JPS60239212A - Manufacturing method of fibre reinforced plastic structure - Google Patents

Manufacturing method of fibre reinforced plastic structure

Info

Publication number
JPS60239212A
JPS60239212A JP59096142A JP9614284A JPS60239212A JP S60239212 A JPS60239212 A JP S60239212A JP 59096142 A JP59096142 A JP 59096142A JP 9614284 A JP9614284 A JP 9614284A JP S60239212 A JPS60239212 A JP S60239212A
Authority
JP
Japan
Prior art keywords
resin
impregnated
pressurization
air bubble
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59096142A
Other languages
Japanese (ja)
Inventor
Katsumi Kondo
克己 近藤
Yasuhiro Tsuchiya
泰広 土屋
Yasushi Yamazawa
靖 山沢
Takayasu Niimi
新美 孝庸
Shoichi Yamamoto
山本 省一
Takashi Yamamoto
孝 山本
Kunihiro Matsuba
國弘 松葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Boshoku Corp
Toyota Motor Corp
Original Assignee
Toyota Boshoku Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Boshoku Corp, Toyota Motor Corp filed Critical Toyota Boshoku Corp
Priority to JP59096142A priority Critical patent/JPS60239212A/en
Publication of JPS60239212A publication Critical patent/JPS60239212A/en
Pending legal-status Critical Current

Links

Landscapes

  • Steering Controls (AREA)
  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To eliminate air bubble in impregnated resin by repeating decompression and pressurization of resin impregnated lobing after winding and laminating on a mold and heating thereof. CONSTITUTION:An epoxy resin is impregnated in a lobing of a carbon fibre, then, it is wound and laminated on a mold, and after a softening of the impregnated resin 4 by heating it to 60-80 deg.C, the air bubble 5 in the resin is flowed out on a surface by being decompressed lower than 10Torr and then expanded, further, a volume of a residual air bubble is reduced by the pressurization, the decompression and the pressurization are repeated again, after a completion of the elimination of the air bubble, the epoxy resin is cured under heating to 120 deg.C, and an air- bubble-less FRP product with a high strength is manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は繊維強化樹脂構造体の製造方法2%にその製造
工程中における樹脂含浸強化材の脱泡方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a fiber-reinforced resin structure and a method for defoaming a resin-impregnated reinforcing material during the production process.

〔従来技術〕[Prior art]

繊維強化樹脂複合材は軽量で大きな強度をもち成形も容
易なところから自動車にも用いられているが、最近はス
テアリングホイールやアクスル等のガード(骨材)とし
ても使用されている、 ガーダとしての繊維強化樹脂構造体とは、あらかじめ樹
脂液を含浸1〜た糸ま友は紐(ロービング)等の長い糸
状繊維強化材を巻型ま友は治具の周囲に所定の太さにま
きつけて硬化した後。
Fiber-reinforced resin composites are used in automobiles because they are lightweight, have great strength, and are easy to mold, but recently they have also been used as guards (aggregate) for steering wheels, axles, etc. A fiber-reinforced resin structure is made by impregnating a resin liquid in advance, then wrapping a long thread-like fiber reinforcement material such as roving around a rolling jig to a predetermined thickness and hardening it. After.

脱型して得られるもので、多彩なデザイン自由度で一次
元ないし三次元の構造体が得られ、大型の構造物として
の開発も進められている。しかるにこのような構造体の
製造工程において、例えば第2図のガーダ(骨材)1の
斜視図で示す如く、樹脂含浸繊維2全巻型のフック3に
巻きつける際に、直線部では矢印で示す方向の張力が不
十分な几め、樹脂含浸繊維2と樹脂含浸繊維2との間に
空気が巻込まれ、そして粘性のある樹脂に妨げられて外
に逃けることができず。
By demolding, one-dimensional or three-dimensional structures can be obtained with various degrees of design freedom, and development as large-scale structures is also progressing. However, in the manufacturing process of such a structure, for example, as shown in the perspective view of the girder (aggregate) 1 in FIG. If the tension in the direction is insufficient, air is trapped between the resin-impregnated fibers 2 and cannot escape because it is blocked by the viscous resin.

そのため樹脂の中に気泡として残シ、構造体の層間剪断
力を低下し、十分な強度が得られなくなる。
As a result, air bubbles remain in the resin, lowering the interlayer shearing force of the structure and making it impossible to obtain sufficient strength.

このような気泡の巻き込みを避ける方法として、樹脂含
浸繊維を低速度で巻きつける方法があるがこのような方
法であると生産性を低下する欠点がある。
One way to avoid such entrainment of air bubbles is to wind the resin-impregnated fibers at a low speed, but such a method has the disadvantage of reducing productivity.

〔発明の目的〕[Purpose of the invention]

本発明は上記の問題を解消し、内部に気泡を含まず十分
な強度を有する繊維強化樹脂構造体の製造方法を提供す
ることを目的とするものである。
An object of the present invention is to solve the above-mentioned problems and provide a method for manufacturing a fiber-reinforced resin structure that does not contain bubbles and has sufficient strength.

〔発明の構成〕[Structure of the invention]

すなわち本発明の繊維強化樹脂構造体の製造方法は、樹
脂液を含浸した糸状繊維強化材を所望の形状の巻型にま
きつけて積層した後、加熱条件下で加圧丈たは常圧を繰
返して樹脂中の気泡を除き、しかる後温度を高めて常圧
または加圧下で樹脂を硬化せしめることを特徴とするも
のである。
In other words, the method for producing a fiber-reinforced resin structure of the present invention is to wrap filamentous fiber-reinforced material impregnated with a resin liquid around a winding form of a desired shape and laminate them, and then to repeatedly apply pressure to length or normal pressure under heating conditions. The method is characterized in that air bubbles in the resin are removed, and then the temperature is raised to cure the resin under normal pressure or pressurization.

本発明に用いる糸状繊維強化としては炭素繊維、ガラス
繊維などが使用でき、例えば炭素繊維としては太さ約7
μmのもの、ガラス繊維としては太さ13ないし25μ
mのものが2,000ないし3o、ooo本からなる糸
(ロービング)またはさらにこれ全数本撚り合せたまた
は引揃えた紐(ロービングまたはヤーン)が用いられる
Carbon fibers, glass fibers, etc. can be used as the filament fiber reinforcement used in the present invention. For example, carbon fibers with a thickness of about 7
μm, glass fiber thickness 13 to 25 μm
A thread (roving) consisting of 2,000 to 3o or ooo m threads, or a string (roving or yarn) made by twisting or pulling all of these threads together is used.

また上記の連続繊維に含浸される樹脂としてはエホキシ
樹脂、不飽和ポリエステル樹脂、フェノール樹脂等の熱
硬化性樹脂が用いられる。これらの樹脂液の組成は繊維
に含浸させるとき十分繊維の表面にゆきわたるが流れ落
ちない程度の粘度をも次しめ得るようなものであり、か
つ特殊な触媒または促進剤を添加して、含浸後の初期加
熱では硬化しないが、脱泡後の昇温により硬化できるよ
うなものが好ましい。
Further, as the resin impregnated into the continuous fibers, thermosetting resins such as epoxy resins, unsaturated polyester resins, and phenol resins are used. The composition of these resin liquids is such that when impregnated into fibers, the viscosity is such that it spreads over the fiber surface sufficiently but does not run off, and special catalysts or accelerators are added to improve the viscosity after impregnation. It is preferable to use a material that does not harden during initial heating but can be hardened by increasing the temperature after defoaming.

〔実施例〕〔Example〕

以下、角形パイプを製造する実施例について図面全参照
して説明する。
Hereinafter, an embodiment for manufacturing a rectangular pipe will be described with reference to all the drawings.

太さ7μmの炭素繊維1s、ooo本からなる糸をさら
に2本引揃え次太さ約4鰭の紐を粘度150C,pのエ
ポキシ樹脂液(商品名:アラルダイト)に浸漬させた後
300 mm X 500 gHの角形断面を有する長
さ2mの治具に400o回巻きつけて積層した。繊維に
対する樹脂液の付着量は体積比で1.4倍でめった。含
浸後の樹M旨4中には第1図−ピ)に示す如く気泡5が
混在しており、該気泡5の移動を容易にするため積層物
全治具とともに真空槽に入れて硬化が起らぬ程度の温度
、すなわち60ないし80℃に加熱し樹脂4を軟化せし
める。
Two more threads made of carbon fibers 1s, ooo with a thickness of 7μm were pulled together, and then the strings with a thickness of about 4 fins were immersed in an epoxy resin liquid (trade name: Araldite) with a viscosity of 150C, p, and then 300mm It was laminated by winding it 400 degrees around a 2 m long jig having a square cross section of 500 gH. The amount of resin liquid attached to the fibers was determined to be 1.4 times the volume ratio. After impregnation, the wood M4 contains air bubbles 5 as shown in Figure 1-P), and in order to facilitate the movement of the air bubbles 5, the laminate was placed in a vacuum chamber together with all the jigs to cause curing. The resin 4 is softened by heating to a temperature of 60 to 80°C.

次1c10Torr (−750mHg)以下になるま
で真空槽内を減圧し3分間保つと第1図−(ロ)に示す
如く樹脂内に残留した気泡5が膨張し表面に達して流出
すると同時に気泡5のあと(点線で示す。)に重力によ
って樹脂4が流れ込む。
Next, the pressure inside the vacuum chamber is reduced to below 1c10 Torr (-750 mHg) and kept for 3 minutes. As shown in Figure 1-(b), the bubbles 5 remaining in the resin expand, reach the surface, and flow out, and at the same time the bubbles 5 After that (indicated by the dotted line), the resin 4 flows in due to gravity.

このようにして大部分の気泡が消失するが、なお一部の
気泡が残留しているので第1図−(ハ)において一旦常
圧に戻して10分間放置し、気泡51縮少せしめてから
再び減圧すると気泡5が膨張して表面から流出しやすく
なる。
Although most of the bubbles disappear in this way, some bubbles still remain, so in Figure 1-(c), the pressure is returned to normal and left for 10 minutes to allow the bubbles to shrink by 51. When the pressure is reduced again, the bubbles 5 expand and become easier to flow out from the surface.

このような処理で3回繰返して脱泡を完了した後、常圧
または3ないし5気圧の加圧下で120℃に加熱し、1
20分間で硬化させる。このとき表面に流出しきれなか
った比較的小さな気泡5は周囲の樹脂4に押しつぶされ
て微小化した状態で硬化する。硬化後巻き付は治具を取
り外して長さ2rn、肉厚4胴の角形パイプを得る。
After completing degassing by repeating this process three times, the mixture was heated to 120°C under normal pressure or 3 to 5 atmospheres of pressure, and then heated to 120°C.
Cure for 20 minutes. At this time, the relatively small bubbles 5 that have not completely flowed out to the surface are crushed by the surrounding resin 4 and harden in a microscopic state. After curing, the jig is removed to obtain a rectangular pipe with a length of 2rn and a wall thickness of 4.

一方、上記と同様の強化材を使用して従来の方法で積層
した同形の角形構造体を製造しこれら二種から切出した
平板の曲げ試験による強度と弾性率を下に示す 本発明方法 従来方法 曲げ強度(MPa)1300 700 曲げ弾性率 (GPa) ao 6゜ 上記の如く本発明方法による製品は従来の技術に、よる
よシも強度ならびに剛性が増加し、気泡のない構造材で
あることがわかる。
On the other hand, the strength and elastic modulus of the flat plates cut from these two types are shown below by the method of the present invention and the conventional method. Bending strength (MPa) 1300 700 Flexural modulus (GPa) ao 6゜As described above, the product produced by the method of the present invention has increased strength and rigidity compared to conventional techniques, and is a structural material without bubbles. Recognize.

〔発明の効果〕 上記の記載よシ明らかな如く、本発明方法においては積
層後の後工程で減圧下の加熱と加圧を繰返すことによシ
気泡の運動性が高められるため、完全な脱泡を行なうこ
とができる。そのため樹脂含浸された強化材を高速度で
型または治具に巻きとることができ、従来よりも高強度
の構造体が得られるとともに生産性を高める効果がある
[Effects of the Invention] As is clear from the above description, in the method of the present invention, the mobility of the bubbles is increased by repeating heating and pressurization under reduced pressure in the subsequent process after lamination, so complete desorption is possible. You can make bubbles. Therefore, the reinforcing material impregnated with resin can be wound around a mold or jig at high speed, which has the effect of obtaining a structure with higher strength than before and increasing productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実^中の構造体の断面図を表わし、け
)は脱泡前、←)は減圧時(DJは加圧時の状mを表わ
し。 @2図はガーダ(一部分)の斜視図を表わす。 図中、 1・・・ガーダ 2・・・樹脂含浸繊維3・・・フック
 4・・・直線部 5・・・樹脂 6・・・気泡 特許出願人 トヨタ自動車株式会社 同 豊田紡織株式会社 第1図 第2゜
Figure 1 shows a cross-sectional view of the structure in which the present invention is being implemented. ).In the figure, 1...Girder 2...Resin-impregnated fiber 3...Hook 4...Straight section 5...Resin 6...Bubble patent applicant Toyota Motor Corporation Toyota Boshoku Co., Ltd. Figure 1, Figure 2゜

Claims (1)

【特許請求の範囲】[Claims] 樹脂液を含浸した糸状繊維強化材を所望の形状の巻型に
まきつけて積層した後、減圧下の加熱と、加圧とを繰返
して樹脂中の気泡を除き、しかる後、温度を高めて樹脂
を硬化せしめることを特徴とする繊維強化樹脂構造体の
製造方法。
After the filamentous fiber reinforced material impregnated with the resin liquid is wrapped around a winding form of the desired shape and laminated, heating under reduced pressure and pressurization are repeated to remove air bubbles in the resin, and then the temperature is raised to form the resin. A method for producing a fiber-reinforced resin structure, characterized by curing the structure.
JP59096142A 1984-05-14 1984-05-14 Manufacturing method of fibre reinforced plastic structure Pending JPS60239212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59096142A JPS60239212A (en) 1984-05-14 1984-05-14 Manufacturing method of fibre reinforced plastic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59096142A JPS60239212A (en) 1984-05-14 1984-05-14 Manufacturing method of fibre reinforced plastic structure

Publications (1)

Publication Number Publication Date
JPS60239212A true JPS60239212A (en) 1985-11-28

Family

ID=14157133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59096142A Pending JPS60239212A (en) 1984-05-14 1984-05-14 Manufacturing method of fibre reinforced plastic structure

Country Status (1)

Country Link
JP (1) JPS60239212A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010264718A (en) * 2009-05-18 2010-11-25 Toyota Motor Corp Method and apparatus for manufacturing high-pressure gas tank
DE102015223263A1 (en) * 2015-11-25 2017-06-01 Bayerische Motoren Werke Aktiengesellschaft Cryogenic pressure vessel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010264718A (en) * 2009-05-18 2010-11-25 Toyota Motor Corp Method and apparatus for manufacturing high-pressure gas tank
DE102015223263A1 (en) * 2015-11-25 2017-06-01 Bayerische Motoren Werke Aktiengesellschaft Cryogenic pressure vessel

Similar Documents

Publication Publication Date Title
US3530212A (en) Method of making glass resin laminates
US2602766A (en) Reinforced plastic rods and methods of making same
JP7311925B2 (en) Composite fibers and methods of producing fibers
US6875297B1 (en) Process for manufacturing highly stressed composite parts
US5182064A (en) Method for producing fiber reinforced plastic rods having helical ribs
WO1984000216A1 (en) Coated optical fiber
KR101776383B1 (en) Manufacturing apparatus for composite reinforcement structure and manufacturing method for the same
JPH0622885B2 (en) Manufacturing method of fiber-reinforced resin filament
JPH07117141A (en) Production of fiber reinforced thermosetting resin molding
US3608052A (en) Method for fabricating fiber reinforced articles
JP3901299B2 (en) U bolt manufacturing method
US4260445A (en) Process for producing thick reinforced plastic articles
JPS60239212A (en) Manufacturing method of fibre reinforced plastic structure
JPH0617075B2 (en) Fiber-reinforced plastic rod having ridges on its surface and method for producing the same
EP2889132B1 (en) A Reinforcing Pin for a Laminated Composite Structure and Related Methods
KR100301360B1 (en) Process for preparing filament winding product
JPH0780948A (en) Production of fiber reinforced composite beam having square cross section
JPS60240435A (en) Preparation of fiber reinforced resin structure
JPH01166937A (en) Long-sized, light-weight and fiber-reinforced composite draw molding and its manufacture
JP3150354B2 (en) Method for producing voidless fiber reinforced plastic in pultrusion method
JPS625842A (en) Manufacture of fiber reinforced resin molded product
JPS59148635A (en) Manufacture of bolt made of synthetic resin
JPH04261678A (en) Racket frame and manufacture of the same
JPS59196218A (en) Manufacture of frp spring
JP2002248693A (en) Frp long molded object and method for manufacturing the same