively easy to obtain an intermediate material in which resin and reinforcing fibers are integrated, and this intermediate material can be similarly easily deformed and hardened into a product.

図1にはこの中間素材の変形の例をIビーム化を例とし
て示しである。つまりFW法で巻き上げた中間素材(こ
の場合は円筒状)は中央部を押しつぶして圧着し、次に
上下に残った環状部を押しつぶしてI型として樹脂を硬
化させる。最初に中間素材の中央部を押しつぶすざいに
一方に片寄せ、環状部を一つしか残さなければTビーム
となる。
FIG. 1 shows an example of the modification of this intermediate material, taking as an example an I-beam. In other words, the intermediate material (cylindrical in this case) rolled up by the FW method is pressed and bonded by pressing the center portion, and then the annular portions remaining on the top and bottom are crushed to form an I-shape and the resin is cured. First, the center part of the intermediate material is pushed to one side while being crushed, and if only one annular part is left, it becomes a T-beam.

同様にしてLビーム化も出来る。In the same way, it can also be converted into an L beam.

樹脂及び補強繊維は必要に応じて定められ、特に限定は
無い。目的に応じて炭素繊維、ガラス繊維、アラミド繊
維その他の補強繊維から選ばれる。
The resin and reinforcing fibers are determined as necessary and are not particularly limited. Depending on the purpose, reinforcing fibers are selected from carbon fiber, glass fiber, aramid fiber, and other reinforcing fibers.

複数の、1Iffを併用することも出来る。樹脂は一般
には熱硬化性樹脂を用いる。しかし、熱可塑性樹脂でも
良い。両者の混合でも可能である。熱硬化性樹脂の場合
、エポキシ樹脂、不飽和ポリエステル、ビニルエステル
樹脂、ポリイミド、その他が目的に応じて選ばれる。熱
可塑性樹脂の場合には溶媒に溶かして用いることも、こ
の溶媒をラクタム等の反応制溶媒とすることも出来るし
、エポキシ樹脂等の七ツマ−、オリゴマーとすることも
出来る。
It is also possible to use multiple 1Iffs together. Thermosetting resin is generally used as the resin. However, thermoplastic resin may also be used. A mixture of both is also possible. In the case of thermosetting resins, epoxy resins, unsaturated polyesters, vinyl ester resins, polyimides, and others are selected depending on the purpose. In the case of a thermoplastic resin, it can be used by dissolving it in a solvent, or the solvent can be used as a reaction suppressing solvent such as a lactam, or it can be used as a polymer or oligomer such as an epoxy resin.

以下、この発明を具体的に図1に基づいて説明する。Hereinafter, this invention will be specifically explained based on FIG. 1.

一般のFW法の手法に従って樹脂と繊維か選ばれ、巻き
上げ角度は5〜30°と60〜88°から選ばれる。繊
維に樹脂を含浸させ、テフロンコーテング等を施したマ
ンドレルに巻き上げられる。所定の巻き上げが完了した
らそのまま半硬化される。
Resin and fiber are selected according to the general FW method, and the winding angle is selected from 5 to 30 degrees and 60 to 88 degrees. The fibers are impregnated with resin and wound onto a mandrel coated with Teflon. Once the prescribed winding is completed, it is semi-cured as it is.

所定の粘度、つまり、103〜107ポイズになったと
きマンドレルから外し、以下は図1の通り、既に説明し
たように中央部を圧着し、残った環状部を圧着し、硬化
させる。
When the viscosity reaches a predetermined value, that is, 10 3 to 10 7 poise, it is removed from the mandrel, and as shown in FIG. 1, the center portion is crimped as described above, and the remaining annular portion is crimped and cured.

図2は本発明方法を工業的に実施する方法の例である。FIG. 2 is an example of a method for industrially implementing the method of the present invention.

上記の如<FW法で作られた中間素材(1)は圧着ロー
ラー(2)で圧着され、圧着ヒーター(3)で接着し、
ガイド(4)を通りながら圧着ローラー(5)で圧着さ
れ、圧着ヒーター(6)で接着する。必要があれば形状
維持のための補助器具で形状を保ちながら硬化炉で最終
的に硬化される。
The intermediate material (1) made by the FW method as described above is crimped with a crimping roller (2), bonded with a crimping heater (3),
While passing through a guide (4), it is pressed by a pressure roller (5) and bonded by a pressure heater (6). If necessary, it is finally cured in a curing oven while maintaining its shape using auxiliary tools.

[効果] この発明は以上のようなものであるから、FRPである
複合材料梁桁材が安価に容易に作られる。
[Effects] Since the present invention is as described above, a composite material beam girder material made of FRP can be easily produced at low cost.

特公昭61−12781号公報に示された方法のように
プリプレグを接着する煩わしさも無く、特開昭61−1
7973号公報に示された方法のように[1のみの組立
てによる梁桁材を作りこれに樹脂を浸透させると言う問
題も無い。極めて合理的に複合材料梁桁材が製造し得る
方法である。
Unlike the method shown in Japanese Patent Publication No. 61-12781, there is no need for the trouble of gluing prepreg, and the method disclosed in Japanese Patent Publication No. 61-12781
Unlike the method disclosed in Japanese Patent No. 7973, there is no problem of making a beam girder material by assembling only one piece and infiltrating it with resin. This is an extremely rational method for manufacturing composite beam girder materials.

また、本発明方法によればT、L、Iビーム以外の梁桁
材もW!A造可能である。例えばFW法で巻き上げた管
状中間素材の中央部を圧着する際に予めプルトルージョ
ン法等で作って置いた丸棒を、環状部にあたる位置に挿
入して置けば、2本の丸棒を接続した構造材料が作れる
し、管状中間素材を中央部で圧着したのみで硬化させれ
ば、2本のパイプを接続した構造材料が得られる。
Also, according to the method of the present invention, beam girder materials other than T, L, and I beams can also be treated with W! It is possible to build A. For example, when crimping the center part of a tubular intermediate material rolled up using the FW method, if you insert a round bar made in advance using the pultrusion method or the like into the position corresponding to the annular part, you can connect the two round bars. Structural materials can be made, and if a tubular intermediate material is only crimped at the center and then cured, a structural material that connects two pipes can be obtained.

即ち、工業的には生産性に優れ、且つ、多様なl材料の
作り得る価値の高い方法である。
In other words, it is a highly valuable method that has excellent industrial productivity and can produce a variety of l materials.

【図面の簡単な説明】 図1は、本発明方法に従い円筒状中間索材から1字型棒
状体を作る手順を示すものである。 図2は、]業内的製造の例を示すものである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows the procedure for making a single-shaped rod-shaped body from a cylindrical intermediate cable according to the method of the present invention. FIG. 2 shows an example of in-house manufacturing.

Claims (1)

【特許請求の範囲】 1、樹脂を含浸した繊維をマンドレルに巻き上げ、当該
樹脂を半ば硬化させたのちマンドレルから取りはずし、
これを目的形状に変形し、この目的形状を維持しながら
樹脂を硬化させることを特徴とする複合材料梁桁材の製
造方法。 2、当該樹脂を含浸した繊維の軸に対する巻き上げ角度
を複数とする複合材料梁桁材の製造方法。 3、当該繊維の巻き角度の少なくとも一つを軸に対して
5〜30°、他の一つを60〜88°とする複合材料梁
桁材の製造方法。 4、当該樹脂を半硬化した後、マンドレルから取り外し
て変形するに際して、軸に直角に切断した断面に置ける
曲がり部の形状が全て半径1mm以上である複合材料梁
桁材の製造方法。
[Scope of Claims] 1. Winding up fibers impregnated with resin onto a mandrel, and removing the resin from the mandrel after semi-curing,
A method for manufacturing a composite beam girder material, which comprises transforming the material into a desired shape and curing the resin while maintaining the desired shape. 2. A method for manufacturing a composite material beam girder material, in which the resin-impregnated fibers are rolled up at multiple angles with respect to the axis. 3. A method for manufacturing a composite material beam girder material, in which at least one of the winding angles of the fibers is 5 to 30 degrees with respect to the axis, and the other one is 60 to 88 degrees. 4. A method for producing a composite material beam girder material, in which, after the resin is semi-cured, when the resin is removed from the mandrel and deformed, all the curved portions in the cross section cut at right angles to the axis have a radius of 1 mm or more.
JP62052047A 1987-03-09 1987-03-09 Manufacture of composite girder material Granted JPS63218339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62052047A JPS63218339A (en) 1987-03-09 1987-03-09 Manufacture of composite girder material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62052047A JPS63218339A (en) 1987-03-09 1987-03-09 Manufacture of composite girder material

Publications (2)

Publication Number Publication Date
JPS63218339A true JPS63218339A (en) 1988-09-12
JPH0552777B2 JPH0552777B2 (en) 1993-08-06

Family

ID=12903901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62052047A Granted JPS63218339A (en) 1987-03-09 1987-03-09 Manufacture of composite girder material

Country Status (1)

Country Link
JP (1) JPS63218339A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106113522A (en) * 2016-06-29 2016-11-16 航天材料及工艺研究所 A kind of variable cross-section I-shaped beam mantle assistant formation method containing corrugated listrium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5555828A (en) * 1978-10-20 1980-04-24 Central Glass Co Ltd Forming method for rugged pattern on surface of glass fiber-reinforced resin material
JPS58205730A (en) * 1982-05-25 1983-11-30 Mitsubishi Heavy Ind Ltd Forming method of composite product
JPS5967014A (en) * 1982-10-08 1984-04-16 Nippon Denso Co Ltd Preparation of long fiber reinforced plastic molded product

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5555828A (en) * 1978-10-20 1980-04-24 Central Glass Co Ltd Forming method for rugged pattern on surface of glass fiber-reinforced resin material
JPS58205730A (en) * 1982-05-25 1983-11-30 Mitsubishi Heavy Ind Ltd Forming method of composite product
JPS5967014A (en) * 1982-10-08 1984-04-16 Nippon Denso Co Ltd Preparation of long fiber reinforced plastic molded product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106113522A (en) * 2016-06-29 2016-11-16 航天材料及工艺研究所 A kind of variable cross-section I-shaped beam mantle assistant formation method containing corrugated listrium

Also Published As

Publication number Publication date
JPH0552777B2 (en) 1993-08-06

Similar Documents

Publication Publication Date Title
US6875297B1 (en) Process for manufacturing highly stressed composite parts
EP2437926B1 (en) Fiber reinforced plastic bolt and method for producing the same
US10596772B2 (en) Production of a plurality of different fiber composite components for high volumes in a continuous process
KR102060109B1 (en) Pul-core method with a pmi foam core
US7018578B2 (en) Method of producing a hybrid matrix fiber composite
JP3901299B2 (en) U bolt manufacturing method
JPS63218339A (en) Manufacture of composite girder material
JPH09250247A (en) Composite material reinforced concrete structural body
JPS63262233A (en) Manufacture of beam member of composite material
JPH01166937A (en) Long-sized, light-weight and fiber-reinforced composite draw molding and its manufacture
US6397914B1 (en) Apparatus for continuous production of lightweight composite beams
JPS63252727A (en) Manufacture of composite material beam
EP0069539A1 (en) Structural components
WO2018008689A1 (en) Composite material substrate, pultruded material, method for producing composite material substrate, and method for producing pultruded material
CA2802024C (en) Method and device for manufacturing composite products comprising a planar portion
JPS6249171B2 (en)
Milwich Pultrusion of braids 14
JPH0349934A (en) Manufacture of fiber reinforced composite material
JP2000296574A (en) Composite material and synthetic tie using the same
KR200342862Y1 (en) Duct having flange
Ewald Processing continuous filament composite materials
JPS59158223A (en) Preparation of bolt made of frp
JPS60239212A (en) Manufacturing method of fibre reinforced plastic structure
JPH01163045A (en) Pultrusion product made of carbon fiber reinforced composite resin and its production
CS223243B1 (en) Method of making the bodies from reinforced reactoplats