WO2018008689A1 - Composite material substrate, pultruded material, method for producing composite material substrate, and method for producing pultruded material - Google Patents

Composite material substrate, pultruded material, method for producing composite material substrate, and method for producing pultruded material Download PDF

Info

Publication number
WO2018008689A1
WO2018008689A1 PCT/JP2017/024672 JP2017024672W WO2018008689A1 WO 2018008689 A1 WO2018008689 A1 WO 2018008689A1 JP 2017024672 W JP2017024672 W JP 2017024672W WO 2018008689 A1 WO2018008689 A1 WO 2018008689A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
composite material
angle
fiber
pultruded
Prior art date
Application number
PCT/JP2017/024672
Other languages
French (fr)
Japanese (ja)
Inventor
駿一 森島
敏生 小佐々
正剛 波多野
和昭 岸本
幸生 武内
政之 山下
仁史 小鹿
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2018008689A1 publication Critical patent/WO2018008689A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die

Definitions

  • the present invention relates to a composite material base material, a pultruded material, a composite material base material manufacturing method, and a pultruded material manufacturing method.
  • a composite material in which a reinforcing fiber is impregnated with a thermosetting resin is known.
  • Composite materials are used in aircraft, automobiles, ships and the like.
  • a method of forming a composite material a method of drawing a base material of a sheet-like composite material is known (see Patent Document 1).
  • FIG. 14 is a schematic configuration diagram of a conventional pultrusion material manufacturing apparatus 200.
  • FIG. 15 is a schematic cross-sectional view of a pultruded material 210 manufactured by a conventional pultruded material manufacturing apparatus.
  • a pultrusion material manufacturing apparatus 200 that manufactures a pultrusion material by a conventional method such as the method of Patent Document 1 includes a fiber supply unit 202 that supplies reinforced fibers, and a thermosetting property to the reinforced fibers.
  • a resin pool 204 impregnated with a resin and a molding die 206 for drawing out a reinforcing fiber impregnated with a thermosetting resin are provided.
  • the pultrusion material manufacturing apparatus 200 manufactures the pultrusion material 210.
  • the pultrusion material 210 includes reinforcing fibers 212 and a thermosetting resin 214. Since the pultruded material 210 is manufactured by the pultruded material manufacturing apparatus 200, the reinforcing fibers 212 are oriented in the pultruded material drawing direction, that is, the longitudinal direction, as shown in FIG.
  • a pultruded material including a 0 degree fiber and a mat material is manufactured.
  • the 0 degree fiber is a reinforcing fiber in which the fiber direction and the drawing direction of the reinforcing fiber are the same.
  • the mat material is a material in which the fiber direction of the reinforcing fiber is pseudo-isotropic regardless of the drawing direction. Therefore, in the conventional method including the method of Patent Document 1, a base material provided with a layer of composite material in which the fiber direction of the reinforcing fiber has an angle of, for example, ⁇ 45 degrees with respect to the longitudinal direction, that is, an angle stack is manufactured. There was a problem that was difficult. For this reason, there existed a problem that it was difficult to adjust performances, such as rigidity and intensity other than the longitudinal direction of the base material of the composite material shape
  • the present invention has been made in view of the above, and is a composite material base material capable of adjusting the performance of the composite material base material formed by pultrusion molding according to the required performance, a pultruded molding material, It aims at providing the manufacturing method of the base material of a composite material, and the manufacturing method of a pultrusion molding material.
  • a base material of a composite material is a base material of a composite material extending in the longitudinal direction and impregnating a reinforcing fiber with a thermosetting resin
  • the reinforcing fiber is A first layer oriented along the longitudinal direction, laminated on the first layer, and the fiber direction of the reinforcing fiber is in the in-plane direction of the facing surface facing the first layer, and with respect to the longitudinal direction
  • a second layer oriented in a predetermined angle direction, and when the required angle is the angle with respect to the longitudinal direction of the fiber direction of the reinforcing fiber required for the composite material, the predetermined angle is: It is more than the said required angle, It is characterized by the above-mentioned.
  • the second layer is laminated on the first layer and the fiber direction of the reinforcing fiber is oriented in a direction at a predetermined angle with respect to the longitudinal direction, and the predetermined angle is required for the composite material. Therefore, the performance of the base material of the composite material formed by pultrusion can be adjusted according to the required performance.
  • the required angle can be realized with high accuracy.
  • a plurality of the second layers are stacked, and the plurality of the second layers are such that the predetermined angle in a layer close to the first layer is greater than the predetermined angle in a layer far from the first layer. Is preferably small. According to this configuration, the required angle can be realized with high accuracy.
  • the pultruded material is a composite material in which the predetermined angle is made closer to the required angle in any one of the plurality of composite material base materials described above. It is characterized by including the base material.
  • this configuration it is preferable to further include a gap material disposed in a gap between the base materials of the composite material in which the predetermined angle is close to the required angle. According to this configuration, it is possible to obtain a pultrusion molding material in which the gap between the composite material molded bodies is suitably filled with the gap material.
  • a method for manufacturing a composite material base material is a method for manufacturing a composite material base material that extends in the longitudinal direction and impregnates a reinforcing fiber with a thermosetting resin.
  • the predetermined angle is equal to or greater than the required angle when an angle of the reinforcing fiber required for the composite material with respect to the longitudinal direction is a required angle. .
  • the second layer is laminated on the first layer and the fiber direction of the reinforcing fiber is oriented in a direction at a predetermined angle with respect to the longitudinal direction, and the predetermined angle is required for the composite material. Therefore, the performance of the composite material substrate formed by pultrusion can be adjusted according to the required performance.
  • a first fiber layer composed of the reinforcing fibers is prepared, and in the second layer preparation step, a second fiber layer composed of the reinforcing fibers is prepared,
  • the first fiber layer and the second fiber layer are laminated, and the impregnation step of impregnating the thermosetting resin into the first fiber layer and the second fiber layer after the lamination step. It is preferable that it is further included.
  • the reinforcing fiber is impregnated with a thermosetting resin to form the first layer, and in the second layer preparing step, the reinforcing fiber is thermoset resin.
  • the second layer by impregnating the first layer and the second layer by impregnating a thermosetting resin in the lamination step. According to these configurations, it is possible to efficiently manufacture a composite material base material capable of adjusting the performance of the composite material base material formed by pultrusion molding according to the required performance.
  • a plurality of the first layers are prepared in the first layer preparation step, and the second layer is laminated between the plurality of first layers in the lamination step. According to this configuration, the required angle can be realized with high accuracy.
  • the second layer preparation step a plurality of the second layers are formed, and in the stacking step, the plurality of second layers are formed at a predetermined angle in a layer close to the first layer, It is preferable to laminate the layers so as to be smaller than the predetermined angle in the layer far from the first layer. According to this configuration, the required angle can be realized with high accuracy.
  • a method for producing a pultruded material is obtained by drawing a plurality of composite material substrates produced by any one of the above-described composite material production methods. It includes a drawing step of forming a composite material molded body by molding.
  • a composite material base material capable of adjusting the performance of the composite material base material formed by pultrusion according to the required performance, a pultruded material, a composite material base material manufacturing method, and A method for producing a pultruded material can be provided.
  • FIG. 1 is a schematic configuration diagram showing an example of a pultruded material according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the pultruded material of FIG.
  • FIG. 3 is a schematic plan view showing an example of a base material of a composite material included in the pultrusion material of FIG.
  • FIG. 4 is a schematic configuration diagram of the base material of the composite material of FIG.
  • FIG. 5 is a schematic plan view showing an example of a base material of a composite material included in the pultruded material of FIG.
  • FIG. 6 is a schematic configuration diagram of the base material of the composite material of FIG. FIG.
  • FIG. 7 is a schematic configuration diagram illustrating an example of a base material of a composite material included in the pultrusion material of FIG.
  • FIG. 8 is a schematic configuration diagram of an example of a pultrusion material manufacturing apparatus for manufacturing the pultrusion material of FIG.
  • FIG. 9 is a schematic plan view showing an example of a composite material substrate used for a pultruded material including the composite material substrate of FIGS. 3 and 4.
  • FIG. 10 is a schematic plan view showing an example of a composite material substrate used for a pultruded material including the composite material substrate of FIGS. 5 and 6.
  • FIG. 11 is a schematic plan view showing an example of a composite material substrate used in a pultruded material including the composite material substrate of FIG. 7.
  • FIG. 7 is a schematic configuration diagram illustrating an example of a base material of a composite material included in the pultrusion material of FIG.
  • FIG. 8 is a schematic configuration diagram of an example of a pultrusion material manufacturing apparatus for manufacturing
  • FIG. 12 is a flowchart showing an example of a flow of a pultruded material manufacturing method for manufacturing the pultruded material of FIG.
  • FIG. 13 is a flowchart showing an example of a flow of a pultruded material manufacturing method for manufacturing the pultruded material of FIG.
  • FIG. 14 is a schematic configuration diagram of a conventional pultrusion material production apparatus.
  • FIG. 15 is a schematic cross-sectional view of a pultruded material manufactured by a conventional pultruded material manufacturing apparatus.
  • FIG. 1 is a schematic configuration diagram illustrating a pultrusion material 10 that is an example of a pultrusion material according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the pultruded material 10 of FIG.
  • the pultruded material 10 is pultruded along the longitudinal direction, which is the X-axis direction shown in FIG. 1, and has a shape extending in the X-axis direction.
  • the pultruded material 10 has a predetermined shape in the YZ plane shown in FIG. 1, that is, in a cross section orthogonal to the longitudinal direction.
  • the pultrusion molding material 10 is formed in a T shape in this embodiment, but is not limited to this, and is formed into any shape such as an I shape, an H shape, a U shape, and a cylindrical shape. It may be.
  • the pultrusion molding material 10 includes a plurality of composite base materials 20a, 20b, and 20c, a gap material 22, and surface layers 24a, 24b, and 24c, as shown in FIGS.
  • the plurality of composite base materials 20a, 20b, and 20c are in the form of a sheet extending in the X-axis direction, and are deformed and processed so as to have a predetermined shape in the YZ plane during pultrusion.
  • the base materials 20a, 20b, and 20c of the composite material are all composite materials including reinforcing fibers and a thermosetting resin impregnated in the reinforcing fibers.
  • the base materials 20a, 20b, and 20c of the composite material form a composite material molded body that is pultruded into a predetermined shape.
  • the base materials 20a, 20b, and 20c of the composite material are not distinguished, they are appropriately referred to as the base material 20 of the composite material.
  • the reinforcing fibers of the base material 20 of the composite material include bundles of several hundred to several thousand basic fibers in the range of 5 ⁇ m to 7 ⁇ m.
  • the basic fiber which comprises the reinforced fiber of the base material 20 of a composite material all are carbon fiber.
  • the basic fiber constituting the reinforcing fiber of the base material 20 of the composite material is not limited to this, and may be other plastic fiber, glass fiber, or metal fiber.
  • the thermosetting resin of the base material 20 of a composite material all are an epoxy resin.
  • the thermosetting resin of the base material 20 of the composite material is not limited to this, and may be other thermosetting resins.
  • the thermosetting resin of the base material 20 of the composite material can be in a softened state, a cured state, and a semi-cured state.
  • the softened state is a state before thermosetting the thermosetting resin.
  • the softened state is a state that does not have self-supporting property, and is a state where the shape cannot be maintained when it is not supported by the support.
  • the softened state is a state in which the thermosetting resin can be thermoset by being heated.
  • the cured state is a state after thermosetting the thermosetting resin.
  • the cured state is a state having self-supporting property, and is a state in which the shape can be maintained even when not supported by the support.
  • the cured state is a state where the thermosetting resin cannot perform a thermosetting reaction even when heated.
  • the semi-cured state is a state between a softened state and a cured state.
  • the semi-cured state is a state in which thermosetting resin having a degree weaker than the cured state is made into a thermosetting resin.
  • the semi-cured state is a state having self-supporting property, and is a state in which the shape can be maintained even when not supported by the support.
  • the semi-cured state is a state in which the thermosetting resin can be thermoset by being heated.
  • the base material 20 of the composite material is a prepreg in which the thermosetting resin is in a semi-cured state during the pultrusion molding or after the pultrusion molding, or the thermosetting resin is in a cured state. Is preferred.
  • the gap material 22 is arranged in a gap between a plurality of pultruded composite base materials 20a, 20b, and 20c, that is, a gap between the composite material molded bodies.
  • the gap material 22 is exemplified by carbon fiber or other reinforcing fibers impregnated with a resin and bundled, but the present invention is not limited to this, and other reinforcing fibers, thermosetting resins, A combination of these may be used.
  • the surface layers 24a, 24b, and 24c are layers provided on the outer surfaces in the Y direction or the Z direction of the composite materials 20a, 20b, and 20c, respectively.
  • the surface layers 24a, 24b, and 24c are exemplified by composite materials including reinforcing fibers oriented in the longitudinal direction and thermosetting resin impregnated in the reinforcing fibers, that is, 0 degree fiber layers.
  • the present invention is not limited to this, and the surface layers 24a, 24b, and 24c may be omitted.
  • the 0-degree fiber layer is a layer in which the angle between the fiber direction and the longitudinal direction of the reinforcing fiber is 0 degrees or near 0 degrees.
  • Examples of the reinforcing fiber and the thermosetting resin included in the 0-degree fiber layer used for the surface layers 24a, 24b, and 24c are the same as the reinforcing fiber and the thermosetting resin included in the base material 20 of the composite material.
  • the surface layers 24a, 24b, and 24c are not distinguished, they are appropriately referred to as the surface layer 24.
  • FIG. 3 is a schematic plan view showing a composite material substrate 30 which is an example of the composite material substrate 20 included in the pultruded material 10 of FIG.
  • FIG. 4 is a schematic configuration diagram of the base material 30 of the composite material of FIG.
  • FIGS. 3 and 4 show a composite material base material 30 that is an example of a composite material base material 20c that is not subjected to bending deformation processing along the X-axis, but the composite material base materials 20a and 20b are shown.
  • the composite material base material 30 as an example has the same configuration.
  • the composite material base 30 includes a first layer 32 and a second layer 34.
  • the composite material substrate 30 has the second layer 34 laminated in the ⁇ Z direction of the first layer 32, but the present invention is not limited to this, and the + Z direction of the first layer 32 is not limited thereto.
  • the second layer 34 may be laminated.
  • the laminate of two or more layers is not simply a laminate of two or more layers, but also two or more layers are overlaid and then woven or the like separately. Also included are those that have been combined, and those in which two or more layers are stacked and then a binder is used separately. In the following, two or more layers are simply overlapped, two or more layers are stacked and then weaved separately, etc., and the fibers are combined, and two or more layers are stacked and a separate binder As a concept including the one using the above, the expression “laminated” is used.
  • the first layer 32 includes reinforcing fibers 32f and thermosetting resin impregnated in the reinforcing fibers 32f.
  • symbol is abbreviate
  • illustration of the thermosetting resin in each layer is abbreviate
  • the first layer 32 is oriented along the X-axis direction in which the fiber direction of the reinforcing fibers 32f is the longitudinal direction.
  • the second layer 34 includes reinforcing fibers 34f and a thermosetting resin impregnated in the reinforcing fibers 34f.
  • the fiber direction of the reinforcing fibers 34 f is oriented in the in-plane direction of the facing surface facing the first layer 32, and in the direction of a predetermined angle 34 ⁇ with respect to the longitudinal direction.
  • the in-plane direction of the facing surface that faces the first layer 32 coincides with the in-plane direction of the sheet.
  • the base material 30 of the composite material can have performance such as high rigidity and strength even with only the reinforcing fiber 32f and the reinforcing fiber 34f, and has higher performance such as rigidity and strength when impregnated with a thermosetting resin. Can do.
  • the angle 34 ⁇ is an angle indicated by a plus counterclockwise when viewed from the + Z direction and a minus clockwise when viewed from the + Z direction with respect to the X-axis direction which is the longitudinal direction.
  • the angle 34 ⁇ can take a positive value from 0 degrees to 90 degrees and a negative value from ⁇ 0 degrees to ⁇ 90 degrees. 0 degrees and ⁇ 0 degrees have the same meaning, and 90 degrees And -90 degrees are parameters having the same meaning.
  • the angle 34 ⁇ is exemplified by +45 degrees, but the present invention is not limited to this, and may be +30 degrees, +60 degrees, ⁇ 30 degrees, ⁇ 45 degrees, or ⁇ 60 degrees.
  • a layer having an angle ⁇ in the fiber direction of the reinforcing fiber is appropriately referred to as a ⁇ fiber layer.
  • a layer in which the fiber direction angle of the reinforcing fiber is 0 degree is appropriately referred to as a 0 degree fiber layer
  • a layer in which the angle of the reinforcing fiber direction is +45 degree is appropriately referred to as a +45 degree fiber layer.
  • a layer having an angle of ⁇ 45 degrees is appropriately referred to as a ⁇ 45 degree fiber layer.
  • the 0 degree fiber layer since the +0 degree fiber layer and the ⁇ 0 degree fiber layer are substantially the same, the + or ⁇ sign is not added, and is simply referred to as the 0 degree fiber layer.
  • the 90 degree fiber layer since the +90 degree fiber layer and the -90 degree fiber layer are substantially the same, the + or-sign is not attached, and is simply referred to as the 90 degree fiber layer.
  • the angle 34 ⁇ is an angle that accurately achieves the required angle.
  • the required angle is a design angle with respect to the longitudinal direction, which is the X-axis direction, in the fiber direction of the reinforcing fiber required for the pultruded material 10.
  • the angle 34 ⁇ is most preferably equal to and uniform with the required angle in the base material 30 of the composite material.
  • the angle 34 ⁇ is in the same plus / minus direction as the angle 34 ⁇ ′ of the initial angle described later, and is equal to or less than the angle 34 ⁇ ′. As long as the value is closer to the required angle than the angle 34 ⁇ ′, it may have a non-uniform distribution.
  • the angle 34 ⁇ may have a non-uniform distribution within a range where the absolute value is not less than the absolute value of the required angle and not more than the absolute value of the angle 34 ⁇ ′.
  • the angle 34 ⁇ may have a non-uniform distribution within a range where the required angle is an average angle and the absolute value is less than or equal to the absolute value of the angle 34 ⁇ ′.
  • FIG. 5 is a schematic plan view showing a composite material substrate 40 which is an example of the composite material substrate 20 included in the pultruded material 10 of FIG.
  • FIG. 6 is a schematic configuration diagram of the base material 40 of the composite material of FIG.
  • FIGS. 5 and 6 show a composite material base material 40 as an example of the composite material base material 20c that is not subjected to bending deformation processing along the X-axis, but the composite material base materials 20a and 20b are shown.
  • the base material 40 of the composite material as an example has the same configuration.
  • the composite base material 40 includes a first layer 42 and a plurality of second layers 44 and 46.
  • the composite material base material 40 has the second layers 44 and 46 laminated in the ⁇ Z direction of the first layer 42, but the present invention is not limited to this, and the first layer 42 Second layers 44 and 46 may be stacked in the + Z direction. Further, the composite material base material 40 may have a second layer 44 laminated in the ⁇ Z direction of the first layer 42 and a second layer 46 laminated in the + Z direction of the first layer 42. The second layer 46 may be stacked in the ⁇ Z direction of 42, and the second layer 44 may be stacked in the + Z direction of the first layer 42.
  • the first layer 42 includes reinforcing fibers 42f and a thermosetting resin impregnated in the reinforcing fibers 42f.
  • symbol is abbreviate
  • illustration of the thermosetting resin in each layer is abbreviate
  • the first layer 42 is oriented along the X-axis direction in which the fiber direction of the reinforcing fibers 42f is the longitudinal direction.
  • the second layer 44 includes reinforcing fibers 44f and a thermosetting resin impregnated in the reinforcing fibers 44f.
  • the fiber direction of the reinforcing fibers 44f is oriented in a direction of a predetermined angle 44 ⁇ with respect to the in-plane direction of the facing surface facing the first layer 42 and the X-axis direction that is the longitudinal direction. .
  • the in-plane direction of the facing surface facing the first layer 42 coincides with the in-plane direction of the sheet.
  • the second layer 46 includes reinforcing fibers 46f and a thermosetting resin impregnated in the reinforcing fibers 46f.
  • the fiber direction of the reinforcing fibers 46f is oriented in the in-plane direction of the facing surface facing the first layer 42 and in the direction of a predetermined angle 46 ⁇ with respect to the longitudinal direction.
  • Each of the angle 44 ⁇ and the angle 46 ⁇ is an angle indicated by the same method as the angle 34 ⁇ described above.
  • the angle 44 ⁇ and the angle 46 ⁇ are exemplified by +45 degrees and ⁇ 45 degrees, but the present invention is not limited to this, and +30 degrees and ⁇ 30 degrees, +60 degrees and ⁇ 60 degrees, ⁇ 30 degrees. And +30, ⁇ 45 degrees and +45, or ⁇ 60 degrees and +60.
  • the base material 40 of the composite material can have performance such as high rigidity and strength only by the reinforcing fibers 42f, the reinforcing fibers 44f, and the reinforcing fibers 46f.
  • the higher rigidity and strength can be obtained. Can have performance.
  • the angle 44 ⁇ is an angle that achieves the required angle with high accuracy. Although it is most preferable that the angle 44 ⁇ is equal to and uniform with the required angle in the base material 40 of the composite material, it is the same plus or minus direction as the angle 44 ⁇ ′ of the initial angle described later, and is equal to or less than the angle 44 ⁇ ′. As long as the value is closer to the required angle than the angle 44 ⁇ ′, it may have a non-uniform distribution.
  • the angle 44 ⁇ may have a non-uniform distribution within the range where the absolute value is not less than the absolute value of the required angle and not more than the absolute value of the angle 44 ⁇ ′.
  • the angle 44 ⁇ may have a non-uniform distribution within a range where the required angle is an average angle and the absolute value is less than or equal to the absolute value of the angle 44 ⁇ ′.
  • the angle 46 ⁇ is an angle that realizes the required angle with high accuracy. It is most preferable that the angle 46 ⁇ is equal to and uniform with the required angle in the base material 40 of the composite material. However, the angle 46 ⁇ is the same plus or minus direction as the angle 46 ⁇ ′ of the initial angle described later, and is equal to or less than the angle 46 ⁇ ′. As long as it is a value closer to the required angle than the angle 46 ⁇ ′, it may have a non-uniform distribution. For example, the angle 46 ⁇ may have a non-uniform distribution within the range where the absolute value is not less than the absolute value of the required angle and not more than the absolute value of the angle 46 ⁇ ′. Alternatively, the angle 46 ⁇ may have a non-uniform distribution within a range where the required angle is an average angle and the absolute value is equal to or smaller than the absolute value of the angle 46 ⁇ ′.
  • FIG. 7 is a schematic configuration diagram showing a composite material substrate 60 which is an example of the composite material substrate 20 included in the pultrusion material 10 of FIG. 1.
  • a composite material base 60 that is an example of a composite material base 20 c that is not curved and deformed along the X-axis is shown, but examples of the composite materials 20 a and 20 b
  • the composite material base material 60 having the same structure is also provided.
  • the composite material base 60 includes a plurality of first layers 62 and a plurality of second layers 64, 66, 68.
  • the composite base material 60 includes four first layers 62, two second layers 64, one second layer 66, and two second layers 68. .
  • the composite material substrate 60 includes a plurality of first layers 62 and a plurality of second layers 64, 66, and 68, wherein the first layer 62 and the second layer 64 are directed from the + Z direction to the ⁇ Z direction.
  • the second layer 66, the second layer 68, the first layer 62, the first layer 62, the second layer 64, the first layer 62, and the second layer 68 are laminated in this order, but the present invention is not limited to this.
  • the layers may be laminated in any order.
  • An arrow D represents a direction in which the composite material base material 60 is pultruded, and faces the X-axis direction, that is, the longitudinal direction.
  • the first layer 62 includes reinforcing fibers 62f and thermosetting resin impregnated in the reinforcing fibers 62f. In FIG. 7, illustration of the thermosetting resin in each layer is omitted.
  • the first layer 62 is oriented along the X-axis direction in which the fiber direction of the reinforcing fibers 62f is the longitudinal direction.
  • the second layer 64 includes reinforcing fibers 64f and a thermosetting resin impregnated in the reinforcing fibers 64f.
  • the fiber direction of the reinforcing fibers 64f is oriented in the in-plane direction of the opposing surface facing the first layer 62 and in the direction of a predetermined angle 64 ⁇ with respect to the longitudinal direction.
  • the in-plane direction of the facing surface that faces the first layer 62 coincides with the in-plane direction of the sheet.
  • the second layer 66 includes reinforcing fibers 66f and a thermosetting resin impregnated in the reinforcing fibers 66f.
  • the fiber direction of the reinforcing fibers 66f is oriented in the in-plane direction of the facing surface facing the first layer 62 and in a direction of a predetermined angle 66 ⁇ with respect to the longitudinal direction.
  • the second layer 68 includes reinforcing fibers 68f and a thermosetting resin impregnated in the reinforcing fibers 68f.
  • the fiber direction of the reinforcing fibers 68f is oriented in the in-plane direction of the facing surface facing the first layer 62 and in the direction of a predetermined angle 68 ⁇ with respect to the longitudinal direction.
  • the angles 64 ⁇ , 66 ⁇ , and 68 ⁇ are all angles shown in the same manner as the angle 34 ⁇ described above.
  • the angles 64 ⁇ , 66 ⁇ and the angle 68 ⁇ are exemplified by ⁇ 45 degrees, 90 degrees, and +45 degrees, but the present invention is not limited thereto, and is ⁇ 30 degrees, ⁇ 45 degrees, ⁇ 60 degrees, Any combination such as +30 degrees, +45 degrees, +60 degrees, and +90 degrees may be used.
  • the base material 60 of the composite material can have performance such as high rigidity and strength only by the reinforcing fiber 62f, the reinforcing fiber 64f, the reinforcing fiber 66f, and the reinforcing fiber 68f, and even higher rigidity can be obtained by impregnating the thermosetting resin. And performance such as strength.
  • the angle 64 ⁇ is an angle that accurately achieves the required angle.
  • the angle 64 ⁇ is most preferably equal to and uniform with the required angle in the base material 60 of the composite material.
  • the angle 64 ⁇ is in the same plus / minus direction as the angle 64 ⁇ ′ of the initial angle described later, and is equal to or less than the angle 64 ⁇ ′.
  • it may have a non-uniform distribution.
  • the angle 64 ⁇ may have a non-uniform distribution within the range where the absolute value is not less than the absolute value of the required angle and not more than the absolute value of the angle 64 ⁇ ′.
  • the angle 64 ⁇ may have a non-uniform distribution within a range where the required angle is an average angle and the absolute value is less than or equal to the absolute value of the angle 64 ⁇ ′.
  • the angle 66 ⁇ is an angle that realizes the required angle with high accuracy.
  • the angle 66 ⁇ is most preferably equal to and uniform with the required angle of 90 degrees in the base material 60 of the composite material, but if the value is close to the required angle of 90 degrees, the distribution is non-uniform. You may have.
  • the angle 66 ⁇ may have a non-uniform distribution with the required angle of 90 degrees as an average angle.
  • the angle 68 ⁇ is an angle that accurately achieves the required angle. It is most preferable that the angle 68 ⁇ is equal to and uniform with the required angle in the base material 60 of the composite material. However, the angle 68 ⁇ is in the same plus / minus direction as the angle 68 ⁇ ′ of the initial angle described later, and is equal to or less than the angle 68 ⁇ ′ As long as it is a value closer to the required angle than the angle 68 ⁇ ′, it may have a non-uniform distribution.
  • the absolute value of the angle 68 ⁇ may be not less than the absolute value of the required angle and may have a non-uniform distribution within the range of the absolute value of the angle 68 ⁇ ′ or less.
  • the angle 68 ⁇ may have a non-uniform distribution within a range where the required angle is an average angle and the absolute value is equal to or smaller than the absolute value of the angle 68 ⁇ ′.
  • the composite base material 60 includes a first layer 62 that is a 0-degree fiber layer, a second layer 64 that is a ⁇ 45-degree fiber, a second layer 66 that is a 90-degree fiber, and a first layer that is a + 45-degree fiber.
  • Two layers 68 and a first layer 62 that is a 0-degree fiber layer are stacked in this order. That is, the composite material base material 60 includes a plurality of first layers 62 laminated, and the second layers 64, 66, and 68 are provided between the plurality of first layers 62. 66 and 68 are pultruded so as to be pulled by the first layer 62.
  • the pultruded material 10 including the base material 60 of the composite material has angles 64 ⁇ , 66 ⁇ , 68 ⁇ in which the fiber directions of the reinforcing fibers 64f, 66f, 68f oriented in a direction other than the longitudinal direction of the pultruded material 10 are oriented.
  • this is a preferable mode for realizing the required angle with high accuracy.
  • the composite material base material 60 includes a plurality of second layers 64, 66, and 68, and the second layers 64, 66, and 68 have an angle 64 ⁇ in the second layer 64 close to the first layer 62 on the + Z direction side. Is smaller than the angle 66 ⁇ in the second layer 66 far from the same first layer 62, and the angle 68 ⁇ in the second layer 68 near the second first layer 62 from the + Z direction side is far from the same first layer 62. It is smaller than the angle 66 ⁇ in the two layers 66.
  • the angles 64 ⁇ , 66 ⁇ , and 68 ⁇ are not limited to this, and the angles with the adjacent layers may be different.
  • the pultruded material 10 including the composite material base 60 has angles 64 ⁇ , 66 ⁇ , 68 ⁇ in which the fiber directions of the reinforcing fibers 64f, 66f, 68f oriented in a direction other than the longitudinal direction of the pultruded material 10 are oriented, This is a preferable mode for realizing the required angle with high accuracy.
  • FIG. 8 is a schematic configuration diagram of an example of a pultrusion material production apparatus 100 for producing the pultrusion material 10 of FIG.
  • the pultruded material manufacturing apparatus 100 includes fiber layer supply units 110a, 110b, 110c, resin pools 112a, 112b, 112c, a gap base material supply unit 120, a resin pool 122, and a surface.
  • Fiber layer supply units 130a, 130b, and 130c, resin pools 132a, 132b, and 132c, and a molding die 140 are provided.
  • the surface fiber layer supply unit 130b and the resin pool 132b are not shown.
  • the fiber layer supply unit 110a and the resin pool 112a are a series of apparatuses for introducing a composite material base 20a ′, which is a base of the composite material base 20a, into the molding die 140.
  • the fiber layer supply unit 110a supplies a reinforcing fiber preform 20a ′′ that is a source of the reinforcing fiber of the base material 20a of the composite material.
  • the preform refers to a composite material that is not impregnated with a thermosetting resin.
  • the resin pool 112a is a pool in which a thermosetting resin is stored, and the preform 20a ′′ is immersed in the preform 20a ′′ to form the composite material base 20a ′. .
  • the fiber layer supply unit 110b and the resin pool 112b are a series of devices for introducing the composite material base material 20b ′, which is the base of the composite material base material 20b, into the molding die 140.
  • the fiber layer supply unit 110b supplies a reinforcing fiber preform 20b ′′ which is a base of the reinforcing fiber of the composite material base 20b.
  • the resin pool 112b is a pool in which a thermosetting resin is accumulated, and the preform 20b ′′ is impregnated with the thermosetting resin to form a composite material base 20b ′ by immersing the preform 20b ′′. .
  • the fiber layer supply unit 110c and the resin pool 112c are a series of apparatuses for introducing the composite material base 20c ′, which is the base of the composite material base 20c, into the molding die 140.
  • the fiber layer supply unit 110c supplies a reinforcing fiber preform 20c ′′ which is a base of the reinforcing fiber of the composite material base 20c.
  • the resin pool 112c is a pool in which a thermosetting resin is stored. By immersing the preform 20c ′′, the preform 20c ′′ is impregnated with the thermosetting resin to form a composite material base 20c ′. .
  • preforms 20a ′′, 20b ′′, and 20c ′′ are not distinguished, they are appropriately referred to as preforms 20 ′′.
  • base materials 20a ′, 20b ′, and 20c ′ of composite materials are not distinguished, they are appropriately referred to as base materials 20 ′ of composite materials.
  • the fiber layer supply units 110a, 110b, and 110c are appropriately referred to as the fiber layer supply unit 110 when not distinguished from each other.
  • resin pools 112a, 112b, and 112c are not distinguished, they are appropriately referred to as the resin pool 112.
  • the gap base material supply unit 120 and the resin pool 122 are a series of apparatuses for introducing a gap material 22 ′ that is a source of the gap material 22 into the molding die 140.
  • the gap base material supply unit 120 supplies an indirect base material 22 ′′ that is a reinforcing fiber that is a source of the reinforcing fibers of the gap material 22.
  • the indirect base material 22 ′′ is impregnated with a thermosetting resin to form the gap material 22 ′.
  • the surface fiber layer supply unit 130a and the resin pool 132a are a series of devices for introducing the surface layer 24a ′ that is the basis of the surface layer 24a into the molding die 140.
  • the surface fiber layer supply unit 130a supplies the reinforcing fibers 24a '' that are the basis of the reinforcing fibers of the surface layer 24a.
  • the resin pool 132a forms the surface layer 24a 'by impregnating the reinforcing fibers 24a' 'with a thermosetting resin.
  • the surface fiber layer supply unit 130b and the resin pool 132b are a series of devices for introducing the surface layer 24b ′ that is the basis of the surface layer 24b into the molding die 140.
  • the surface fiber layer supply unit 130b supplies the reinforcing fibers 24b '' that are the basis of the reinforcing fibers of the surface layer 24b.
  • the reinforcing fiber 24b ′′ is impregnated with a thermosetting resin to form the surface layer 24b ′.
  • the surface layer 24b ′ and the reinforcing fibers 24b ′′ are not shown.
  • the surface fiber layer supply unit 130c and the resin pool 132c are a series of devices for introducing the surface layer 24c ′ that is the basis of the surface layer 24c into the molding die 140.
  • the surface fiber layer supply unit 130c supplies the reinforcing fibers 24c '' that are the basis of the reinforcing fibers of the surface layer 24c.
  • the resin pool 132c forms the surface layer 24c ′ by impregnating the reinforcing fibers 24c ′′ with a thermosetting resin.
  • reinforcing fibers 24a ′′, 24b ′′, and 24c ′′ are not distinguished, they are appropriately referred to as reinforcing fibers 24 ′′.
  • the surface layers 24a ′, 24b ′, and 24c ′ are not distinguished, they are appropriately referred to as the surface layer 24 ′.
  • the surface fiber layer supply units 130a, 130b, and 130c are not distinguished, they are appropriately referred to as the surface fiber layer supply unit 130.
  • resin pools 132a, 132b, and 132c are not distinguished, they are appropriately referred to as the resin pool 132.
  • the base material 20 ′, the gap material 22 ′, and the surface layer 24 ′ of the composite material are deformed so as to have a predetermined shape in the YZ plane and are introduced into the molding die 140.
  • the base material 20 a ′ of the composite material and the base material 20 b ′ of the composite material are bent along the X-axis direction at predetermined positions and introduced into the molding die 140.
  • the molding die 140 performs pultrusion processing of the base material 20 ′, the gap material 22 ′, and the surface layer 24 ′ of the composite material introduced from each series of apparatuses.
  • the molding die 140 has a heating part, and it is preferable that the thermosetting resin contained in the base material 20 ′, the gap material 22 ′, and the surface layer 24 ′ of the composite material be in a semi-cured state or a cured state. Or it has a heating part between each of the resin pool 112, the resin pool 122, and the resin pool 132 and the molding die 140, and is included in the base material 20 ′, the gap material 22 ′, and the surface layer 24 ′ of the composite material.
  • the thermosetting resin is preferably in a semi-cured state or a cured state.
  • FIG. 9 is a schematic plan view showing a composite material base material 30 ′ which is an example of a composite material base material 20 ′ used in the pultruded material 10 including the composite material base material 30 shown in FIGS. 3 and 4. .
  • a composite material base material 30 ′ as an example of a composite material base material 20 c ′ is shown, but a composite material base material 30 ′ as an example of the composite material base materials 20 a ′ and 20 b ′ is shown.
  • the composite material base 30 ′ includes a first layer 32 ′ and a second layer 34 ′.
  • the first layer 32 ′ is a layer that is the basis of the first layer 32.
  • the second layer 34 ′ is a layer that is the basis of the second layer 34.
  • the order of lamination of the composite material base material 30 ′ is the same as the order of lamination of the composite material base material 30.
  • the first layer 32 ' includes reinforcing fibers 32f' and thermosetting resin impregnated in the reinforcing fibers 32f '.
  • FIG. 9 illustration of the thermosetting resin in each layer is omitted.
  • the first layer 32 ′ is oriented along the X-axis direction in which the fiber direction of the reinforcing fibers 32 f ′ is the longitudinal direction.
  • the second layer 34 ′ includes reinforcing fibers 34 f ′ and a thermosetting resin impregnated with the reinforcing fibers 34 f ′.
  • the fiber direction of the reinforcing fibers 34 f ′ is oriented in the in-plane direction of the facing surface facing the first layer 32 ′ and in the direction of a predetermined angle 34 ⁇ ′ with respect to the longitudinal direction.
  • the angle 34 ⁇ ′ is an angle of the reinforcing fiber 34f ′ before the pultrusion molding, that is, an initial angle.
  • the in-plane direction of the facing surface that faces the first layer 32 ′ coincides with the in-plane direction of the sheet.
  • the angle 34 ⁇ ′ is an angle indicated by the same method as the angle 34 ⁇ described above.
  • the angle 34 ⁇ ′ is the same as the angle 34 ⁇ with respect to the longitudinal direction in the fiber direction of the reinforcing fiber 34f in the pultruded material 10 in which the composite material base material 30 ′ is pultruded along the longitudinal direction.
  • the value is large. That is, the angle 34 ⁇ ′ has the same or larger absolute value in the same direction as plus / minus than the angle 34 ⁇ that is the required angle. That is, the angle 34 ⁇ ′ is not less than the angle 34 ⁇ that is the required angle. It is preferable that the angle 34 ⁇ ′ has the same plus / minus direction and a larger absolute value than the angle 34 ⁇ that is the required angle.
  • the angle 34 ⁇ ′ is exemplified by +60 degrees.
  • the angle 34 ⁇ ′ is determined to be a value that is the same plus or minus as the angle 34 ⁇ and has a larger absolute value by a certain angle than the required angle, depending on the drawing force applied during pultrusion and the position of the layer.
  • FIG. 10 is a schematic plan view showing a composite material base 40 ′ which is an example of a composite base 20 ′ used in the pultruded material 10 including the composite base 40 of FIGS. 5 and 6. .
  • a composite material base 40 ′ is shown as an example of a composite material base 20 c ′ that is not curved and deformed along the X-axis, but the composite base materials 20 a ′ and 20 b are shown.
  • a composite material base material 40 ′, which is an example of ′, has the same configuration.
  • the composite material base 40 ′ includes a first layer 42 ′ and a plurality of second layers 44 ′ and 46 ′.
  • the first layer 42 ′ is a layer that is the basis of the first layer 42.
  • the second layer 44 ′ is a layer that is the basis of the second layer 44.
  • the second layer 46 ′ is a layer that is the basis of the second layer 46.
  • the order of lamination of the composite material base material 40 ′ is the same as the order of lamination of the composite material base material 40.
  • the first layer 42 ' includes reinforcing fibers 42f' and thermosetting resin impregnated in the reinforcing fibers 42f '.
  • FIG. 10 illustration of the thermosetting resin in each layer is omitted.
  • the first layer 42 ' is oriented along the X-axis direction in which the fiber direction of the reinforcing fibers 42f' is the longitudinal direction.
  • the second layer 44 ′ includes reinforcing fibers 44f ′ and thermosetting resin impregnated in the reinforcing fibers 44f ′.
  • the fiber direction of the reinforcing fiber 44f ′ is in the in-plane direction of the facing surface facing the first layer 42 ′ and in the direction of a predetermined angle 44 ⁇ ′ with respect to the X-axis direction which is the longitudinal direction.
  • the angle 44 ⁇ ′ is an angle of the reinforcing fiber 44f ′ before the pultrusion molding, that is, an initial angle.
  • the in-plane direction of the facing surface facing the first layer 42 ′ coincides with the in-plane direction of the sheet.
  • the second layer 46 ' includes reinforcing fibers 46f' and thermosetting resin impregnated in the reinforcing fibers 46f '.
  • the fiber direction of the reinforcing fibers 46 f ′ is oriented in the in-plane direction of the facing surface facing the first layer 42 ′ and in the direction of a predetermined angle 46 ⁇ ′ with respect to the longitudinal direction.
  • the angle 46 ⁇ ′ is an angle of the reinforcing fiber 46f ′ before the pultrusion molding, that is, an initial angle.
  • Both the angle 44 ⁇ ′ and the angle 46 ⁇ ′ are angles shown in the same manner as the angle 34 ⁇ described above.
  • the angle 44 ⁇ ′ is the same as the angle 44 ⁇ with respect to the longitudinal direction of the fiber direction of the reinforcing fiber 44f in the pultruded material 10 in which the composite material base material 40 ′ is pultruded along the longitudinal direction.
  • the value is large. That is, the angle 44 ⁇ ′ has the same or larger absolute value in the same direction as plus / minus than the angle 44 ⁇ that is the required angle. That is, the angle 44 ⁇ ′ is not less than the angle 44 ⁇ that is the required angle. It is preferable that the angle 44 ⁇ ′ has the same plus / minus direction and a larger absolute value than the angle 44 ⁇ that is the required angle.
  • the angle 44 ⁇ ′ is exemplified by +60 degrees.
  • the angle 44 ⁇ ′ is determined to have the same plus / minus as the angle 44 ⁇ and an absolute value larger than the angle 44 ⁇ by a certain angle depending on the drawing force applied at the time of pultrusion and the position of the layer.
  • the angle 46 ⁇ ′ is the same as the angle 46 ⁇ with respect to the longitudinal direction of the fiber direction of the reinforcing fiber 46f in the pultruded material 10 in which the composite material base material 40 ′ is pultruded along the longitudinal direction.
  • the value is large. That is, the angle 46 ⁇ ′ has the same or larger absolute value in the same direction as plus / minus than the angle 46 ⁇ that is the required angle. That is, the angle 46 ⁇ ′ is not less than the angle 46 ⁇ that is the required angle. It is preferable that the angle 46 ⁇ ′ has the same plus / minus direction and a larger absolute value than the angle 46 ⁇ that is the required angle.
  • the angle 46 ⁇ ′ is exemplified by ⁇ 60 degrees.
  • the angle 46 ⁇ ′ is determined to be a value that is the same plus or minus as the angle 46 ⁇ and has a larger absolute value by a certain angle than the angle 46 ⁇ in accordance with the drawing force applied at the time of pultrusion and the position of the layer.
  • FIG. 11 is a schematic plan view showing a composite material base material 60 ′, which is an example of the composite material base material 20 ′ used in the pultruded material 10 including the composite material base material 60 of FIG.
  • a composite material base material 60 ′ is shown as an example of a composite material base material 20 c ′ that is not curvedly deformed along the X-axis, but the composite material base materials 20 a ′ and 20 b are shown.
  • a composite material base material 60 ' which is an example of', also has the same configuration.
  • the composite material base 60 ′ includes a plurality of first layers 62 ′ and a plurality of second layers 64 ′, 66 ′, 68 ′.
  • the composite base material 60 ′ includes four first layers 62 ′, two second layers 64 ′, one second layer 66 ′, and two second layers 68. ′.
  • the first layer 62 ′ is a layer that is a source of the first layer 62.
  • the second layer 64 ′ is a layer that is the basis of the second layer 64.
  • the second layer 66 ′ is a layer that is a source of the second layer 66.
  • the second layer 68 ′ is a layer that is the basis of the second layer 68.
  • the order of lamination of the composite material bases 60 ′ is the same as the order of lamination of the composite material bases 60.
  • An arrow D ′ represents a direction in which the base material 60 ′ of the composite material is pultruded from now on, and faces the X-axis direction, that is, the longitudinal direction.
  • the arrow D ′ points in the same direction as the arrow D in FIG.
  • the first layer 62 ′ includes reinforcing fibers 62f ′ and thermosetting resin impregnated in the reinforcing fibers 62f ′.
  • FIG. 11 illustration of the thermosetting resin in each layer is omitted.
  • the first layer 62 ′ is oriented along the X-axis direction in which the fiber direction of the reinforcing fibers 62 f ′ is the longitudinal direction.
  • the second layer 64 ′ includes reinforcing fibers 64f ′ and a thermosetting resin impregnated in the reinforcing fibers 64f ′.
  • the fiber direction of the reinforcing fibers 64 f ′ is oriented in the in-plane direction of the facing surface facing the first layer 62 ′ and in a direction of a predetermined angle 64 ⁇ ′ with respect to the longitudinal direction.
  • the angle 64 ⁇ ′ is an angle of the reinforcing fiber 64f ′ before the pultrusion molding, that is, an initial angle.
  • the in-plane direction of the facing surface facing the first layer 62 ′ coincides with the in-plane direction of the sheet.
  • the second layer 66 ′ includes reinforcing fibers 66f ′ and thermosetting resin impregnated in the reinforcing fibers 66f ′.
  • the fiber direction of the reinforcing fibers 66 f ′ is oriented in the in-plane direction of the facing surface facing the first layer 62 ′ and in a direction of a predetermined angle 66 ⁇ ′ with respect to the longitudinal direction.
  • the angle 66 ⁇ ′ is an angle of the reinforcing fiber 66f ′ before the pultrusion molding, that is, an initial angle.
  • the second layer 68 ′ includes reinforcing fibers 68f ′ and thermosetting resin impregnated in the reinforcing fibers 68f ′.
  • the fiber direction of the reinforcing fibers 68f ′ is oriented in the in-plane direction of the facing surface facing the first layer 62 ′ and in the direction of a predetermined angle 68 ⁇ ′ with respect to the longitudinal direction.
  • the angle 68 ⁇ ′ is an angle of the reinforcing fiber 68f ′ before the pultrusion molding, that is, an initial angle.
  • the angles 64 ⁇ ′, 66 ⁇ ′, and 68 ⁇ ′ are all angles indicated by the same method as the angle 34 ⁇ described above.
  • the angle 64 ⁇ ′ is the same as the angle 64 ⁇ with respect to the longitudinal direction in the fiber direction of the reinforcing fiber 64f in the pultruded material 10 in which the composite material base material 60 ′ is pultruded along the longitudinal direction.
  • the value is large. That is, the angle 64 ⁇ ′ has the same or larger absolute value than the angle 64 ⁇ , which is the required angle, in the same direction. That is, the angle 64 ⁇ ′ is equal to or larger than the angle 64 ⁇ that is the required angle. It is preferable that the angle 64 ⁇ ′ has the same plus / minus direction and a larger absolute value than the angle 64 ⁇ that is the required angle.
  • the angle 64 ⁇ ′ is exemplified by ⁇ 60 degrees.
  • the angle 64 ⁇ ′ is determined to be a value that is the same as the angle 64 ⁇ and has a larger absolute value by a certain angle than the angle 64 ⁇ , depending on the drawing force applied at the time of pultrusion and the position of the layer.
  • the angle 66 ⁇ ′ is the same as the angle 66 ⁇ with respect to the longitudinal direction in the fiber direction of the reinforcing fiber 66f in the pultruded material 10 in which the base material 60 ′ of the composite material is pultruded along the longitudinal direction. That is, the angle 66 ⁇ ′ is the same as the required angle 66 ⁇ . That is, the angle 66 ⁇ ′ is not less than the angle 66 ⁇ that is the required angle. Specifically, the case where the angle 66 ⁇ is 90 degrees and the angle 66 ⁇ ′ is 90 degrees is exemplified. This is because the maximum value of the angle with respect to the X-axis direction, which is the longitudinal direction of the reinforcing fiber, is 90 degrees.
  • the angle 68 ⁇ ′ is the same as the angle 68 ⁇ with respect to the longitudinal direction of the fiber direction of the reinforcing fiber 68f in the pultruded material 10 in which the composite material base 60 ′ is pultruded along the longitudinal direction.
  • the value is large. That is, the angle 68 ⁇ ′ has the same or larger absolute value in the same direction as plus / minus than the angle 68 ⁇ that is the required angle. That is, the angle 68 ⁇ ′ is not less than the angle 68 ⁇ that is the required angle. It is preferable that the angle 68 ⁇ ′ has the same plus / minus direction and a larger absolute value than the angle 68 ⁇ that is the required angle.
  • the angle 68 ⁇ ′ is exemplified by +60 degrees.
  • the angle 68 ⁇ ′ is determined to have the same plus / minus as the angle 68 ⁇ and an absolute value larger than the angle 68 ⁇ by a certain angle depending on the drawing force applied at the time of pultrusion and the position of the layer.
  • the composite base material 60 ' includes a first layer 62' that is a 0 degree fiber layer, a second layer 64 'that is a -60 degree fiber, a second layer 66' that is a 90 degree fiber, and +60 degrees.
  • the second layer 68 ′, which is a fiber, and the first layer 62 ′, which is a 0-degree fiber layer, are stacked in this order. That is, in the composite material base 60 ′, a plurality of first layers 62 ′ are stacked, and second layers 64 ′, 66 ′, and 68 ′ are provided between the stacked first layers 62 ′.
  • the second layers 64 ′, 66 ′, and 68 ′ can be pultruded using the molding die 140 in such a manner that the second layers 64 ′, 66 ′, and 68 ′ are pulled by the first layer 62 ′. Therefore, the composite material base material 60 ′ is a fiber of reinforcing fibers 64 f, 66 f, 68 f in the pultruded material 10 including the composite material base material 60 manufactured by pultrusion of the composite material base material 60 ′.
  • the required angle can be accurately realized at the angles 64 ⁇ , 66 ⁇ , and 68 ⁇ in which the directions are oriented.
  • the base material 60 'of the composite material has a plurality of second layers 64', 66 ', 68' stacked thereon, and the second layers 64 ', 66', 68 'are formed on the first layer 62' on the + Z direction side.
  • the second layer 64 ′ closer to the second first layer 62 ′ from the + Z direction side is smaller than the angle 66 ⁇ ′ of the second layer 66 ′ far from the same first layer 62 ′.
  • the angle 68 ⁇ ′ at 68 ′ is smaller than the angle 66 ⁇ ′ at the second layer 66 ′ far from the same first layer 62 ′.
  • the composite material base material 60 ′ has fiber direction angles 64 ⁇ , 66 ⁇ , 68 ⁇ of the reinforcing fibers 64 f, 66 f, 68 f in the pultruded material 10 including the composite material base material 60 manufactured by pultrusion.
  • the required angle can be realized with high accuracy.
  • FIG. 12 is a flowchart showing an example of a flow of a pultruded material manufacturing method for manufacturing the pultruded material 10 of FIG.
  • a pultruded material manufacturing method according to this embodiment which is a processing method executed by the pultruded material manufacturing apparatus 100, will be described with reference to FIG.
  • the method for manufacturing a pultruded material according to the present embodiment includes a first layer preparation step, a second layer preparation step, and a lamination step. In detail, as shown in FIG.
  • the manufacturing method of the pultrusion molding material which concerns on this embodiment is 1st fiber layer preparation process S12 as a 1st layer preparation process, and 2nd fiber as a 2nd layer preparation process. It includes a layer preparation step S14, a lamination step S16, an impregnation step S18, a pultrusion step S22, and a gap material formation step S24.
  • the first fiber layer preparation step S12, the second fiber layer preparation step S14, the lamination step S16, the impregnation step S18, the pultrusion step S22, and the gap material formation step S24 are simply performed as steps S12, S14, respectively. These are referred to as step S16, step S18, step S22, and step S24.
  • a first fiber layer composed of reinforcing fibers whose fiber direction is aligned along the longitudinal direction is prepared (step S12). More specifically, the first fiber layer is a 0-degree fiber layer preform.
  • the 0-degree fiber layer preform refers to a 0-degree fiber layer that is not impregnated with a thermosetting resin. In the following, similar expressions are used for fiber layers at other angles.
  • one first fiber layer is prepared in step S12.
  • one first fiber layer is prepared.
  • four first fiber layers are prepared in step S12. It is possible to produce a pultrusion molding material 10 including a composite material base material having a high rigidity and strength even with reinforcing fibers alone and impregnating with a thermosetting resin. it can.
  • a second fiber layer is prepared which is composed of reinforcing fibers oriented in a direction at a predetermined angle with respect to the longitudinal direction and in the in-plane direction of the facing surface where the fiber direction faces the first layer.
  • the in-plane direction of the facing surface in which the fiber direction faces the first layer coincides with the in-plane direction of the sheet.
  • the second fiber layer includes a +30 degree fiber layer preform, a +45 degree fiber layer preform, a +60 degree fiber layer preform, and a 90 degree fiber depending on the orientation angle of the reinforcing fibers in the fiber direction.
  • Examples include a preform for a layer, a preform for a ⁇ 30 degree fiber layer, a preform for a ⁇ 45 degree fiber layer, a preform for a ⁇ 60 degree fiber layer, and the like. It is possible to produce a pultrusion molding material 10 including a composite material base material having a high rigidity and strength even with reinforcing fibers alone and impregnating with a thermosetting resin. it can.
  • the orientation angle of the reinforcing fibers in the fiber direction is more than the second layer 34 (+45 degree fiber layer) included in the composite material base 30.
  • the orientation angle of the reinforcing fibers in the fiber direction is more than the second layer 44 (+45 degree fiber layer) included in the composite material 40.
  • the same or larger +60 degree fiber layer preform in the same plus or minus direction, and the fiber layer of the reinforcing fiber in the fiber direction of the second layer 46 (-45 degree fiber layer) included in the base material 40 of the composite material One preform of -60 degree fiber layer having the same or larger orientation angle in the same plus or minus direction is prepared.
  • the orientation of the reinforcing fibers in the fiber direction is more than the second layer 64 ( ⁇ 45 degree fiber layer) included in the composite material 60.
  • One preform of 90-degree fiber layer with the same orientation angle and the second fiber 68 (+ 45-degree fiber layer) included in the composite base material 40 have the same orientation angle in the fiber direction of the reinforcing fiber.
  • the first fiber layer prepared in step S12 and the second fiber layer prepared in step S14 are laminated to form a preform 20 ′′ (step S16). Then, the formed preform 20 ′′ is wound around a roll or the like, and provided as the fiber layer supply unit 110 in the pultruded material manufacturing apparatus 100.
  • “stacking two or more layers” means not only simply stacking two or more layers, but also stacking fibers by stacking two or more layers and then weaving separately. In addition, after the two or more layers are overlapped, a separate binder is used.
  • two or more layers are simply overlapped, two or more layers are overlapped and then weaved separately, etc., and fibers are combined, and after two or more layers are overlapped, a separate binder is used.
  • the concept of stacking is used as a concept including things.
  • the 0-degree fiber layer prepared in step S12 is prepared so that the stacking order is the same as that of the composite material 30 ′ shown in FIG.
  • the reforming and the +60 degree fiber layer preform prepared in step S14 are laminated.
  • the 0-degree fiber layer prepared in Step S12 is prepared so that the stacking order is the same as the composite material 40 ′ shown in FIG.
  • the reforming and the +60 degree fiber layer preform and the ⁇ 60 degree fiber layer preform prepared in step S14 are laminated.
  • the four 0 degree fibers prepared in step S12 so that the stacking order is the same as the composite material base 60 'shown in FIG.
  • the two layered preforms, the -60 degree fiber layer preform, the 90 degree fiber layer preform, and the +60 degree fiber layer preform prepared in step S14 are laminated.
  • the stacking order is the composite material base 60 ′ shown in FIG. Laminate each preform to be the same. Therefore, the composite material base material 60 ′ has fiber direction angles 64 ⁇ , 66 ⁇ , 68 ⁇ of the reinforcing fibers 64 f, 66 f, 68 f in the pultruded material 10 including the composite material base material 60 manufactured by pultrusion.
  • the required angle can be realized with high accuracy.
  • step S16 the preform 20 ′′ formed in step S16 is immersed in the resin pool 132, so that the first fiber layer and the second fiber layer included in the preform 20 ′′ are impregnated with the thermosetting resin, and combined.
  • a base material 20 'of material is formed (step S18).
  • step S18 all the first fiber layers become the first layer, and all the second fiber layers become the second layer.
  • the first fiber layer and the second fiber layer are impregnated with the thermosetting resin by immersing the first fiber layer and the second fiber layer in the thermosetting resin stored in the resin pool.
  • the present invention is not limited to this, and the first fiber layer and the second fiber layer are impregnated with the thermosetting resin by using other methods such as applying a thermosetting resin to the first fiber layer and the second fiber layer. May be.
  • the plurality of composite base materials 20 ′ formed in step S ⁇ b> 18 are deformed so as to have a predetermined shape in a plane orthogonal to the longitudinal direction, and are transferred to the molding die 140 while being conveyed in the longitudinal direction.
  • the composite material base material 20a ′ and the composite material base material 20b ′ are bent along the X-axis direction at predetermined locations, and a T-shape is formed by a plurality of composite material base materials 20 ′.
  • a plurality of composite material base materials 20 ′ introduced into the molding die 140 are pultruded to form a composite material molded body including the plurality of composite material base materials 20 (step S 22).
  • step S22 a strong pulling force is applied in the X-axis direction to the second layer reinforcing fibers in the base material 20 'of the composite material, and the angle with respect to the longitudinal direction in the fiber direction is 0 degree in a part of the second fiber layer. It can be approached. That is, in step S22, the second layer reinforcing fiber in the composite base material 20 ′ is applied with a strong pulling force in the X-axis direction, and the angle with respect to the longitudinal direction in the fiber direction is the same except for the 90-degree fiber layer. It remains smaller in the negative direction.
  • the angle of the reinforcing material of the second layer in the base material 20 of the composite material with respect to the longitudinal direction of the fiber direction in the base material 20 ′ of the composite material whose absolute value is larger than the required angle by a certain angle.
  • the direction remains the same plus / minus direction and can be made closer to the required angle which is a desired angle.
  • the angle of the reinforcing fiber is kept the same, or the angle of the reinforcing fiber is made smaller while keeping the same plus / minus direction, and the angle of the reinforcing fiber is kept the same plus / minus.
  • the angles of the reinforcing fibers can be kept the same.
  • the pulling-out force in step S22 is a certain level or more, the angle of the reinforcing fiber can be reduced while keeping the same plus / minus direction.
  • the second layer 64 ′ ( ⁇ 60 degree fiber layer) including the reinforcing fiber 64f ′ is immediately stacked in the + Z direction.
  • a strong tensile stress is applied in the X-axis direction via 62 '(0 degree fiber layer), and the angle 64 ⁇ ' in the fiber direction of the reinforcing fiber 64f 'is changed to a direction along the X-axis direction so that the angle is the same or smaller.
  • the second layer 64 (-45 degree fiber layer) including the reinforcing fibers 64f is formed.
  • the second layer 68 ′ (+60 degree fiber layer) including the reinforcing fiber 68f ′ has a strong tensile force in the X-axis direction via the first layer 62 ′ (0 degree fiber layer) laminated immediately in the ⁇ Z direction.
  • the angle 68 ⁇ ′ in the fiber direction of the reinforcing fiber 68f ′ is changed in the direction along the X-axis direction so that the angle becomes the same or smaller, and the second layer 68 including the reinforcing fiber 68f ( ⁇ 45 degree fiber layer) )
  • the second layer 66 ′ (90 degree fiber layer) including the reinforcing fiber 66f ′ is composed of the second layer 64 ′ ( ⁇ 60 degree fiber layer) and the first layer 62 ′ (0 degree fiber) laminated in the + Z direction.
  • the fiber direction angle 66 ⁇ ′ of the reinforcing fiber 66f ′ is 90 degrees
  • the fiber direction angle 66 ⁇ ′ of the reinforcing fiber 66f ′ is not changed in the direction along the X-axis direction, and includes the reinforcing fiber 66f. It becomes the 2nd layer 66 (90 degree fiber layer).
  • the indirect base material 22 ′′ is supplied by the gap base material supply unit 120, and the indirect base material 22 ′′ is immersed in the resin pool 122.
  • Is impregnated with a thermosetting resin to form a gap material 22 ′, and the gap material 22 ′ is arranged in a gap between a plurality of composite material base materials 20 ′ and molded together with a plurality of composite material base materials 20.
  • the pultruded material manufacturing method places the gap material 22 in the gap of the composite material molded body. Therefore, the pultrusion molding material 10 in which the gap between the composite material moldings is suitably filled with the gap material 22 can be manufactured.
  • thermosetting resin contained in the base material 20 ′ of the composite material is made into a semi-cured state or a cured state by the heating unit.
  • thermosetting resin contained in the gap material 22 ′ is brought into a semi-cured state or a cured state by the heating unit.
  • the surface layer 24 ′ can be further provided on the outer surface in the Y direction or the Z direction of the base material 20 ′ of the composite material. It can be provided on the outer surface of the composite substrate 20.
  • the reinforcing fiber 24 ′′ is supplied by the surface fiber layer supply unit 130, and the reinforcing fiber 24 ′′ is immersed in the resin pool 132.
  • the reinforcing fiber 24 ′′ is impregnated with a thermosetting resin to form a surface layer 24 ′, and the surface layer 24 ′ is arranged on the outer surface of the base material 20 ′ of the composite material.
  • the surface layer 24 can be provided on the outer surface of the composite material substrate 20 by introducing it into the molding die 140 together with the substrate 20.
  • the surface layer 24 ′ can be provided on the outer surface in the Y direction or the Z direction of the base material 20 ′ of the composite material. Molding can be performed with high accuracy.
  • the pultruded material manufacturing method according to the present embodiment has the above-described configuration, the composite material base material and the pultruded material can be manufactured so that the fiber direction of the reinforcing fiber achieves the required angle.
  • the performance of the composite material base material formed by pultrusion can be adjusted according to the required performance. Therefore, the method for producing a pultruded material according to the present embodiment can adjust performances such as rigidity and strength other than the longitudinal direction of the base material of the composite material molded by pultrusion.
  • FIG. 13 is a flowchart showing an example of a flow of a pultrusion material manufacturing method for manufacturing the pultrusion material 10 of FIG.
  • a modification of the pultrusion material manufacturing method according to the present embodiment will be described with reference to FIG.
  • the modification example of the method for manufacturing the pultruded material according to the present embodiment includes a first layer forming step S32 as a first layer preparing step and a second layer forming step as a second layer preparing step.
  • interval material formation process S24 are provided.
  • the first layer forming step S32, the second layer forming step S34, and the stacking step S36 are simply referred to as step S32, step S34, and step S36, respectively, as appropriate.
  • a first layer is formed by impregnating a first fiber layer composed of reinforcing fibers whose fiber direction is oriented along the longitudinal direction with a thermosetting resin (step S32).
  • a method for impregnating the thermosetting resin any method described in Step S18 can be used.
  • the first layer is a base material of a composite material in which a 0-degree fiber layer is impregnated with a thermosetting resin.
  • thermosetting is performed on the second fiber layer composed of reinforcing fibers oriented in the in-plane direction of the facing surface where the fiber direction faces the first layer and in a direction at a predetermined angle with respect to the longitudinal direction.
  • a second layer is formed by impregnating with a conductive resin (step S34).
  • the in-plane direction of the facing surface in which the fiber direction faces the first layer coincides with the in-plane direction of the sheet.
  • the second layer is a +30 degree fiber layer, a +45 degree fiber layer, a +60 degree fiber layer, a 90 degree fiber layer, a ⁇ 30 degree fiber layer, ⁇ 45 depending on the orientation angle of the reinforcing fiber in the fiber direction.
  • Degree fiber layer, -60 degree fiber layer and the like are examples of the first fiber layer.
  • the orientation angle of the reinforcing fibers in the fiber direction is more than the second layer 34 (+45 degree fiber layer) included in the composite material base 30. Prepare one 60 degree fiber layer that is larger in the same plus or minus direction.
  • the orientation angle of the reinforcing fibers in the fiber direction is more than the second layer 44 (+45 degree fiber layer) included in the composite material 40.
  • the fiber layer orientation angle of the reinforcing fibers is the same as that of the second layer 46 ( ⁇ 45 degree fiber layer) included in the base material 40 of the composite material, plus one +60 degree fiber layer having the same plus / minus direction. Prepare a large -60 degree fiber layer in the negative direction.
  • the orientation of the reinforcing fibers in the fiber direction is more than that of the second layer 64 ( ⁇ 45 degree fiber layer) included in the composite material 60.
  • Two -60 degree fiber layers having the same angle in the same plus / minus direction, the second layer 66 (90 degree fiber layer) included in the base material 60 of the composite material, and the orientation angle of the reinforcing fibers in the fiber direction are the same.
  • One +90 degree fiber layer and a +60 degree fiber in which the orientation angle in the fiber direction of the reinforcing fiber is larger in the same plus / minus direction than the second layer 68 (+45 degree fiber layer) included in the base material 40 of the composite material Prepare two layers.
  • the first layer forming step S32 and the second layer forming step S34 are processed in this order.
  • the present invention is not limited to this, and the second layer forming step S34 and the first layer forming step are performed. You may process in order of S32 and may process 1st layer formation process S32 and 2nd layer formation process S34 simultaneously.
  • step S36 the first layer prepared in step S32 and the second layer prepared in step S34 are stacked to form a composite material base material 20 '(step S36).
  • the 0-degree fiber layer prepared in step S ⁇ b> 32 so that the stacking order is the same as the composite material base 30 ′ shown in FIG. 9;
  • the +60 degree fiber layer prepared in step S34 is laminated.
  • the 0-degree fiber layer prepared in step S32 so that the stacking order is the same as the composite material base 40 'shown in FIG.
  • the +60 degree fiber layer and the -60 degree fiber layer prepared in step S34 are laminated.
  • step S36 the layers are stacked so that the stacking order is the same as that of the composite material base 60 'shown in FIG. Therefore, the composite material base material 60 ′ has fiber direction angles 64 ⁇ , 66 ⁇ , 68 ⁇ of the reinforcing fibers 64 f, 66 f, 68 f in the pultruded material 10 including the composite material base material 60 manufactured by pultrusion.
  • the required angle can be realized with high accuracy.
  • the plurality of composite base materials 20 ′ formed in step S ⁇ b> 36 are deformed so as to have a predetermined shape in a plane orthogonal to the longitudinal direction, and are conveyed to the molding die 140 while being transported in the longitudinal direction. be introduced. Since subsequent steps S22 and S24 are the same as described above, their detailed description is omitted. Further, the heating layer for heating the thermosetting resin is the same as described above for the surface layer forming step of providing the surface layer 24 'on the outer surface in the Y direction or Z direction of the base material 20' of the composite material. Therefore, detailed description thereof will be omitted.
  • the modified example of the method for manufacturing a pultruded material according to the present embodiment has the above-described configuration, the same effects as those of the method for manufacturing the pultruded material according to the present embodiment can be obtained. That is, the modified example of the method for producing a pultruded material according to the present embodiment can produce a composite material base material and a pultruded material so that the fiber direction of the reinforcing fiber achieves the required angle. The performance of the base material of the composite material to be molded can be adjusted according to the required performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

Provided are: a composite material substrate that makes it possible to adjust the performance of a composite material substrate molded by pultrusion in accordance with the performance required thereof; a pultruded material; a method for producing the composite material substrate; and a method for producing the pultruded material. The composite material substrate (60') comprises layers that extend in the lengthwise direction and that include reinforcing fibers (62f')-(68f') impregnated with a thermosetting resin, namely, a first layer (62') in which the fiber direction of the reinforcing fibers (62f') is oriented along the lengthwise direction and second layers (64')-(68') that are stacked on the first layer (62') and in which the fiber directions of the reinforcing fibers (64f')-(68f') are oriented in the direction of predetermined angles (64θ')-(68θ') with respect to the lengthwise direction and an in-plane direction of a facing surface facing the first layer (62'). The angles (64θ')-(68θ') in a pultruded material obtained by pultruding the composite material substrate (60') are equal to or larger than the angles (64θ)-(68θ) of the fiber directions of the reinforcing fibers with respect to the lengthwise direction.

Description

複合材料の基材、引抜成形材料、複合材料の基材の製造方法及び引抜成形材料の製造方法Composite material base material, pultruded material, composite material base material manufacturing method, and pultruded material manufacturing method
 本発明は、複合材料の基材、引抜成形材料、複合材料の基材の製造方法及び引抜成形材料の製造方法に関する。 The present invention relates to a composite material base material, a pultruded material, a composite material base material manufacturing method, and a pultruded material manufacturing method.
 軽量性及び高い強度を有する材料には、強化繊維に熱硬化性樹脂を含浸させた複合材料が知られている。複合材料は、航空機、自動車及び船舶等に用いられている。複合材料を成形する方法としては、シート状の複合材料の基材を引抜成形する方法が知られている(特許文献1参照)。 As a material having light weight and high strength, a composite material in which a reinforcing fiber is impregnated with a thermosetting resin is known. Composite materials are used in aircraft, automobiles, ships and the like. As a method of forming a composite material, a method of drawing a base material of a sheet-like composite material is known (see Patent Document 1).
特開2011-056816号公報JP 2011-056816 A
 図14は、従来の引抜成形材料の製造装置200の概略構成図である。図15は、従来の引抜成形材料の製造装置で製造される引抜成形材料210の断面概略図である。特許文献1の方法等の従来の方法で引抜成形材料を製造する引抜成形材料の製造装置200は、図14に示すように、強化繊維を供給する繊維供給部202と、強化繊維に熱硬化性樹脂を含浸させる樹脂プール204と、熱硬化性樹脂を含浸させた強化繊維を引抜成形する成形金型206と、を備える。引抜成形材料の製造装置200は、引抜成形材料210を製造する。引抜成形材料210は、強化繊維212と、熱硬化性樹脂214とを有する。強化繊維212は、引抜成形材料210が引抜成形材料の製造装置200で製造されるため、図15に示すように、引抜成形材料の引抜方向、すなわち長手方向に配向される。 FIG. 14 is a schematic configuration diagram of a conventional pultrusion material manufacturing apparatus 200. FIG. 15 is a schematic cross-sectional view of a pultruded material 210 manufactured by a conventional pultruded material manufacturing apparatus. As shown in FIG. 14, a pultrusion material manufacturing apparatus 200 that manufactures a pultrusion material by a conventional method such as the method of Patent Document 1 includes a fiber supply unit 202 that supplies reinforced fibers, and a thermosetting property to the reinforced fibers. A resin pool 204 impregnated with a resin and a molding die 206 for drawing out a reinforcing fiber impregnated with a thermosetting resin are provided. The pultrusion material manufacturing apparatus 200 manufactures the pultrusion material 210. The pultrusion material 210 includes reinforcing fibers 212 and a thermosetting resin 214. Since the pultruded material 210 is manufactured by the pultruded material manufacturing apparatus 200, the reinforcing fibers 212 are oriented in the pultruded material drawing direction, that is, the longitudinal direction, as shown in FIG.
 すなわち、特許文献1の方法を含む従来の方法では、0度ファイバー及びマット材等を備える引抜成形材料が製造される。ここで、0度ファイバーは、強化繊維の繊維方向と引抜方向とが同じとなる強化繊維である。マット材は、強化繊維の繊維方向が引抜方向に依らず疑似等方性である材料である。そのため、特許文献1の方法を含む従来の方法では、強化繊維の繊維方向が長手方向に対して例えば±45度等の角度をもつ複合材料の層、すなわちアングル積層を備える基材を製造することが困難であるという問題があった。このため、引抜成形により成形される複合材料の基材の長手方向以外の剛性及び強度等の性能を調整することが困難であるという問題があった。 That is, in the conventional method including the method of Patent Document 1, a pultruded material including a 0 degree fiber and a mat material is manufactured. Here, the 0 degree fiber is a reinforcing fiber in which the fiber direction and the drawing direction of the reinforcing fiber are the same. The mat material is a material in which the fiber direction of the reinforcing fiber is pseudo-isotropic regardless of the drawing direction. Therefore, in the conventional method including the method of Patent Document 1, a base material provided with a layer of composite material in which the fiber direction of the reinforcing fiber has an angle of, for example, ± 45 degrees with respect to the longitudinal direction, that is, an angle stack is manufactured. There was a problem that was difficult. For this reason, there existed a problem that it was difficult to adjust performances, such as rigidity and intensity other than the longitudinal direction of the base material of the composite material shape | molded by pultrusion molding.
 本発明は、上記に鑑みてなされたものであって、引抜成形により成形される複合材料の基材の性能を要求性能に応じて調整することが可能な複合材料の基材、引抜成形材料、複合材料の基材の製造方法及び引抜成形材料の製造方法を提供することを目的とする。 The present invention has been made in view of the above, and is a composite material base material capable of adjusting the performance of the composite material base material formed by pultrusion molding according to the required performance, a pultruded molding material, It aims at providing the manufacturing method of the base material of a composite material, and the manufacturing method of a pultrusion molding material.
 上述した課題を解決し、目的を達成するために、複合材料の基材は、長手方向に延び、強化繊維に熱硬化性樹脂を含浸させた複合材料の基材であって、前記強化繊維が前記長手方向に沿って配向された第1層と、前記第1層に積層され、前記強化繊維の繊維方向が前記第1層と対向する対向面の面内方向、かつ、前記長手方向に対して所定の角度の方向に配向された第2層と、を含み、前記複合材料に要求される前記強化繊維の繊維方向の前記長手方向に対する角度を要求角度としたとき、前記所定の角度は、前記要求角度以上であることを特徴とする。 In order to solve the above-described problems and achieve the object, a base material of a composite material is a base material of a composite material extending in the longitudinal direction and impregnating a reinforcing fiber with a thermosetting resin, and the reinforcing fiber is A first layer oriented along the longitudinal direction, laminated on the first layer, and the fiber direction of the reinforcing fiber is in the in-plane direction of the facing surface facing the first layer, and with respect to the longitudinal direction A second layer oriented in a predetermined angle direction, and when the required angle is the angle with respect to the longitudinal direction of the fiber direction of the reinforcing fiber required for the composite material, the predetermined angle is: It is more than the said required angle, It is characterized by the above-mentioned.
 この構成によれば、第1層に積層され、強化繊維の繊維方向が長手方向に対して所定の角度の方向に配向された第2層を含み、この所定の角度は、複合材料に要求される要求角度以上であるので、引抜成形により成形される複合材料の基材の性能を要求性能に応じて調整することができる。 According to this configuration, the second layer is laminated on the first layer and the fiber direction of the reinforcing fiber is oriented in a direction at a predetermined angle with respect to the longitudinal direction, and the predetermined angle is required for the composite material. Therefore, the performance of the base material of the composite material formed by pultrusion can be adjusted according to the required performance.
 この構成において、前記第1層は、複数設けられ、前記第2層は、前記第1層の間に設けられていることが好ましい。この構成によれば、要求角度を精度よく実現することができる。 In this configuration, it is preferable that a plurality of the first layers are provided, and the second layer is provided between the first layers. According to this configuration, the required angle can be realized with high accuracy.
 これらの構成において、前記第2層は、複数積層され、複数の前記第2層は、前記第1層に近い層における前記所定の角度が、前記第1層から遠い層における前記所定の角度よりも小さいことが好ましい。この構成によれば、要求角度を精度よく実現することができる。 In these configurations, a plurality of the second layers are stacked, and the plurality of the second layers are such that the predetermined angle in a layer close to the first layer is greater than the predetermined angle in a layer far from the first layer. Is preferably small. According to this configuration, the required angle can be realized with high accuracy.
 また、上述した課題を解決し、目的を達成するために、引抜成形材料は、上記のいずれかの複数枚の複合材料の基材において、前記所定の角度が前記要求角度に近づけられた複合材料の基材を含むことを特徴とする。 In order to solve the above-described problems and achieve the object, the pultruded material is a composite material in which the predetermined angle is made closer to the required angle in any one of the plurality of composite material base materials described above. It is characterized by including the base material.
 この構成によれば、性能を要求性能に応じて調整された引抜成形材料を得ることができる。 According to this configuration, a pultruded material whose performance is adjusted according to the required performance can be obtained.
 この構成において、前記所定の角度が前記要求角度に近づけられた前記複合材料の基材の間隙に配された間隙材料をさらに含むことが好ましい。この構成によれば、複合材料成形体の間隙を間隙材料で好適に充填した引抜成形材料を得ることができる。 In this configuration, it is preferable to further include a gap material disposed in a gap between the base materials of the composite material in which the predetermined angle is close to the required angle. According to this configuration, it is possible to obtain a pultrusion molding material in which the gap between the composite material molded bodies is suitably filled with the gap material.
 また、上述した課題を解決し、目的を達成するために、複合材料の基材の製造方法は、長手方向に延び、強化繊維に熱硬化性樹脂を含浸させた複合材料の基材の製造方法であって、前記強化繊維の繊維方向が前記長手方向に沿って配向された第1層を準備する第1層準備工程と、前記強化繊維の繊維方向が前記第1層と対向することになる対向面の面内方向、かつ、前記長手方向に対して所定の角度の方向に配向された第2層を準備する第2層準備工程と、前記第1層と前記第2層とを積層する積層工程と、を含み、前記複合材料に要求される前記強化繊維の繊維方向の前記長手方向に対する角度を要求角度としたとき、前記所定の角度は、前記要求角度以上であることを特徴とする。 In order to solve the above-described problems and achieve the object, a method for manufacturing a composite material base material is a method for manufacturing a composite material base material that extends in the longitudinal direction and impregnates a reinforcing fiber with a thermosetting resin. The first layer preparing step of preparing a first layer in which the fiber direction of the reinforcing fiber is oriented along the longitudinal direction, and the fiber direction of the reinforcing fiber is opposed to the first layer. A second layer preparation step of preparing a second layer oriented in an in-plane direction of the opposing surface and in a direction at a predetermined angle with respect to the longitudinal direction, and laminating the first layer and the second layer. The predetermined angle is equal to or greater than the required angle when an angle of the reinforcing fiber required for the composite material with respect to the longitudinal direction is a required angle. .
 この構成によれば、第1層に積層され、強化繊維の繊維方向が長手方向に対して所定の角度の方向に配向された第2層を含み、この所定の角度は、複合材料に要求される要求角度以上である複合材料の基材を製造することができるので、引抜成形により成形される複合材料の基材の性能を要求性能に応じて調整することができる。 According to this configuration, the second layer is laminated on the first layer and the fiber direction of the reinforcing fiber is oriented in a direction at a predetermined angle with respect to the longitudinal direction, and the predetermined angle is required for the composite material. Therefore, the performance of the composite material substrate formed by pultrusion can be adjusted according to the required performance.
 この構成において、前記第1層準備工程では、前記強化繊維で構成された第1繊維層を準備し、前記第2層準備工程では、前記強化繊維で構成された第2繊維層を準備し、前記積層工程では、前記第1繊維層と前記第2繊維層とを積層し、前記積層工程の後に、前記第1繊維層と前記第2繊維層とに前記熱硬化性樹脂を含浸させる含浸工程をさらに含むことが好ましい。あるいは、この構成において、前記第1層準備工程では、前記強化繊維に熱硬化性樹脂を含浸させて前記第1層を形成し、前記第2層準備工程では、前記強化繊維に熱硬化性樹脂を含浸させて前記第2層を形成し、前記積層工程では、熱硬化性樹脂を含浸させて前記第1層と前記第2層とを積層することが好ましい。これらの構成によれば、引抜成形により成形される複合材料の基材の性能を要求性能に応じて調整することが可能な複合材料の基材を効率よく製造することができる。 In this configuration, in the first layer preparation step, a first fiber layer composed of the reinforcing fibers is prepared, and in the second layer preparation step, a second fiber layer composed of the reinforcing fibers is prepared, In the lamination step, the first fiber layer and the second fiber layer are laminated, and the impregnation step of impregnating the thermosetting resin into the first fiber layer and the second fiber layer after the lamination step. It is preferable that it is further included. Alternatively, in this configuration, in the first layer preparing step, the reinforcing fiber is impregnated with a thermosetting resin to form the first layer, and in the second layer preparing step, the reinforcing fiber is thermoset resin. It is preferable to form the second layer by impregnating the first layer and the second layer by impregnating a thermosetting resin in the lamination step. According to these configurations, it is possible to efficiently manufacture a composite material base material capable of adjusting the performance of the composite material base material formed by pultrusion molding according to the required performance.
 これらの構成において、前記第1層準備工程では、前記第1層を複数準備し、前記積層工程では、前記第2層を、複数の前記第1層の間に積層することが好ましい。この構成によれば、要求角度を精度よく実現することができる。 In these configurations, it is preferable that a plurality of the first layers are prepared in the first layer preparation step, and the second layer is laminated between the plurality of first layers in the lamination step. According to this configuration, the required angle can be realized with high accuracy.
 これらの構成において、前記第2層準備工程では、前記第2層を複数形成し、前記積層工程では、複数層の前記第2層を、前記第1層に近い層における前記所定の角度が、前記第1層から遠い層における前記所定の角度よりも小さくなるように積層することが好ましい。この構成によれば、要求角度を精度よく実現することができる。 In these configurations, in the second layer preparation step, a plurality of the second layers are formed, and in the stacking step, the plurality of second layers are formed at a predetermined angle in a layer close to the first layer, It is preferable to laminate the layers so as to be smaller than the predetermined angle in the layer far from the first layer. According to this configuration, the required angle can be realized with high accuracy.
 また、上述した課題を解決し、目的を達成するために、引抜成形材料の製造方法は、上記のいずれかの複合材料の基材の製造方法で製造した複数枚の複合材料の基材を引抜成形して複合材料成形体を形成する引抜工程を含むことを特徴とする。 In order to solve the above-described problems and achieve the object, a method for producing a pultruded material is obtained by drawing a plurality of composite material substrates produced by any one of the above-described composite material production methods. It includes a drawing step of forming a composite material molded body by molding.
 この構成によれば、性能を要求性能に応じて調整された引抜成形材料を得ることができる。 According to this configuration, a pultruded material whose performance is adjusted according to the required performance can be obtained.
 この構成において、引抜成形された前記複合材料の基材の間隙に間隙材料を配する間隙材料形成工程をさらに含むことが好ましい。この構成によれば、複合材料成形体の間隙を間隙材料で好適に充填した引抜成形材料を得ることができる。 In this configuration, it is preferable to further include a gap material forming step of arranging a gap material in the gap between the pultruded composite materials. According to this configuration, it is possible to obtain a pultrusion molding material in which the gap between the composite material molded bodies is suitably filled with the gap material.
 本発明によれば、引抜成形により成形される複合材料の基材の性能を要求性能に応じて調整することが可能な複合材料の基材、引抜成形材料、複合材料の基材の製造方法及び引抜成形材料の製造方法を提供することができる。 According to the present invention, a composite material base material capable of adjusting the performance of the composite material base material formed by pultrusion according to the required performance, a pultruded material, a composite material base material manufacturing method, and A method for producing a pultruded material can be provided.
図1は、本発明の実施形態に係る引抜成形材料の一例を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing an example of a pultruded material according to an embodiment of the present invention. 図2は、図1の引抜成形材料の断面概略図である。FIG. 2 is a schematic cross-sectional view of the pultruded material of FIG. 図3は、図1の引抜成形材料に含まれる複合材料の基材の一例を示す平面概略図である。FIG. 3 is a schematic plan view showing an example of a base material of a composite material included in the pultrusion material of FIG. 図4は、図3の複合材料の基材の概略構成図である。FIG. 4 is a schematic configuration diagram of the base material of the composite material of FIG. 図5は、図1の引抜成形材料に含まれる複合材料の基材の一例を示す平面概略図である。FIG. 5 is a schematic plan view showing an example of a base material of a composite material included in the pultruded material of FIG. 図6は、図5の複合材料の基材の概略構成図である。FIG. 6 is a schematic configuration diagram of the base material of the composite material of FIG. 図7は、図1の引抜成形材料に含まれる複合材料の基材の一例を示す概略構成図である。FIG. 7 is a schematic configuration diagram illustrating an example of a base material of a composite material included in the pultrusion material of FIG. 図8は、図1の引抜成形材料を製造する引抜成形材料の製造装置の一例の概略構成図である。FIG. 8 is a schematic configuration diagram of an example of a pultrusion material manufacturing apparatus for manufacturing the pultrusion material of FIG. 図9は、図3及び図4の複合材料の基材を含む引抜成形材料に用いられる複合材料の基材の一例を示す平面概略図である。FIG. 9 is a schematic plan view showing an example of a composite material substrate used for a pultruded material including the composite material substrate of FIGS. 3 and 4. 図10は、図5及び図6の複合材料の基材を含む引抜成形材料に用いられる複合材料の基材の一例を示す平面概略図である。FIG. 10 is a schematic plan view showing an example of a composite material substrate used for a pultruded material including the composite material substrate of FIGS. 5 and 6. 図11は、図7の複合材料の基材を含む引抜成形材料に用いられる複合材料の基材の一例を示す平面概略図である。FIG. 11 is a schematic plan view showing an example of a composite material substrate used in a pultruded material including the composite material substrate of FIG. 7. 図12は、図1の引抜成形材料を製造する引抜成形材料の製造方法のフローの一例を示すフローチャートである。FIG. 12 is a flowchart showing an example of a flow of a pultruded material manufacturing method for manufacturing the pultruded material of FIG. 図13は、図1の引抜成形材料を製造する引抜成形材料の製造方法のフローの一例を示すフローチャートである。FIG. 13 is a flowchart showing an example of a flow of a pultruded material manufacturing method for manufacturing the pultruded material of FIG. 図14は、従来の引抜成形材料の製造装置の概略構成図である。FIG. 14 is a schematic configuration diagram of a conventional pultrusion material production apparatus. 図15は、従来の引抜成形材料の製造装置で製造される引抜成形材料の断面概略図である。FIG. 15 is a schematic cross-sectional view of a pultruded material manufactured by a conventional pultruded material manufacturing apparatus.
 以下に、本発明に係る実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by this embodiment. In addition, the constituent elements in the embodiments include those that can be easily replaced by those skilled in the art or those that are substantially the same. Furthermore, the constituent elements described below can be appropriately combined.
[実施形態]
 図1は、本発明の実施形態に係る引抜成形材料の一例である引抜成形材料10を示す概略構成図である。図2は、図1の引抜成形材料10の断面概略図である。引抜成形材料10は、図1に示すX軸方向である長手方向に沿って引抜成形されたものであり、X軸方向に延びた形状を有する。引抜成形材料10は、図1に示すYZ平面内、すなわち長手方向に直交する断面内に所定の形状を有する。引抜成形材料10は、本実施形態ではT字状に成形されているが、これに限定されることなく、I字状、H字状、コの字状及び円筒形状等、いかなる形状に成形されていてもよい。
[Embodiment]
FIG. 1 is a schematic configuration diagram illustrating a pultrusion material 10 that is an example of a pultrusion material according to an embodiment of the present invention. FIG. 2 is a schematic cross-sectional view of the pultruded material 10 of FIG. The pultruded material 10 is pultruded along the longitudinal direction, which is the X-axis direction shown in FIG. 1, and has a shape extending in the X-axis direction. The pultruded material 10 has a predetermined shape in the YZ plane shown in FIG. 1, that is, in a cross section orthogonal to the longitudinal direction. The pultrusion molding material 10 is formed in a T shape in this embodiment, but is not limited to this, and is formed into any shape such as an I shape, an H shape, a U shape, and a cylindrical shape. It may be.
 引抜成形材料10は、図1及び図2に示すように、複数枚の複合材料の基材20a、20b、20cと、間隙材料22と、表面層24a、24b、24cと、を備える。複数枚の複合材料の基材20a、20b、20cは、X軸方向に延びるシート状であり、引抜成形の際に、YZ平面内の所定の形状となるように、変形されて加工されている。複合材料の基材20a、20b、20cは、いずれも、強化繊維と、強化繊維に含浸させた熱硬化性樹脂とを含む複合材料である。複合材料の基材20a、20b、20cは、所定の形状に引抜成形された複合材料成形体を形成している。以下において、複合材料の基材20a、20b、20cを区別しない場合は適宜、複合材料の基材20と称する。 The pultrusion molding material 10 includes a plurality of composite base materials 20a, 20b, and 20c, a gap material 22, and surface layers 24a, 24b, and 24c, as shown in FIGS. The plurality of composite base materials 20a, 20b, and 20c are in the form of a sheet extending in the X-axis direction, and are deformed and processed so as to have a predetermined shape in the YZ plane during pultrusion. . The base materials 20a, 20b, and 20c of the composite material are all composite materials including reinforcing fibers and a thermosetting resin impregnated in the reinforcing fibers. The base materials 20a, 20b, and 20c of the composite material form a composite material molded body that is pultruded into a predetermined shape. In the following description, when the base materials 20a, 20b, and 20c of the composite material are not distinguished, they are appropriately referred to as the base material 20 of the composite material.
 複合材料の基材20の強化繊維は、5μm以上7μm以下の範囲内の基本繊維を数100本から数1000本程度束ねたものが例示される。複合材料の基材20の強化繊維を構成する基本繊維は、いずれも炭素繊維が例示される。複合材料の基材20の強化繊維を構成する基本繊維は、これに限定されず、その他のプラスチック繊維、ガラス繊維又は金属繊維でもよい。複合材料の基材20の熱硬化性樹脂は、いずれもエポキシ樹脂が例示される。複合材料の基材20の熱硬化性樹脂は、これに限定されず、その他の熱硬化性樹脂でもよい。 Examples of the reinforcing fibers of the base material 20 of the composite material include bundles of several hundred to several thousand basic fibers in the range of 5 μm to 7 μm. As for the basic fiber which comprises the reinforced fiber of the base material 20 of a composite material, all are carbon fiber. The basic fiber constituting the reinforcing fiber of the base material 20 of the composite material is not limited to this, and may be other plastic fiber, glass fiber, or metal fiber. As for the thermosetting resin of the base material 20 of a composite material, all are an epoxy resin. The thermosetting resin of the base material 20 of the composite material is not limited to this, and may be other thermosetting resins.
 複合材料の基材20の熱硬化性樹脂は、軟化状態と、硬化状態と、半硬化状態となることができる。軟化状態は、熱硬化性樹脂を熱硬化させる前の状態である。軟化状態は、自己支持性を有さない状態であり、支持体に支持されていない場合に形状を保持できない状態である。軟化状態は、加熱されて、熱硬化性樹脂が熱硬化反応をすることができる状態である。硬化状態は、熱硬化性樹脂を熱硬化させた後の状態である。硬化状態は、自己支持性を有する状態であり、支持体に支持されていない場合でも形状を保持できる状態である。硬化状態は、加熱されても、熱硬化樹脂が熱硬化反応をすることができない状態である。半硬化状態は、軟化状態と硬化状態との間の状態である。半硬化状態は、硬化状態よりも弱い程度の熱硬化を熱硬化性樹脂にさせた状態である。半硬化状態は、自己支持性を有する状態であり、支持体に支持されていない場合でも形状を保持できる状態である。半硬化状態は、加熱されて、熱硬化性樹脂が熱硬化反応をすることができる状態である。複合材料の基材20は、引抜成形に際し、又は引抜成形後に所定の加熱処理をされて、熱硬化性樹脂が半硬化状態であるプリプレグであるか、又は熱硬化性樹脂が硬化状態であることが好ましい。 The thermosetting resin of the base material 20 of the composite material can be in a softened state, a cured state, and a semi-cured state. The softened state is a state before thermosetting the thermosetting resin. The softened state is a state that does not have self-supporting property, and is a state where the shape cannot be maintained when it is not supported by the support. The softened state is a state in which the thermosetting resin can be thermoset by being heated. The cured state is a state after thermosetting the thermosetting resin. The cured state is a state having self-supporting property, and is a state in which the shape can be maintained even when not supported by the support. The cured state is a state where the thermosetting resin cannot perform a thermosetting reaction even when heated. The semi-cured state is a state between a softened state and a cured state. The semi-cured state is a state in which thermosetting resin having a degree weaker than the cured state is made into a thermosetting resin. The semi-cured state is a state having self-supporting property, and is a state in which the shape can be maintained even when not supported by the support. The semi-cured state is a state in which the thermosetting resin can be thermoset by being heated. The base material 20 of the composite material is a prepreg in which the thermosetting resin is in a semi-cured state during the pultrusion molding or after the pultrusion molding, or the thermosetting resin is in a cured state. Is preferred.
 間隙材料22は、引抜成形された複数枚の複合材料の基材20a、20b、20cの間隙、すなわち複合材料成形体の間隙に配されている。間隙材料22は、本実施形態では、炭素繊維等の強化繊維に樹脂を含浸させて束ねたものが例示されるが、本発明はこれに限定されず、その他の強化繊維と熱硬化性樹脂とを組み合わせたものでも良い。 The gap material 22 is arranged in a gap between a plurality of pultruded composite base materials 20a, 20b, and 20c, that is, a gap between the composite material molded bodies. In the present embodiment, the gap material 22 is exemplified by carbon fiber or other reinforcing fibers impregnated with a resin and bundled, but the present invention is not limited to this, and other reinforcing fibers, thermosetting resins, A combination of these may be used.
 表面層24a、24b、24cは、それぞれ、複合材料の基材20a、20b、20cにおけるY方向又はZ方向の外側の表面に設けられた層である。表面層24a、24b、24cは、本実施形態では、長手方向に沿った方向に配向した強化繊維と、強化繊維に含浸させた熱硬化性樹脂とを含む複合材料、すなわち0度ファイバー層が例示されるが、本発明はこれに限定されず、表面層24a、24b、24cがなくてもよい。ここで、0度ファイバー層とは、強化繊維の繊維方向と長手方向との角度が0度または0度付近である層である。表面層24a、24b、24cに用いられる0度ファイバー層に含まれる強化繊維及び熱硬化性樹脂は、複合材料の基材20に含まれる強化繊維及び熱硬化性樹脂と同じものが例示される。以下において、表面層24a、24b、24cを区別しない場合は適宜、表面層24と称する。 The surface layers 24a, 24b, and 24c are layers provided on the outer surfaces in the Y direction or the Z direction of the composite materials 20a, 20b, and 20c, respectively. In the present embodiment, the surface layers 24a, 24b, and 24c are exemplified by composite materials including reinforcing fibers oriented in the longitudinal direction and thermosetting resin impregnated in the reinforcing fibers, that is, 0 degree fiber layers. However, the present invention is not limited to this, and the surface layers 24a, 24b, and 24c may be omitted. Here, the 0-degree fiber layer is a layer in which the angle between the fiber direction and the longitudinal direction of the reinforcing fiber is 0 degrees or near 0 degrees. Examples of the reinforcing fiber and the thermosetting resin included in the 0-degree fiber layer used for the surface layers 24a, 24b, and 24c are the same as the reinforcing fiber and the thermosetting resin included in the base material 20 of the composite material. Hereinafter, when the surface layers 24a, 24b, and 24c are not distinguished, they are appropriately referred to as the surface layer 24.
 図3は、図1の引抜成形材料10に含まれる複合材料の基材20の一例である複合材料の基材30を示す平面概略図である。図4は、図3の複合材料の基材30の概略構成図である。図3及び図4において、X軸に沿って湾曲変形加工がされていない複合材料の基材20cの一例となる複合材料の基材30が示されているが、複合材料の基材20a、20bの一例となる複合材料の基材30も同様の構成を備える。複合材料の基材30は、図3及び図4に示すように、第1層32と、第2層34と、を備える。複合材料の基材30は、本実施形態では第1層32の-Z方向に第2層34が積層されているが、本発明はこれに限定されることなく、第1層32の+Z方向に第2層34が積層されていてもよい。 FIG. 3 is a schematic plan view showing a composite material substrate 30 which is an example of the composite material substrate 20 included in the pultruded material 10 of FIG. FIG. 4 is a schematic configuration diagram of the base material 30 of the composite material of FIG. FIGS. 3 and 4 show a composite material base material 30 that is an example of a composite material base material 20c that is not subjected to bending deformation processing along the X-axis, but the composite material base materials 20a and 20b are shown. The composite material base material 30 as an example has the same configuration. As shown in FIGS. 3 and 4, the composite material base 30 includes a first layer 32 and a second layer 34. In the present embodiment, the composite material substrate 30 has the second layer 34 laminated in the −Z direction of the first layer 32, but the present invention is not limited to this, and the + Z direction of the first layer 32 is not limited thereto. The second layer 34 may be laminated.
 ここで、2つ以上の層を積層させたものは、単純に2つ以上の層を重ね合わせたものだけでなく、2つ以上の層を重ね合わせた後に、別途織る等をして繊維をまとめたもの、及び、2つ以上の層を重ね合わせた後に、別途バインダを用いる等をしたもの、等も含む。以下においては、2つ以上の層を単に重ね合わせたもの、2つ以上の層を重ね合わせた後に別途織る等をして繊維をまとめたもの、2つ以上の層を重ね合わせた後に別途バインダを用いたもの等も含む概念として、積層させたものという表現を用いる。 Here, the laminate of two or more layers is not simply a laminate of two or more layers, but also two or more layers are overlaid and then woven or the like separately. Also included are those that have been combined, and those in which two or more layers are stacked and then a binder is used separately. In the following, two or more layers are simply overlapped, two or more layers are stacked and then weaved separately, etc., and the fibers are combined, and two or more layers are stacked and a separate binder As a concept including the one using the above, the expression “laminated” is used.
 第1層32は、強化繊維32fと、強化繊維32fに含浸させた熱硬化性樹脂と、を備える。図3では各層の熱硬化性樹脂が混ざっているため符号を省略しており、図4では各層における熱硬化性樹脂の図示を省略している。第1層32は、強化繊維32fの繊維方向が長手方向であるX軸方向に沿って配向されている。第2層34は、強化繊維34fと、強化繊維34fに含浸させた熱硬化性樹脂と、を備える。第2層34は、強化繊維34fの繊維方向が第1層32と対向する対向面の面内方向、かつ、長手方向に対して所定の角度34θの方向に配向されている。第1層32と対向する対向面の面内方向は、本実施形態では、シートの面内方向と一致する。 The first layer 32 includes reinforcing fibers 32f and thermosetting resin impregnated in the reinforcing fibers 32f. In FIG. 3, since the thermosetting resin of each layer is mixed, the code | symbol is abbreviate | omitted, and illustration of the thermosetting resin in each layer is abbreviate | omitted in FIG. The first layer 32 is oriented along the X-axis direction in which the fiber direction of the reinforcing fibers 32f is the longitudinal direction. The second layer 34 includes reinforcing fibers 34f and a thermosetting resin impregnated in the reinforcing fibers 34f. In the second layer 34, the fiber direction of the reinforcing fibers 34 f is oriented in the in-plane direction of the facing surface facing the first layer 32, and in the direction of a predetermined angle 34θ with respect to the longitudinal direction. In the present embodiment, the in-plane direction of the facing surface that faces the first layer 32 coincides with the in-plane direction of the sheet.
 複合材料の基材30は、強化繊維32f及び強化繊維34fのみでも高い剛性及び強度等の性能を有することができ、熱硬化性樹脂を含浸させることでさらに高い剛性及び強度等の性能を有することができる。 The base material 30 of the composite material can have performance such as high rigidity and strength even with only the reinforcing fiber 32f and the reinforcing fiber 34f, and has higher performance such as rigidity and strength when impregnated with a thermosetting resin. Can do.
 角度34θは、長手方向であるX軸方向を基準として、+Z方向から見て反時計回りにプラス、+Z方向から見て時計回りにマイナスで示される角度である。角度34θは、0度から90度までのプラスの値と、-0度から-90度までのマイナスの値とを取ることができ、0度と-0度とが同じ意味を持ち、90度と-90度とが同じ意味を持つパラメータである。角度34θは、本実施形態では、+45度が例示されるが、本発明はこれに限定されず、+30度、+60度、-30度、-45度、又は-60度でもよい。以下において、強化繊維の繊維方向の角度がθの層を適宜、θファイバー層と称する。例えば、強化繊維の繊維方向の角度が0度の層を適宜0度ファイバー層と称し、強化繊維の繊維方向の角度が+45度の層を適宜+45度ファイバー層と称し、強化繊維の繊維方向の角度が-45度の層を適宜-45度ファイバー層と称する。なお、0度ファイバー層に関しては、+0度ファイバー層と-0度ファイバー層とが実質的に同じなので、+又は-の符号を付さず、単に0度ファイバー層と称する。また、90度ファイバー層に関しては、+90度ファイバー層と-90度ファイバー層とが実質的に同じなので、+又は-の符号を付さず、単に90度ファイバー層と称する。 The angle 34θ is an angle indicated by a plus counterclockwise when viewed from the + Z direction and a minus clockwise when viewed from the + Z direction with respect to the X-axis direction which is the longitudinal direction. The angle 34θ can take a positive value from 0 degrees to 90 degrees and a negative value from −0 degrees to −90 degrees. 0 degrees and −0 degrees have the same meaning, and 90 degrees And -90 degrees are parameters having the same meaning. In this embodiment, the angle 34θ is exemplified by +45 degrees, but the present invention is not limited to this, and may be +30 degrees, +60 degrees, −30 degrees, −45 degrees, or −60 degrees. Hereinafter, a layer having an angle θ in the fiber direction of the reinforcing fiber is appropriately referred to as a θ fiber layer. For example, a layer in which the fiber direction angle of the reinforcing fiber is 0 degree is appropriately referred to as a 0 degree fiber layer, and a layer in which the angle of the reinforcing fiber direction is +45 degree is appropriately referred to as a +45 degree fiber layer. A layer having an angle of −45 degrees is appropriately referred to as a −45 degree fiber layer. Regarding the 0 degree fiber layer, since the +0 degree fiber layer and the −0 degree fiber layer are substantially the same, the + or − sign is not added, and is simply referred to as the 0 degree fiber layer. Further, regarding the 90 degree fiber layer, since the +90 degree fiber layer and the -90 degree fiber layer are substantially the same, the + or-sign is not attached, and is simply referred to as the 90 degree fiber layer.
 角度34θは、要求角度を精度よく実現する角度である。ここで、要求角度は、引抜成形材料10に要求される強化繊維の繊維方向の、X軸方向である長手方向に対する設計角度である。角度34θは、複合材料の基材30において要求角度と等しく、かつ、一様であることが最も好ましいが、後述する初期角度の角度34θ´と同じプラスマイナスの方向であって、角度34θ´以下の値であり、角度34θ´よりも要求角度に近い値であれば、非一様な分布を有していても良い。例えば、角度34θは、絶対値が、要求角度の絶対値以上であり、角度34θ´の絶対値以下の範囲内で、非一様な分布を有していても良い。あるいは、角度34θは、要求角度を平均の角度として、絶対値が、角度34θ´の絶対値以下の範囲内で、非一様な分布を有していても良い。 The angle 34θ is an angle that accurately achieves the required angle. Here, the required angle is a design angle with respect to the longitudinal direction, which is the X-axis direction, in the fiber direction of the reinforcing fiber required for the pultruded material 10. The angle 34θ is most preferably equal to and uniform with the required angle in the base material 30 of the composite material. However, the angle 34θ is in the same plus / minus direction as the angle 34θ ′ of the initial angle described later, and is equal to or less than the angle 34θ ′. As long as the value is closer to the required angle than the angle 34θ ′, it may have a non-uniform distribution. For example, the angle 34θ may have a non-uniform distribution within a range where the absolute value is not less than the absolute value of the required angle and not more than the absolute value of the angle 34θ ′. Alternatively, the angle 34θ may have a non-uniform distribution within a range where the required angle is an average angle and the absolute value is less than or equal to the absolute value of the angle 34θ ′.
 図5は、図1の引抜成形材料10に含まれる複合材料の基材20の一例である複合材料の基材40を示す平面概略図である。図6は、図5の複合材料の基材40の概略構成図である。図5及び図6において、X軸に沿って湾曲変形加工がされていない複合材料の基材20cの一例となる複合材料の基材40が示されているが、複合材料の基材20a、20bの一例となる複合材料の基材40も同様の構成を備える。複合材料の基材40は、図5及び図6に示すように、第1層42と、複数の第2層44、46と、を備える。複合材料の基材40は、本実施形態では第1層42の-Z方向に第2層44、46が積層されているが、本発明はこれに限定されることなく、第1層42の+Z方向に第2層44、46が積層されていてもよい。また、複合材料の基材40は、第1層42の-Z方向に第2層44が積層され、第1層42の+Z方向に第2層46が積層されていてもよく、第1層42の-Z方向に第2層46が積層され、第1層42の+Z方向に第2層44が積層されていてもよい。 FIG. 5 is a schematic plan view showing a composite material substrate 40 which is an example of the composite material substrate 20 included in the pultruded material 10 of FIG. FIG. 6 is a schematic configuration diagram of the base material 40 of the composite material of FIG. FIGS. 5 and 6 show a composite material base material 40 as an example of the composite material base material 20c that is not subjected to bending deformation processing along the X-axis, but the composite material base materials 20a and 20b are shown. The base material 40 of the composite material as an example has the same configuration. As shown in FIGS. 5 and 6, the composite base material 40 includes a first layer 42 and a plurality of second layers 44 and 46. In the present embodiment, the composite material base material 40 has the second layers 44 and 46 laminated in the −Z direction of the first layer 42, but the present invention is not limited to this, and the first layer 42 Second layers 44 and 46 may be stacked in the + Z direction. Further, the composite material base material 40 may have a second layer 44 laminated in the −Z direction of the first layer 42 and a second layer 46 laminated in the + Z direction of the first layer 42. The second layer 46 may be stacked in the −Z direction of 42, and the second layer 44 may be stacked in the + Z direction of the first layer 42.
 第1層42は、強化繊維42fと、強化繊維42fに含浸させた熱硬化性樹脂と、を備える。図5では各層の熱硬化性樹脂が混ざっているため符号を省略しており、図6では各層における熱硬化性樹脂の図示を省略している。第1層42は、強化繊維42fの繊維方向が長手方向であるX軸方向に沿って配向されている。第2層44は、強化繊維44fと、強化繊維44fに含浸させた熱硬化性樹脂と、を備える。第2層44は、強化繊維44fの繊維方向が第1層42と対向する対向面の面内方向、かつ、長手方向であるX軸方向に対して所定の角度44θの方向に配向されている。第1層42と対向する対向面の面内方向は、本実施形態では、シートの面内方向と一致する。第2層46は、強化繊維46fと、強化繊維46fに含浸させた熱硬化性樹脂と、を備える。第2層46は、強化繊維46fの繊維方向が第1層42と対向する対向面の面内方向、かつ、長手方向に対して所定の角度46θの方向に配向されている。角度44θ及び角度46θは、いずれも、上記の角度34θと同様の方法で示される角度である。角度44θ及び角度46θは、本実施形態では、+45度及び-45度が例示されるが、本発明はこれに限定されず、+30度及び-30度、+60度及び-60度、-30度及び+30、-45度及び+45、又は-60度及び+60でもよい。 The first layer 42 includes reinforcing fibers 42f and a thermosetting resin impregnated in the reinforcing fibers 42f. In FIG. 5, since the thermosetting resin of each layer is mixed, a code | symbol is abbreviate | omitted, and illustration of the thermosetting resin in each layer is abbreviate | omitted in FIG. The first layer 42 is oriented along the X-axis direction in which the fiber direction of the reinforcing fibers 42f is the longitudinal direction. The second layer 44 includes reinforcing fibers 44f and a thermosetting resin impregnated in the reinforcing fibers 44f. In the second layer 44, the fiber direction of the reinforcing fibers 44f is oriented in a direction of a predetermined angle 44θ with respect to the in-plane direction of the facing surface facing the first layer 42 and the X-axis direction that is the longitudinal direction. . In the present embodiment, the in-plane direction of the facing surface facing the first layer 42 coincides with the in-plane direction of the sheet. The second layer 46 includes reinforcing fibers 46f and a thermosetting resin impregnated in the reinforcing fibers 46f. In the second layer 46, the fiber direction of the reinforcing fibers 46f is oriented in the in-plane direction of the facing surface facing the first layer 42 and in the direction of a predetermined angle 46θ with respect to the longitudinal direction. Each of the angle 44θ and the angle 46θ is an angle indicated by the same method as the angle 34θ described above. In the present embodiment, the angle 44θ and the angle 46θ are exemplified by +45 degrees and −45 degrees, but the present invention is not limited to this, and +30 degrees and −30 degrees, +60 degrees and −60 degrees, −30 degrees. And +30, −45 degrees and +45, or −60 degrees and +60.
 複合材料の基材40は、強化繊維42f、強化繊維44f及び強化繊維46fのみでも高い剛性及び強度等の性能を有することができ、熱硬化性樹脂を含浸させることでさらに高い剛性及び強度等の性能を有することができる。 The base material 40 of the composite material can have performance such as high rigidity and strength only by the reinforcing fibers 42f, the reinforcing fibers 44f, and the reinforcing fibers 46f. By impregnating with the thermosetting resin, the higher rigidity and strength can be obtained. Can have performance.
 角度44θは、要求角度を精度よく実現する角度である。角度44θは、複合材料の基材40において要求角度と等しく、かつ、一様であることが最も好ましいが、後述する初期角度の角度44θ´と同じプラスマイナスの方向であって、角度44θ´以下の値であり、角度44θ´よりも要求角度に近い値であれば、非一様な分布を有していても良い。例えば、角度44θは、絶対値が、要求角度の絶対値以上であり、角度44θ´の絶対値以下の範囲内で、非一様な分布を有していても良い。あるいは、角度44θは、要求角度を平均の角度として、絶対値が、角度44θ´の絶対値以下の範囲内で、非一様な分布を有していても良い。 The angle 44θ is an angle that achieves the required angle with high accuracy. Although it is most preferable that the angle 44θ is equal to and uniform with the required angle in the base material 40 of the composite material, it is the same plus or minus direction as the angle 44θ ′ of the initial angle described later, and is equal to or less than the angle 44θ ′. As long as the value is closer to the required angle than the angle 44θ ′, it may have a non-uniform distribution. For example, the angle 44θ may have a non-uniform distribution within the range where the absolute value is not less than the absolute value of the required angle and not more than the absolute value of the angle 44θ ′. Alternatively, the angle 44θ may have a non-uniform distribution within a range where the required angle is an average angle and the absolute value is less than or equal to the absolute value of the angle 44θ ′.
 角度46θは、要求角度を精度よく実現する角度である。角度46θは、複合材料の基材40において要求角度と等しく、かつ、一様であることが最も好ましいが、後述する初期角度の角度46θ´と同じプラスマイナスの方向であって、角度46θ´以下の値であり、角度46θ´よりも要求角度に近い値であれば、非一様な分布を有していても良い。例えば、角度46θは、絶対値が、要求角度の絶対値以上であり、角度46θ´の絶対値以下の範囲内で、非一様な分布を有していても良い。あるいは、角度46θは、要求角度を平均の角度として、絶対値が、角度46θ´の絶対値以下の範囲内で、非一様な分布を有していても良い。 The angle 46θ is an angle that realizes the required angle with high accuracy. It is most preferable that the angle 46θ is equal to and uniform with the required angle in the base material 40 of the composite material. However, the angle 46θ is the same plus or minus direction as the angle 46θ ′ of the initial angle described later, and is equal to or less than the angle 46θ ′. As long as it is a value closer to the required angle than the angle 46θ ′, it may have a non-uniform distribution. For example, the angle 46θ may have a non-uniform distribution within the range where the absolute value is not less than the absolute value of the required angle and not more than the absolute value of the angle 46θ ′. Alternatively, the angle 46θ may have a non-uniform distribution within a range where the required angle is an average angle and the absolute value is equal to or smaller than the absolute value of the angle 46θ ′.
 図7は、図1の引抜成形材料10に含まれる複合材料の基材20の一例である複合材料の基材60を示す概略構成図である。図7において、X軸に沿って湾曲変形加工がされていない複合材料の基材20cの一例となる複合材料の基材60が示されているが、複合材料の基材20a、20bの一例となる複合材料の基材60も同様の構成を備える。複合材料の基材60は、図7に示すように、複数の第1層62と、複数の第2層64、66、68と、を備える。詳細には、複合材料の基材60は、4枚の第1層62と、2枚の第2層64と、1枚の第2層66と、2枚の第2層68と、を備える。複合材料の基材60は、本実施形態では複数の第1層62及び複数の第2層64、66、68が、+Z方向から-Z方向へ向けて、第1層62、第2層64、第2層66、第2層68、第1層62、第1層62、第2層64、第1層62、第2層68の順に積層されているが、本発明はこれに限定されることなく、いかなる順に積層されてもよい。矢印Dは、複合材料の基材60が引抜成形された方向を表すものであり、X軸方向すなわち長手方向を向いている。 FIG. 7 is a schematic configuration diagram showing a composite material substrate 60 which is an example of the composite material substrate 20 included in the pultrusion material 10 of FIG. 1. In FIG. 7, a composite material base 60 that is an example of a composite material base 20 c that is not curved and deformed along the X-axis is shown, but examples of the composite materials 20 a and 20 b The composite material base material 60 having the same structure is also provided. As shown in FIG. 7, the composite material base 60 includes a plurality of first layers 62 and a plurality of second layers 64, 66, 68. Specifically, the composite base material 60 includes four first layers 62, two second layers 64, one second layer 66, and two second layers 68. . In the present embodiment, the composite material substrate 60 includes a plurality of first layers 62 and a plurality of second layers 64, 66, and 68, wherein the first layer 62 and the second layer 64 are directed from the + Z direction to the −Z direction. , The second layer 66, the second layer 68, the first layer 62, the first layer 62, the second layer 64, the first layer 62, and the second layer 68 are laminated in this order, but the present invention is not limited to this. The layers may be laminated in any order. An arrow D represents a direction in which the composite material base material 60 is pultruded, and faces the X-axis direction, that is, the longitudinal direction.
 第1層62は、強化繊維62fと、強化繊維62fに含浸させた熱硬化性樹脂と、を備える。図7では、各層における熱硬化性樹脂の図示を省略している。第1層62は、強化繊維62fの繊維方向が長手方向であるX軸方向に沿って配向されている。第2層64は、強化繊維64fと、強化繊維64fに含浸させた熱硬化性樹脂と、を備える。第2層64は、強化繊維64fの繊維方向が第1層62と対向する対向面の面内方向、かつ、長手方向に対して所定の角度64θの方向に配向されている。第1層62と対向する対向面の面内方向は、本実施形態では、シートの面内方向と一致する。第2層66は、強化繊維66fと、強化繊維66fに含浸させた熱硬化性樹脂と、を備える。第2層66は、強化繊維66fの繊維方向が第1層62と対向する対向面の面内方向、かつ、長手方向に対して所定の角度66θの方向に配向されている。第2層68は、強化繊維68fと、強化繊維68fに含浸させた熱硬化性樹脂と、を備える。第2層68は、強化繊維68fの繊維方向が第1層62と対向する対向面の面内方向、かつ、長手方向に対して所定の角度68θの方向に配向されている。角度64θ、66θ及び68θは、いずれも、上記の角度34θと同様の方法で示される角度である。角度64θ、66θ及び角度68θは、本実施形態では、-45度、90度及び+45度が例示されるが、本発明はこれに限定されず、-30度、-45度、-60度、+30度、+45度、+60度及び+90度等のいかなる組み合わせでもよい。 The first layer 62 includes reinforcing fibers 62f and thermosetting resin impregnated in the reinforcing fibers 62f. In FIG. 7, illustration of the thermosetting resin in each layer is omitted. The first layer 62 is oriented along the X-axis direction in which the fiber direction of the reinforcing fibers 62f is the longitudinal direction. The second layer 64 includes reinforcing fibers 64f and a thermosetting resin impregnated in the reinforcing fibers 64f. In the second layer 64, the fiber direction of the reinforcing fibers 64f is oriented in the in-plane direction of the opposing surface facing the first layer 62 and in the direction of a predetermined angle 64θ with respect to the longitudinal direction. In the present embodiment, the in-plane direction of the facing surface that faces the first layer 62 coincides with the in-plane direction of the sheet. The second layer 66 includes reinforcing fibers 66f and a thermosetting resin impregnated in the reinforcing fibers 66f. In the second layer 66, the fiber direction of the reinforcing fibers 66f is oriented in the in-plane direction of the facing surface facing the first layer 62 and in a direction of a predetermined angle 66θ with respect to the longitudinal direction. The second layer 68 includes reinforcing fibers 68f and a thermosetting resin impregnated in the reinforcing fibers 68f. In the second layer 68, the fiber direction of the reinforcing fibers 68f is oriented in the in-plane direction of the facing surface facing the first layer 62 and in the direction of a predetermined angle 68θ with respect to the longitudinal direction. The angles 64θ, 66θ, and 68θ are all angles shown in the same manner as the angle 34θ described above. In the present embodiment, the angles 64θ, 66θ and the angle 68θ are exemplified by −45 degrees, 90 degrees, and +45 degrees, but the present invention is not limited thereto, and is −30 degrees, −45 degrees, −60 degrees, Any combination such as +30 degrees, +45 degrees, +60 degrees, and +90 degrees may be used.
 複合材料の基材60は、強化繊維62f、強化繊維64f、強化繊維66f及び強化繊維68fのみでも高い剛性及び強度等の性能を有することができ、熱硬化性樹脂を含浸させることでさらに高い剛性及び強度等の性能を有することができる。 The base material 60 of the composite material can have performance such as high rigidity and strength only by the reinforcing fiber 62f, the reinforcing fiber 64f, the reinforcing fiber 66f, and the reinforcing fiber 68f, and even higher rigidity can be obtained by impregnating the thermosetting resin. And performance such as strength.
 角度64θは、要求角度を精度よく実現する角度である。角度64θは、複合材料の基材60において要求角度と等しく、かつ、一様であることが最も好ましいが、後述する初期角度の角度64θ´と同じプラスマイナスの方向であって、角度64θ´以下の値であり、角度64θ´よりも要求角度に近い値であれば、非一様な分布を有していても良い。例えば、角度64θは、絶対値が、要求角度の絶対値以上であり、角度64θ´の絶対値以下の範囲内で、非一様な分布を有していても良い。あるいは、角度64θは、要求角度を平均の角度として、絶対値が、角度64θ´の絶対値以下の範囲内で、非一様な分布を有していても良い。 The angle 64θ is an angle that accurately achieves the required angle. The angle 64θ is most preferably equal to and uniform with the required angle in the base material 60 of the composite material. However, the angle 64θ is in the same plus / minus direction as the angle 64θ ′ of the initial angle described later, and is equal to or less than the angle 64θ ′. As long as it is a value closer to the required angle than the angle 64θ ′, it may have a non-uniform distribution. For example, the angle 64θ may have a non-uniform distribution within the range where the absolute value is not less than the absolute value of the required angle and not more than the absolute value of the angle 64θ ′. Alternatively, the angle 64θ may have a non-uniform distribution within a range where the required angle is an average angle and the absolute value is less than or equal to the absolute value of the angle 64θ ′.
 角度66θは、要求角度を精度よく実現する角度である。角度66θは、複合材料の基材60において要求角度である90度と等しく、かつ、一様であることが最も好ましいが、要求角度である90度に近い値であれば、非一様な分布を有していても良い。例えば、角度66θは、要求角度である90度を平均の角度として、非一様な分布を有していても良い。 The angle 66θ is an angle that realizes the required angle with high accuracy. The angle 66θ is most preferably equal to and uniform with the required angle of 90 degrees in the base material 60 of the composite material, but if the value is close to the required angle of 90 degrees, the distribution is non-uniform. You may have. For example, the angle 66θ may have a non-uniform distribution with the required angle of 90 degrees as an average angle.
 角度68θは、要求角度を精度よく実現する角度である。角度68θは、複合材料の基材60において要求角度と等しく、かつ、一様であることが最も好ましいが、後述する初期角度の角度68θ´と同じプラスマイナスの方向であって、角度68θ´以下の値であり、角度68θ´よりも要求角度に近い値であれば、非一様な分布を有していても良い。例えば、角度68θは、絶対値が、要求角度の絶対値以上であり、角度68θ´の絶対値以下の範囲内で、非一様な分布を有していても良い。あるいは、角度68θは、要求角度を平均の角度として、絶対値が、角度68θ´の絶対値以下の範囲内で、非一様な分布を有していても良い。 The angle 68θ is an angle that accurately achieves the required angle. It is most preferable that the angle 68θ is equal to and uniform with the required angle in the base material 60 of the composite material. However, the angle 68θ is in the same plus / minus direction as the angle 68θ ′ of the initial angle described later, and is equal to or less than the angle 68θ ′ As long as it is a value closer to the required angle than the angle 68θ ′, it may have a non-uniform distribution. For example, the absolute value of the angle 68θ may be not less than the absolute value of the required angle and may have a non-uniform distribution within the range of the absolute value of the angle 68θ ′ or less. Alternatively, the angle 68θ may have a non-uniform distribution within a range where the required angle is an average angle and the absolute value is equal to or smaller than the absolute value of the angle 68θ ′.
 複合材料の基材60は、+Z方向から、0度ファイバー層である第1層62、-45度ファイバーである第2層64、90度ファイバーである第2層66、+45度ファイバーである第2層68、0度ファイバー層である第1層62、の順で積層されている。すなわち、複合材料の基材60は、第1層62が複数積層され、複数積層される第1層62の間に第2層64、66、68が設けられているため、第2層64、66、68が第1層62に引っ張られる形で引抜成形されたものである。そのため、複合材料の基材60を備える引抜成形材料10は、引抜成形材料10の長手方向以外の方向に配向された強化繊維64f、66f、68fの繊維方向が配向される角度64θ、66θ、68θが、要求角度を精度よく実現する好ましい形態となる。 From the + Z direction, the composite base material 60 includes a first layer 62 that is a 0-degree fiber layer, a second layer 64 that is a −45-degree fiber, a second layer 66 that is a 90-degree fiber, and a first layer that is a + 45-degree fiber. Two layers 68 and a first layer 62 that is a 0-degree fiber layer are stacked in this order. That is, the composite material base material 60 includes a plurality of first layers 62 laminated, and the second layers 64, 66, and 68 are provided between the plurality of first layers 62. 66 and 68 are pultruded so as to be pulled by the first layer 62. Therefore, the pultruded material 10 including the base material 60 of the composite material has angles 64θ, 66θ, 68θ in which the fiber directions of the reinforcing fibers 64f, 66f, 68f oriented in a direction other than the longitudinal direction of the pultruded material 10 are oriented. However, this is a preferable mode for realizing the required angle with high accuracy.
 また、複合材料の基材60は、第2層64、66、68が複数積層され、第2層64、66、68は、+Z方向側の第1層62に近い第2層64における角度64θが、同じ第1層62から遠い第2層66における角度66θよりも小さく、+Z方向側から2つめの第1層62に近い第2層68における角度68θが、同じ第1層62から遠い第2層66における角度66θよりも小さい。ただし、各角度64θ、66θ、68θはこれに限らず、隣接する層との角度が異なればよい。複合材料の基材60を備える引抜成形材料10は、引抜成形材料10の長手方向以外の方向に配向された強化繊維64f、66f、68fの繊維方向が配向される角度64θ、66θ、68θが、要求角度を精度よく実現する好ましい形態となる。 In addition, the composite material base material 60 includes a plurality of second layers 64, 66, and 68, and the second layers 64, 66, and 68 have an angle 64θ in the second layer 64 close to the first layer 62 on the + Z direction side. Is smaller than the angle 66θ in the second layer 66 far from the same first layer 62, and the angle 68θ in the second layer 68 near the second first layer 62 from the + Z direction side is far from the same first layer 62. It is smaller than the angle 66θ in the two layers 66. However, the angles 64θ, 66θ, and 68θ are not limited to this, and the angles with the adjacent layers may be different. The pultruded material 10 including the composite material base 60 has angles 64θ, 66θ, 68θ in which the fiber directions of the reinforcing fibers 64f, 66f, 68f oriented in a direction other than the longitudinal direction of the pultruded material 10 are oriented, This is a preferable mode for realizing the required angle with high accuracy.
 図8は、図1の引抜成形材料10を製造する引抜成形材料の製造装置100の一例の概略構成図である。引抜成形材料の製造装置100は、図8に示すように、繊維層供給部110a、110b、110cと、樹脂プール112a、112b、112cと、間隙基材供給部120と、樹脂プール122と、表面繊維層供給部130a、130b、130cと、樹脂プール132a、132b、132cと、成形金型140と、を備える。図8では、表面繊維層供給部130b及び樹脂プール132bの図示が省略されている。 FIG. 8 is a schematic configuration diagram of an example of a pultrusion material production apparatus 100 for producing the pultrusion material 10 of FIG. As shown in FIG. 8, the pultruded material manufacturing apparatus 100 includes fiber layer supply units 110a, 110b, 110c, resin pools 112a, 112b, 112c, a gap base material supply unit 120, a resin pool 122, and a surface. Fiber layer supply units 130a, 130b, and 130c, resin pools 132a, 132b, and 132c, and a molding die 140 are provided. In FIG. 8, the surface fiber layer supply unit 130b and the resin pool 132b are not shown.
 繊維層供給部110a及び樹脂プール112aは、成形金型140に複合材料の基材20aの元となる複合材料の基材20a´を導入するための一連の装置である。繊維層供給部110aは、複合材料の基材20aの強化繊維の元となる強化繊維のプリフォーム20a´´を供給する。ここで、プリフォームは、複合材料の基材において熱硬化性樹脂が含浸されていないものを指す。樹脂プール112aは、熱硬化性樹脂を溜めたプールであり、プリフォーム20a´´を浸すことで、プリフォーム20a´´に熱硬化性樹脂を含浸させて複合材料の基材20a´を形成する。 The fiber layer supply unit 110a and the resin pool 112a are a series of apparatuses for introducing a composite material base 20a ′, which is a base of the composite material base 20a, into the molding die 140. The fiber layer supply unit 110a supplies a reinforcing fiber preform 20a ″ that is a source of the reinforcing fiber of the base material 20a of the composite material. Here, the preform refers to a composite material that is not impregnated with a thermosetting resin. The resin pool 112a is a pool in which a thermosetting resin is stored, and the preform 20a ″ is immersed in the preform 20a ″ to form the composite material base 20a ′. .
 繊維層供給部110b及び樹脂プール112bは、成形金型140に複合材料の基材20bの元となる複合材料の基材20b´を導入するための一連の装置である。繊維層供給部110bは、複合材料の基材20bの強化繊維の元となる強化繊維のプリフォーム20b´´を供給する。樹脂プール112bは、熱硬化性樹脂を溜めたプールであり、プリフォーム20b´´を浸すことで、プリフォーム20b´´に熱硬化性樹脂を含浸させて複合材料の基材20b´を形成する。 The fiber layer supply unit 110b and the resin pool 112b are a series of devices for introducing the composite material base material 20b ′, which is the base of the composite material base material 20b, into the molding die 140. The fiber layer supply unit 110b supplies a reinforcing fiber preform 20b ″ which is a base of the reinforcing fiber of the composite material base 20b. The resin pool 112b is a pool in which a thermosetting resin is accumulated, and the preform 20b ″ is impregnated with the thermosetting resin to form a composite material base 20b ′ by immersing the preform 20b ″. .
 繊維層供給部110c及び樹脂プール112cは、成形金型140に複合材料の基材20cの元となる複合材料の基材20c´を導入するための一連の装置である。繊維層供給部110cは、複合材料の基材20cの強化繊維の元となる強化繊維のプリフォーム20c´´を供給する。樹脂プール112cは、熱硬化性樹脂を溜めたプールであり、プリフォーム20c´´を浸すことで、プリフォーム20c´´に熱硬化性樹脂を含浸させて複合材料の基材20c´を形成する。 The fiber layer supply unit 110c and the resin pool 112c are a series of apparatuses for introducing the composite material base 20c ′, which is the base of the composite material base 20c, into the molding die 140. The fiber layer supply unit 110c supplies a reinforcing fiber preform 20c ″ which is a base of the reinforcing fiber of the composite material base 20c. The resin pool 112c is a pool in which a thermosetting resin is stored. By immersing the preform 20c ″, the preform 20c ″ is impregnated with the thermosetting resin to form a composite material base 20c ′. .
 以下において、プリフォーム20a´´、20b´´、20c´´を区別しない場合は適宜、プリフォーム20´´と称する。また、以下において、複合材料の基材20a´、20b´、20c´を区別しない場合は適宜、複合材料の基材20´と称する。また、以下において、繊維層供給部110a、110b、110cを区別しない場合は適宜、繊維層供給部110と称する。また、以下において、樹脂プール112a、112b、112cを区別しない場合は適宜、樹脂プール112と称する。 Hereinafter, when the preforms 20a ″, 20b ″, and 20c ″ are not distinguished, they are appropriately referred to as preforms 20 ″. In the following description, when the base materials 20a ′, 20b ′, and 20c ′ of composite materials are not distinguished, they are appropriately referred to as base materials 20 ′ of composite materials. Hereinafter, the fiber layer supply units 110a, 110b, and 110c are appropriately referred to as the fiber layer supply unit 110 when not distinguished from each other. In the following, when the resin pools 112a, 112b, and 112c are not distinguished, they are appropriately referred to as the resin pool 112.
 間隙基材供給部120及び樹脂プール122は、成形金型140に間隙材料22の元となる間隙材料22´を導入するための一連の装置である。間隙基材供給部120は、間隙材料22の強化繊維の元となる強化繊維である間接基材22´´を供給する。樹脂プール122は、間接基材22´´に熱硬化性樹脂を含浸させて間隙材料22´を形成する。 The gap base material supply unit 120 and the resin pool 122 are a series of apparatuses for introducing a gap material 22 ′ that is a source of the gap material 22 into the molding die 140. The gap base material supply unit 120 supplies an indirect base material 22 ″ that is a reinforcing fiber that is a source of the reinforcing fibers of the gap material 22. In the resin pool 122, the indirect base material 22 ″ is impregnated with a thermosetting resin to form the gap material 22 ′.
 表面繊維層供給部130a及び樹脂プール132aは、成形金型140に表面層24aの元となる表面層24a´を導入するための一連の装置である。表面繊維層供給部130aは、表面層24aの強化繊維の元となる強化繊維24a´´を供給する。樹脂プール132aは、強化繊維24a´´に熱硬化性樹脂を含浸させて表面層24a´を形成する。 The surface fiber layer supply unit 130a and the resin pool 132a are a series of devices for introducing the surface layer 24a ′ that is the basis of the surface layer 24a into the molding die 140. The surface fiber layer supply unit 130a supplies the reinforcing fibers 24a '' that are the basis of the reinforcing fibers of the surface layer 24a. The resin pool 132a forms the surface layer 24a 'by impregnating the reinforcing fibers 24a' 'with a thermosetting resin.
 表面繊維層供給部130b及び樹脂プール132bは、成形金型140に表面層24bの元となる表面層24b´を導入するための一連の装置である。表面繊維層供給部130bは、表面層24bの強化繊維の元となる強化繊維24b´´を供給する。樹脂プール132bは、強化繊維24b´´に熱硬化性樹脂を含浸させて表面層24b´を形成する。図8では、表面層24b´及び強化繊維24b´´の図示が省略されている。 The surface fiber layer supply unit 130b and the resin pool 132b are a series of devices for introducing the surface layer 24b ′ that is the basis of the surface layer 24b into the molding die 140. The surface fiber layer supply unit 130b supplies the reinforcing fibers 24b '' that are the basis of the reinforcing fibers of the surface layer 24b. In the resin pool 132b, the reinforcing fiber 24b ″ is impregnated with a thermosetting resin to form the surface layer 24b ′. In FIG. 8, the surface layer 24b ′ and the reinforcing fibers 24b ″ are not shown.
 表面繊維層供給部130c及び樹脂プール132cは、成形金型140に表面層24cの元となる表面層24c´を導入するための一連の装置である。表面繊維層供給部130cは、表面層24cの強化繊維の元となる強化繊維24c´´を供給する。樹脂プール132cは、強化繊維24c´´に熱硬化性樹脂を含浸させて表面層24c´を形成する。 The surface fiber layer supply unit 130c and the resin pool 132c are a series of devices for introducing the surface layer 24c ′ that is the basis of the surface layer 24c into the molding die 140. The surface fiber layer supply unit 130c supplies the reinforcing fibers 24c '' that are the basis of the reinforcing fibers of the surface layer 24c. The resin pool 132c forms the surface layer 24c ′ by impregnating the reinforcing fibers 24c ″ with a thermosetting resin.
 以下において、強化繊維24a´´、24b´´、24c´´を区別しない場合は適宜、強化繊維24´´と称する。また、以下において、表面層24a´、24b´、24c´を区別しない場合は適宜、表面層24´と称する。また、以下において、表面繊維層供給部130a、130b、130cを区別しない場合は適宜、表面繊維層供給部130と称する。また、以下において、樹脂プール132a、132b、132cを区別しない場合は適宜、樹脂プール132と称する。 Hereinafter, when the reinforcing fibers 24a ″, 24b ″, and 24c ″ are not distinguished, they are appropriately referred to as reinforcing fibers 24 ″. In the following description, when the surface layers 24a ′, 24b ′, and 24c ′ are not distinguished, they are appropriately referred to as the surface layer 24 ′. In the following, when the surface fiber layer supply units 130a, 130b, and 130c are not distinguished, they are appropriately referred to as the surface fiber layer supply unit 130. In the following, when the resin pools 132a, 132b, and 132c are not distinguished, they are appropriately referred to as the resin pool 132.
 複合材料の基材20´、間隙材料22´及び表面層24´は、YZ平面内の所定の形状となるように、変形されて、成形金型140に導入される。例えば、複合材料の基材20a´及び複合材料の基材20b´は、所定の箇所でX軸方向に沿って折り曲げ加工されて、成形金型140に導入される。成形金型140は、各一連の装置から導入される複合材料の基材20´、間隙材料22´及び表面層24´を引抜成形加工する。 The base material 20 ′, the gap material 22 ′, and the surface layer 24 ′ of the composite material are deformed so as to have a predetermined shape in the YZ plane and are introduced into the molding die 140. For example, the base material 20 a ′ of the composite material and the base material 20 b ′ of the composite material are bent along the X-axis direction at predetermined positions and introduced into the molding die 140. The molding die 140 performs pultrusion processing of the base material 20 ′, the gap material 22 ′, and the surface layer 24 ′ of the composite material introduced from each series of apparatuses.
 成形金型140は、加熱部を有し、複合材料の基材20´、間隙材料22´及び表面層24´に含まれる熱硬化性樹脂を半硬化状態又は硬化状態にすることが好ましい。あるいは、樹脂プール112、樹脂プール122、及び樹脂プール132と成形金型140との各間に加熱部を有し、複合材料の基材20´、間隙材料22´、表面層24´に含まれる熱硬化性樹脂を半硬化状態又は硬化状態にすることが好ましい。 The molding die 140 has a heating part, and it is preferable that the thermosetting resin contained in the base material 20 ′, the gap material 22 ′, and the surface layer 24 ′ of the composite material be in a semi-cured state or a cured state. Or it has a heating part between each of the resin pool 112, the resin pool 122, and the resin pool 132 and the molding die 140, and is included in the base material 20 ′, the gap material 22 ′, and the surface layer 24 ′ of the composite material. The thermosetting resin is preferably in a semi-cured state or a cured state.
 図9は、図3及び図4の複合材料の基材30を含む引抜成形材料10に用いられる複合材料の基材20´の一例である複合材料の基材30´を示す平面概略図である。図9において、複合材料の基材20c´の一例となる複合材料の基材30´が示されているが、複合材料の基材20a´、20b´の一例となる複合材料の基材30´も同様の構成を備える。複合材料の基材30´は、図9に示すように、第1層32´と、第2層34´と、を備える。第1層32´は、第1層32の元となる層である。第2層34´は、第2層34の元となる層である。複合材料の基材30´の積層の順番は、複合材料の基材30の積層の順序と同様である。 FIG. 9 is a schematic plan view showing a composite material base material 30 ′ which is an example of a composite material base material 20 ′ used in the pultruded material 10 including the composite material base material 30 shown in FIGS. 3 and 4. . In FIG. 9, a composite material base material 30 ′ as an example of a composite material base material 20 c ′ is shown, but a composite material base material 30 ′ as an example of the composite material base materials 20 a ′ and 20 b ′ is shown. Has the same configuration. As shown in FIG. 9, the composite material base 30 ′ includes a first layer 32 ′ and a second layer 34 ′. The first layer 32 ′ is a layer that is the basis of the first layer 32. The second layer 34 ′ is a layer that is the basis of the second layer 34. The order of lamination of the composite material base material 30 ′ is the same as the order of lamination of the composite material base material 30.
 第1層32´は、強化繊維32f´と、強化繊維32f´に含浸させた熱硬化性樹脂と、を備える。図9では各層における熱硬化性樹脂の図示を省略している。第1層32´は、強化繊維32f´の繊維方向が長手方向であるX軸方向に沿って配向されている。第2層34´は、強化繊維34f´と、強化繊維34f´に含浸させた熱硬化性樹脂と、を備える。第2層34´は、強化繊維34f´の繊維方向が第1層32´と対向する対向面の面内方向、かつ、長手方向に対して所定の角度34θ´の方向に配向されている。ここで、角度34θ´は、引抜成形を施す前の強化繊維34f´の角度、すなわち、初期角度である。第1層32´と対向する対向面の面内方向は、本実施形態では、シートの面内方向と一致する。角度34θ´は、上記の角度34θと同様の方法で示される角度である。 The first layer 32 'includes reinforcing fibers 32f' and thermosetting resin impregnated in the reinforcing fibers 32f '. In FIG. 9, illustration of the thermosetting resin in each layer is omitted. The first layer 32 ′ is oriented along the X-axis direction in which the fiber direction of the reinforcing fibers 32 f ′ is the longitudinal direction. The second layer 34 ′ includes reinforcing fibers 34 f ′ and a thermosetting resin impregnated with the reinforcing fibers 34 f ′. In the second layer 34 ′, the fiber direction of the reinforcing fibers 34 f ′ is oriented in the in-plane direction of the facing surface facing the first layer 32 ′ and in the direction of a predetermined angle 34θ ′ with respect to the longitudinal direction. Here, the angle 34θ ′ is an angle of the reinforcing fiber 34f ′ before the pultrusion molding, that is, an initial angle. In the present embodiment, the in-plane direction of the facing surface that faces the first layer 32 ′ coincides with the in-plane direction of the sheet. The angle 34θ ′ is an angle indicated by the same method as the angle 34θ described above.
 角度34θ´は、複合材料の基材30´が長手方向に沿って引抜成形された引抜成形材料10における強化繊維34fの繊維方向の長手方向に対する角度34θよりも、プラスマイナスが同じ方向で、絶対値が大きい。すなわち、角度34θ´は、要求角度となる角度34θよりも、プラスマイナスが同じ方向で、絶対値が同じまたは大きい。つまり、角度34θ´は、要求角度となる角度34θ以上である。角度34θ´は、要求角度となる角度34θよりも、プラスマイナスが同じ方向で、絶対値が大きいことが好ましい。具体的には、角度34θが+45度である場合、角度34θ´は+60度が例示される。角度34θ´は、引抜成形時に加えられる引抜力及び層の位置に応じて、角度34θと同じプラスマイナスで、要求角度よりも一定の角度だけ絶対値が大きい値に決定される。 The angle 34θ ′ is the same as the angle 34θ with respect to the longitudinal direction in the fiber direction of the reinforcing fiber 34f in the pultruded material 10 in which the composite material base material 30 ′ is pultruded along the longitudinal direction. The value is large. That is, the angle 34θ ′ has the same or larger absolute value in the same direction as plus / minus than the angle 34θ that is the required angle. That is, the angle 34θ ′ is not less than the angle 34θ that is the required angle. It is preferable that the angle 34θ ′ has the same plus / minus direction and a larger absolute value than the angle 34θ that is the required angle. Specifically, when the angle 34θ is +45 degrees, the angle 34θ ′ is exemplified by +60 degrees. The angle 34θ ′ is determined to be a value that is the same plus or minus as the angle 34θ and has a larger absolute value by a certain angle than the required angle, depending on the drawing force applied during pultrusion and the position of the layer.
 図10は、図5及び図6の複合材料の基材40を含む引抜成形材料10に用いられる複合材料の基材20´の一例である複合材料の基材40´を示す平面概略図である。図10において、X軸に沿って湾曲変形加工がされていない複合材料の基材20c´の一例となる複合材料の基材40´が示されているが、複合材料の基材20a´、20b´の一例となる複合材料の基材40´も同様の構成を備える。複合材料の基材40´は、図10に示すように、第1層42´と、複数の第2層44´、46´と、を備える。第1層42´は、第1層42の元となる層である。第2層44´は、第2層44の元となる層である。第2層46´は、第2層46の元となる層である。複合材料の基材40´の積層の順番は、複合材料の基材40の積層の順序と同様である。 FIG. 10 is a schematic plan view showing a composite material base 40 ′ which is an example of a composite base 20 ′ used in the pultruded material 10 including the composite base 40 of FIGS. 5 and 6. . In FIG. 10, a composite material base 40 ′ is shown as an example of a composite material base 20 c ′ that is not curved and deformed along the X-axis, but the composite base materials 20 a ′ and 20 b are shown. A composite material base material 40 ′, which is an example of ′, has the same configuration. As shown in FIG. 10, the composite material base 40 ′ includes a first layer 42 ′ and a plurality of second layers 44 ′ and 46 ′. The first layer 42 ′ is a layer that is the basis of the first layer 42. The second layer 44 ′ is a layer that is the basis of the second layer 44. The second layer 46 ′ is a layer that is the basis of the second layer 46. The order of lamination of the composite material base material 40 ′ is the same as the order of lamination of the composite material base material 40.
 第1層42´は、強化繊維42f´と、強化繊維42f´に含浸させた熱硬化性樹脂と、を備える。図10では各層における熱硬化性樹脂の図示を省略している。第1層42´は、強化繊維42f´の繊維方向が長手方向であるX軸方向に沿って配向されている。第2層44´は、強化繊維44f´と、強化繊維44f´に含浸させた熱硬化性樹脂と、を備える。第2層44´は、強化繊維44f´の繊維方向が第1層42´と対向する対向面の面内方向、かつ、長手方向であるX軸方向に対して所定の角度44θ´の方向に配向されている。ここで、角度44θ´は、引抜成形を施す前の強化繊維44f´の角度、すなわち、初期角度である。第1層42´と対向する対向面の面内方向は、本実施形態では、シートの面内方向と一致する。第2層46´は、強化繊維46f´と、強化繊維46f´に含浸させた熱硬化性樹脂と、を備える。第2層46´は、強化繊維46f´の繊維方向が第1層42´と対向する対向面の面内方向、かつ、長手方向に対して所定の角度46θ´の方向に配向されている。ここで、角度46θ´は、引抜成形を施す前の強化繊維46f´の角度、すなわち、初期角度である。角度44θ´及び角度46θ´は、いずれも、上記の角度34θと同様の方法で示される角度である。 The first layer 42 'includes reinforcing fibers 42f' and thermosetting resin impregnated in the reinforcing fibers 42f '. In FIG. 10, illustration of the thermosetting resin in each layer is omitted. The first layer 42 'is oriented along the X-axis direction in which the fiber direction of the reinforcing fibers 42f' is the longitudinal direction. The second layer 44 ′ includes reinforcing fibers 44f ′ and thermosetting resin impregnated in the reinforcing fibers 44f ′. In the second layer 44 ′, the fiber direction of the reinforcing fiber 44f ′ is in the in-plane direction of the facing surface facing the first layer 42 ′ and in the direction of a predetermined angle 44θ ′ with respect to the X-axis direction which is the longitudinal direction. Oriented. Here, the angle 44θ ′ is an angle of the reinforcing fiber 44f ′ before the pultrusion molding, that is, an initial angle. In the present embodiment, the in-plane direction of the facing surface facing the first layer 42 ′ coincides with the in-plane direction of the sheet. The second layer 46 'includes reinforcing fibers 46f' and thermosetting resin impregnated in the reinforcing fibers 46f '. In the second layer 46 ′, the fiber direction of the reinforcing fibers 46 f ′ is oriented in the in-plane direction of the facing surface facing the first layer 42 ′ and in the direction of a predetermined angle 46θ ′ with respect to the longitudinal direction. Here, the angle 46θ ′ is an angle of the reinforcing fiber 46f ′ before the pultrusion molding, that is, an initial angle. Both the angle 44θ ′ and the angle 46θ ′ are angles shown in the same manner as the angle 34θ described above.
 角度44θ´は、複合材料の基材40´が長手方向に沿って引抜成形された引抜成形材料10における強化繊維44fの繊維方向の長手方向に対する角度44θよりも、プラスマイナスが同じ方向で、絶対値が大きい。すなわち、角度44θ´は、要求角度となる角度44θよりも、プラスマイナスが同じ方向で、絶対値が同じまたは大きい。つまり、角度44θ´は、要求角度となる角度44θ以上である。角度44θ´は、要求角度となる角度44θよりも、プラスマイナスが同じ方向で、絶対値が大きいことが好ましい。具体的には、角度44θが+45度である場合、角度44θ´は+60度が例示される。角度44θ´は、引抜成形時に加えられる引抜力及び層の位置に応じて、角度44θと同じプラスマイナスで、角度44θよりも一定の角度だけ絶対値が大きい値に決定される。 The angle 44θ ′ is the same as the angle 44θ with respect to the longitudinal direction of the fiber direction of the reinforcing fiber 44f in the pultruded material 10 in which the composite material base material 40 ′ is pultruded along the longitudinal direction. The value is large. That is, the angle 44θ ′ has the same or larger absolute value in the same direction as plus / minus than the angle 44θ that is the required angle. That is, the angle 44θ ′ is not less than the angle 44θ that is the required angle. It is preferable that the angle 44θ ′ has the same plus / minus direction and a larger absolute value than the angle 44θ that is the required angle. Specifically, when the angle 44θ is +45 degrees, the angle 44θ ′ is exemplified by +60 degrees. The angle 44θ ′ is determined to have the same plus / minus as the angle 44θ and an absolute value larger than the angle 44θ by a certain angle depending on the drawing force applied at the time of pultrusion and the position of the layer.
 角度46θ´は、複合材料の基材40´が長手方向に沿って引抜成形された引抜成形材料10における強化繊維46fの繊維方向の長手方向に対する角度46θよりも、プラスマイナスが同じ方向で、絶対値が大きい。すなわち、角度46θ´は、要求角度となる角度46θよりも、プラスマイナスが同じ方向で、絶対値が同じまたは大きい。つまり、角度46θ´は、要求角度となる角度46θ以上である。角度46θ´は、要求角度となる角度46θよりも、プラスマイナスが同じ方向で、絶対値が大きいことが好ましい。具体的には、角度46θが-45度である場合、角度46θ´は-60度が例示される。角度46θ´は、引抜成形時に加えられる引抜力及び層の位置に応じて、角度46θと同じプラスマイナスで、角度46θよりも一定の角度だけ絶対値が大きい値に決定される。 The angle 46θ ′ is the same as the angle 46θ with respect to the longitudinal direction of the fiber direction of the reinforcing fiber 46f in the pultruded material 10 in which the composite material base material 40 ′ is pultruded along the longitudinal direction. The value is large. That is, the angle 46θ ′ has the same or larger absolute value in the same direction as plus / minus than the angle 46θ that is the required angle. That is, the angle 46θ ′ is not less than the angle 46θ that is the required angle. It is preferable that the angle 46θ ′ has the same plus / minus direction and a larger absolute value than the angle 46θ that is the required angle. Specifically, when the angle 46θ is −45 degrees, the angle 46θ ′ is exemplified by −60 degrees. The angle 46θ ′ is determined to be a value that is the same plus or minus as the angle 46θ and has a larger absolute value by a certain angle than the angle 46θ in accordance with the drawing force applied at the time of pultrusion and the position of the layer.
 図11は、図7の複合材料の基材60を含む引抜成形材料10に用いられる複合材料の基材20´の一例である複合材料の基材60´を示す平面概略図である。図11において、X軸に沿って湾曲変形加工がされていない複合材料の基材20c´の一例となる複合材料の基材60´が示されているが、複合材料の基材20a´、20b´の一例となる複合材料の基材60´も同様の構成を備える。複合材料の基材60´は、図11に示すように、複数の第1層62´と、複数の第2層64´、66´、68´と、を備える。詳細には、複合材料の基材60´は、4枚の第1層62´と、2枚の第2層64´と、1枚の第2層66´と、2枚の第2層68´と、を備える。第1層62´は、第1層62の元となる層である。第2層64´は、第2層64の元となる層である。第2層66´は、第2層66の元となる層である。第2層68´は、第2層68の元となる層である。複合材料の基材60´の積層の順番は、複合材料の基材60の積層の順序と同様である。矢印D´は、複合材料の基材60´がこれから引抜成形される方向を表すものであり、X軸方向すなわち長手方向を向いている。矢印D´は、図7の矢印Dと同じ方向を向いている。 FIG. 11 is a schematic plan view showing a composite material base material 60 ′, which is an example of the composite material base material 20 ′ used in the pultruded material 10 including the composite material base material 60 of FIG. In FIG. 11, a composite material base material 60 ′ is shown as an example of a composite material base material 20 c ′ that is not curvedly deformed along the X-axis, but the composite material base materials 20 a ′ and 20 b are shown. A composite material base material 60 ', which is an example of', also has the same configuration. As shown in FIG. 11, the composite material base 60 ′ includes a plurality of first layers 62 ′ and a plurality of second layers 64 ′, 66 ′, 68 ′. Specifically, the composite base material 60 ′ includes four first layers 62 ′, two second layers 64 ′, one second layer 66 ′, and two second layers 68. ′. The first layer 62 ′ is a layer that is a source of the first layer 62. The second layer 64 ′ is a layer that is the basis of the second layer 64. The second layer 66 ′ is a layer that is a source of the second layer 66. The second layer 68 ′ is a layer that is the basis of the second layer 68. The order of lamination of the composite material bases 60 ′ is the same as the order of lamination of the composite material bases 60. An arrow D ′ represents a direction in which the base material 60 ′ of the composite material is pultruded from now on, and faces the X-axis direction, that is, the longitudinal direction. The arrow D ′ points in the same direction as the arrow D in FIG.
 第1層62´は、強化繊維62f´と、強化繊維62f´に含浸させた熱硬化性樹脂と、を備える。図11では各層における熱硬化性樹脂の図示を省略している。第1層62´は、強化繊維62f´の繊維方向が長手方向であるX軸方向に沿って配向されている。第2層64´は、強化繊維64f´と、強化繊維64f´に含浸させた熱硬化性樹脂と、を備える。第2層64´は、強化繊維64f´の繊維方向が第1層62´と対向する対向面の面内方向、かつ、長手方向に対して所定の角度64θ´の方向に配向されている。ここで、角度64θ´は、引抜成形を施す前の強化繊維64f´の角度、すなわち、初期角度である。第1層62´と対向する対向面の面内方向は、本実施形態では、シートの面内方向と一致する。第2層66´は、強化繊維66f´と、強化繊維66f´に含浸させた熱硬化性樹脂と、を備える。第2層66´は、強化繊維66f´の繊維方向が第1層62´と対向する対向面の面内方向、かつ、長手方向に対して所定の角度66θ´の方向に配向されている。ここで、角度66θ´は、引抜成形を施す前の強化繊維66f´の角度、すなわち、初期角度である。第2層68´は、強化繊維68f´と、強化繊維68f´に含浸させた熱硬化性樹脂と、を備える。第2層68´は、強化繊維68f´の繊維方向が第1層62´と対向する対向面の面内方向、かつ、長手方向に対して所定の角度68θ´の方向に配向されている。ここで、角度68θ´は、引抜成形を施す前の強化繊維68f´の角度、すなわち、初期角度である。角度64θ´、66θ´及び68θ´は、いずれも、上記の角度34θと同様の方法で示される角度である。 The first layer 62 ′ includes reinforcing fibers 62f ′ and thermosetting resin impregnated in the reinforcing fibers 62f ′. In FIG. 11, illustration of the thermosetting resin in each layer is omitted. The first layer 62 ′ is oriented along the X-axis direction in which the fiber direction of the reinforcing fibers 62 f ′ is the longitudinal direction. The second layer 64 ′ includes reinforcing fibers 64f ′ and a thermosetting resin impregnated in the reinforcing fibers 64f ′. In the second layer 64 ′, the fiber direction of the reinforcing fibers 64 f ′ is oriented in the in-plane direction of the facing surface facing the first layer 62 ′ and in a direction of a predetermined angle 64θ ′ with respect to the longitudinal direction. Here, the angle 64θ ′ is an angle of the reinforcing fiber 64f ′ before the pultrusion molding, that is, an initial angle. In the present embodiment, the in-plane direction of the facing surface facing the first layer 62 ′ coincides with the in-plane direction of the sheet. The second layer 66 ′ includes reinforcing fibers 66f ′ and thermosetting resin impregnated in the reinforcing fibers 66f ′. In the second layer 66 ′, the fiber direction of the reinforcing fibers 66 f ′ is oriented in the in-plane direction of the facing surface facing the first layer 62 ′ and in a direction of a predetermined angle 66θ ′ with respect to the longitudinal direction. Here, the angle 66θ ′ is an angle of the reinforcing fiber 66f ′ before the pultrusion molding, that is, an initial angle. The second layer 68 ′ includes reinforcing fibers 68f ′ and thermosetting resin impregnated in the reinforcing fibers 68f ′. In the second layer 68 ′, the fiber direction of the reinforcing fibers 68f ′ is oriented in the in-plane direction of the facing surface facing the first layer 62 ′ and in the direction of a predetermined angle 68θ ′ with respect to the longitudinal direction. Here, the angle 68θ ′ is an angle of the reinforcing fiber 68f ′ before the pultrusion molding, that is, an initial angle. The angles 64θ ′, 66θ ′, and 68θ ′ are all angles indicated by the same method as the angle 34θ described above.
 角度64θ´は、複合材料の基材60´が長手方向に沿って引抜成形された引抜成形材料10における強化繊維64fの繊維方向の長手方向に対する角度64θよりも、プラスマイナスが同じ方向で、絶対値が大きい。すなわち、角度64θ´は、要求角度となる角度64θよりも、プラスマイナスが同じ方向で、絶対値が同じまたは大きい。つまり、角度64θ´は、要求角度となる角度64θ以上である。角度64θ´は、要求角度となる角度64θよりも、プラスマイナスが同じ方向で、絶対値が大きいことが好ましい。具体的には、角度64θが-45度である場合、角度64θ´は-60度が例示される。角度64θ´は、引抜成形時に加えられる引抜力及び層の位置に応じて、角度64θと同じプラスマイナスで、角度64θよりも一定の角度だけ絶対値が大きい値に決定される。 The angle 64θ ′ is the same as the angle 64θ with respect to the longitudinal direction in the fiber direction of the reinforcing fiber 64f in the pultruded material 10 in which the composite material base material 60 ′ is pultruded along the longitudinal direction. The value is large. That is, the angle 64θ ′ has the same or larger absolute value than the angle 64θ, which is the required angle, in the same direction. That is, the angle 64θ ′ is equal to or larger than the angle 64θ that is the required angle. It is preferable that the angle 64θ ′ has the same plus / minus direction and a larger absolute value than the angle 64θ that is the required angle. Specifically, when the angle 64θ is −45 degrees, the angle 64θ ′ is exemplified by −60 degrees. The angle 64θ ′ is determined to be a value that is the same as the angle 64θ and has a larger absolute value by a certain angle than the angle 64θ, depending on the drawing force applied at the time of pultrusion and the position of the layer.
 角度66θ´は、複合材料の基材60´が長手方向に沿って引抜成形された引抜成形材料10における強化繊維66fの繊維方向の長手方向に対する角度66θと同じである。すなわち、角度66θ´は、要求角度となる角度66θと同じである。つまり、角度66θ´は、要求角度となる角度66θ以上である。具体的には、角度66θが90度であり、角度66θ´は90度である場合が例示される。これは、強化繊維の繊維方向の長手方向であるX軸方向に対する角度の最大値が90度であることによる。 The angle 66θ ′ is the same as the angle 66θ with respect to the longitudinal direction in the fiber direction of the reinforcing fiber 66f in the pultruded material 10 in which the base material 60 ′ of the composite material is pultruded along the longitudinal direction. That is, the angle 66θ ′ is the same as the required angle 66θ. That is, the angle 66θ ′ is not less than the angle 66θ that is the required angle. Specifically, the case where the angle 66θ is 90 degrees and the angle 66θ ′ is 90 degrees is exemplified. This is because the maximum value of the angle with respect to the X-axis direction, which is the longitudinal direction of the reinforcing fiber, is 90 degrees.
 角度68θ´は、複合材料の基材60´が長手方向に沿って引抜成形された引抜成形材料10における強化繊維68fの繊維方向の長手方向に対する角度68θよりも、プラスマイナスが同じ方向で、絶対値が大きい。すなわち、角度68θ´は、要求角度となる角度68θよりも、プラスマイナスが同じ方向で、絶対値が同じまたは大きい。つまり、角度68θ´は、要求角度となる角度68θ以上である。角度68θ´は、要求角度となる角度68θよりも、プラスマイナスが同じ方向で、絶対値が大きいことが好ましい。具体的には、角度68θが+45度である場合、角度68θ´は+60度が例示される。角度68θ´は、引抜成形時に加えられる引抜力及び層の位置に応じて、角度68θと同じプラスマイナスで、角度68θよりも一定の角度だけ絶対値が大きい値に決定される。 The angle 68θ ′ is the same as the angle 68θ with respect to the longitudinal direction of the fiber direction of the reinforcing fiber 68f in the pultruded material 10 in which the composite material base 60 ′ is pultruded along the longitudinal direction. The value is large. That is, the angle 68θ ′ has the same or larger absolute value in the same direction as plus / minus than the angle 68θ that is the required angle. That is, the angle 68θ ′ is not less than the angle 68θ that is the required angle. It is preferable that the angle 68θ ′ has the same plus / minus direction and a larger absolute value than the angle 68θ that is the required angle. Specifically, when the angle 68θ is +45 degrees, the angle 68θ ′ is exemplified by +60 degrees. The angle 68θ ′ is determined to have the same plus / minus as the angle 68θ and an absolute value larger than the angle 68θ by a certain angle depending on the drawing force applied at the time of pultrusion and the position of the layer.
 複合材料の基材60´は、+Z方向から、0度ファイバー層である第1層62´、-60度ファイバーである第2層64´、90度ファイバーである第2層66´、+60度ファイバーである第2層68´、0度ファイバー層である第1層62´、の順で積層されている。すなわち、複合材料の基材60´は、第1層62´が複数積層され、複数積層される第1層62´の間に第2層64´、66´、68´が設けられているため、第2層64´、66´、68´が第1層62´に引っ張られる形で、成形金型140を用いて引抜成形することができる。そのため、複合材料の基材60´は、複合材料の基材60´が引抜成形されることで製造される複合材料の基材60を備える引抜成形材料10における強化繊維64f、66f、68fの繊維方向が配向される角度64θ、66θ、68θにおいて要求角度を精度よく実現することができる。 From the + Z direction, the composite base material 60 'includes a first layer 62' that is a 0 degree fiber layer, a second layer 64 'that is a -60 degree fiber, a second layer 66' that is a 90 degree fiber, and +60 degrees. The second layer 68 ′, which is a fiber, and the first layer 62 ′, which is a 0-degree fiber layer, are stacked in this order. That is, in the composite material base 60 ′, a plurality of first layers 62 ′ are stacked, and second layers 64 ′, 66 ′, and 68 ′ are provided between the stacked first layers 62 ′. The second layers 64 ′, 66 ′, and 68 ′ can be pultruded using the molding die 140 in such a manner that the second layers 64 ′, 66 ′, and 68 ′ are pulled by the first layer 62 ′. Therefore, the composite material base material 60 ′ is a fiber of reinforcing fibers 64 f, 66 f, 68 f in the pultruded material 10 including the composite material base material 60 manufactured by pultrusion of the composite material base material 60 ′. The required angle can be accurately realized at the angles 64θ, 66θ, and 68θ in which the directions are oriented.
 また、複合材料の基材60´は、第2層64´、66´、68´が複数積層され、第2層64´、66´、68´は、+Z方向側の第1層62´に近い第2層64´における角度64θ´が、同じ第1層62´から遠い第2層66´における角度66θ´よりも小さく、+Z方向側から2つめの第1層62´に近い第2層68´における角度68θ´が、同じ第1層62´から遠い第2層66´における角度66θ´よりも小さい。そのため、複合材料の基材60´は、引抜成形されることで製造される複合材料の基材60を備える引抜成形材料10における強化繊維64f、66f、68fの繊維方向の角度64θ、66θ、68θが要求角度を精度よく実現することができる。 In addition, the base material 60 'of the composite material has a plurality of second layers 64', 66 ', 68' stacked thereon, and the second layers 64 ', 66', 68 'are formed on the first layer 62' on the + Z direction side. The second layer 64 ′ closer to the second first layer 62 ′ from the + Z direction side is smaller than the angle 66θ ′ of the second layer 66 ′ far from the same first layer 62 ′. The angle 68θ ′ at 68 ′ is smaller than the angle 66θ ′ at the second layer 66 ′ far from the same first layer 62 ′. Therefore, the composite material base material 60 ′ has fiber direction angles 64θ, 66θ, 68θ of the reinforcing fibers 64 f, 66 f, 68 f in the pultruded material 10 including the composite material base material 60 manufactured by pultrusion. However, the required angle can be realized with high accuracy.
 本実施形態に係る引抜成形材料の製造装置100の作用について以下に説明する。図12は、図1の引抜成形材料10を製造する引抜成形材料の製造方法のフローの一例を示すフローチャートである。引抜成形材料の製造装置100によって実行される処理方法である本実施形態に係る引抜成形材料の製造方法について、図12を用いて説明する。本実施形態に係る引抜成形材料の製造方法は、第1層準備工程と、第2層準備工程と、積層工程とを含む。詳細には、本実施形態に係る引抜成形材料の製造方法は、図12に示すように、第1層準備工程としての第1繊維層準備工程S12と、第2層準備工程としての第2繊維層準備工程S14と、積層工程S16と、含浸工程S18と、引抜成形工程S22と、間隙材料形成工程S24と、を備える。以下においては、第1繊維層準備工程S12、第2繊維層準備工程S14、積層工程S16、含浸工程S18、引抜成形工程S22及び間隙材料形成工程S24を適宜、それぞれ単に、ステップS12、ステップS14、ステップS16、ステップS18、ステップS22及びステップS24と称する。 The operation of the pultrusion material manufacturing apparatus 100 according to this embodiment will be described below. FIG. 12 is a flowchart showing an example of a flow of a pultruded material manufacturing method for manufacturing the pultruded material 10 of FIG. A pultruded material manufacturing method according to this embodiment, which is a processing method executed by the pultruded material manufacturing apparatus 100, will be described with reference to FIG. The method for manufacturing a pultruded material according to the present embodiment includes a first layer preparation step, a second layer preparation step, and a lamination step. In detail, as shown in FIG. 12, the manufacturing method of the pultrusion molding material which concerns on this embodiment is 1st fiber layer preparation process S12 as a 1st layer preparation process, and 2nd fiber as a 2nd layer preparation process. It includes a layer preparation step S14, a lamination step S16, an impregnation step S18, a pultrusion step S22, and a gap material formation step S24. In the following, the first fiber layer preparation step S12, the second fiber layer preparation step S14, the lamination step S16, the impregnation step S18, the pultrusion step S22, and the gap material formation step S24 are simply performed as steps S12, S14, respectively. These are referred to as step S16, step S18, step S22, and step S24.
 まず、繊維方向が長手方向に沿って配向された強化繊維で構成された第1繊維層を準備する(ステップS12)。第1繊維層は、詳細には、0度ファイバー層のプリフォームである。0度ファイバー層のプリフォームとは、0度ファイバー層において熱硬化性樹脂が含浸されていないものをさす。以下において、その他の角度のファイバー層についても同様の表現を用いる。複合材料の基材30を含む引抜成形材料10を製造する場合、ステップS12では、1枚の第1繊維層を準備する。複合材料の基材40を含む引抜成形材料10を製造する場合、ステップS12では、1枚の第1繊維層を準備する。複合材料の基材60を含む引抜成形材料10を製造する場合、ステップS12では、4枚の第1繊維層を準備する。強化繊維のみでも高い剛性及び強度等の性能を有し、熱硬化性樹脂を含浸させることでさらに高い剛性及び強度等の性能を有する複合材料の基材を含む引抜成形材料10を製造することができる。 First, a first fiber layer composed of reinforcing fibers whose fiber direction is aligned along the longitudinal direction is prepared (step S12). More specifically, the first fiber layer is a 0-degree fiber layer preform. The 0-degree fiber layer preform refers to a 0-degree fiber layer that is not impregnated with a thermosetting resin. In the following, similar expressions are used for fiber layers at other angles. When manufacturing the pultrusion molding material 10 including the composite material base material 30, one first fiber layer is prepared in step S12. When manufacturing the pultrusion molding material 10 including the base material 40 of the composite material, in step S12, one first fiber layer is prepared. When manufacturing the pultrusion molding material 10 including the composite material base 60, four first fiber layers are prepared in step S12. It is possible to produce a pultrusion molding material 10 including a composite material base material having a high rigidity and strength even with reinforcing fibers alone and impregnating with a thermosetting resin. it can.
 また、繊維方向が第1層と対向することになる対向面の面内方向、かつ、長手方向に対して所定の角度の方向に配向された強化繊維で構成された第2繊維層を準備する(ステップS14)。繊維方向が第1層と対向することになる対向面の面内方向は、本実施形態では、シートの面内方向と一致する。第2繊維層は、詳細には、強化繊維の繊維方向の配向の角度に応じて、+30度ファイバー層のプリフォーム、+45度ファイバー層のプリフォーム、+60度ファイバー層のプリフォーム、90度ファイバー層のプリフォーム、-30度ファイバー層のプリフォーム、-45度ファイバー層のプリフォーム、-60度ファイバー層のプリフォーム等が例示される。強化繊維のみでも高い剛性及び強度等の性能を有し、熱硬化性樹脂を含浸させることでさらに高い剛性及び強度等の性能を有する複合材料の基材を含む引抜成形材料10を製造することができる。 In addition, a second fiber layer is prepared which is composed of reinforcing fibers oriented in a direction at a predetermined angle with respect to the longitudinal direction and in the in-plane direction of the facing surface where the fiber direction faces the first layer. (Step S14). In the present embodiment, the in-plane direction of the facing surface in which the fiber direction faces the first layer coincides with the in-plane direction of the sheet. Specifically, the second fiber layer includes a +30 degree fiber layer preform, a +45 degree fiber layer preform, a +60 degree fiber layer preform, and a 90 degree fiber depending on the orientation angle of the reinforcing fibers in the fiber direction. Examples include a preform for a layer, a preform for a −30 degree fiber layer, a preform for a −45 degree fiber layer, a preform for a −60 degree fiber layer, and the like. It is possible to produce a pultrusion molding material 10 including a composite material base material having a high rigidity and strength even with reinforcing fibers alone and impregnating with a thermosetting resin. it can.
 複合材料の基材30を含む引抜成形材料10を製造する場合、ステップS14では、複合材料の基材30に含まれる第2層34(+45度ファイバー層)よりも強化繊維の繊維方向の配向角度が同じプラスマイナスの方向に同じまたは大きい60度ファイバー層のプリフォームを、1枚準備する。複合材料の基材40を含む引抜成形材料10を製造する場合、ステップS14では、複合材料の基材40に含まれる第2層44(+45度ファイバー層)よりも強化繊維の繊維方向の配向角度が同じプラスマイナスの方向に同じまたは大きい+60度ファイバー層のプリフォームを1枚と、複合材料の基材40に含まれる第2層46(-45度ファイバー層)よりも強化繊維の繊維方向の配向角度が同じプラスマイナスの方向に同じまたは大きい-60度ファイバー層のプリフォームを1枚と、を準備する。 When the pultruded material 10 including the composite material base 30 is manufactured, in step S14, the orientation angle of the reinforcing fibers in the fiber direction is more than the second layer 34 (+45 degree fiber layer) included in the composite material base 30. Prepare one preform of the same or larger 60 degree fiber layer in the same plus or minus direction. When the pultruded material 10 including the composite material 40 is manufactured, in step S14, the orientation angle of the reinforcing fibers in the fiber direction is more than the second layer 44 (+45 degree fiber layer) included in the composite material 40. The same or larger +60 degree fiber layer preform in the same plus or minus direction, and the fiber layer of the reinforcing fiber in the fiber direction of the second layer 46 (-45 degree fiber layer) included in the base material 40 of the composite material One preform of -60 degree fiber layer having the same or larger orientation angle in the same plus or minus direction is prepared.
 複合材料の基材60を含む引抜成形材料10を製造する場合、ステップS14では、複合材料の基材60に含まれる第2層64(-45度ファイバー層)よりも強化繊維の繊維方向の配向角度が同じプラスマイナスの方向に同じまたは大きい-60度ファイバー層のプリフォームを2枚と、複合材料の基材60に含まれる第2層66(90度ファイバー層)と強化繊維の繊維方向の配向角度が同じである90度ファイバー層のプリフォームを1枚と、複合材料の基材40に含まれる第2層68(+45度ファイバー層)よりも強化繊維の繊維方向の配向角度が同じプラスマイナスの方向に同じまたは大きい+60度ファイバー層のプリフォームを2枚と、を準備する。 When the pultruded material 10 including the composite material 60 is manufactured, in step S14, the orientation of the reinforcing fibers in the fiber direction is more than the second layer 64 (−45 degree fiber layer) included in the composite material 60. Two preforms with the same or larger angle in the same plus / minus direction, the -60 degree fiber layer preform, the second layer 66 (90 degree fiber layer) included in the base material 60 of the composite material, and the fiber direction of the reinforcing fiber. One preform of 90-degree fiber layer with the same orientation angle and the second fiber 68 (+ 45-degree fiber layer) included in the composite base material 40 have the same orientation angle in the fiber direction of the reinforcing fiber. Prepare two preforms of the same or larger +60 degree fiber layer in the negative direction.
 本実施形態では、第1繊維層準備工程S12、第2繊維層準備工程S14の順番に処理しているが、本発明はこれに限定されることなく、第2繊維層準備工程S14、第1繊維層準備工程S12の順番に処理してもよく、第1繊維層準備工程S12及び第2繊維層準備工程S14を同時に処理してもよい。 In this embodiment, although it processes in order of 1st fiber layer preparation process S12 and 2nd fiber layer preparation process S14, this invention is not limited to this, 2nd fiber layer preparation process S14, 1st You may process in order of fiber layer preparation process S12, and you may process 1st fiber layer preparation process S12 and 2nd fiber layer preparation process S14 simultaneously.
 次に、ステップS12で準備した第1繊維層と、ステップS14で準備した第2繊維層と、を積層して、プリフォーム20´´を形成する(ステップS16)。そして、形成したプリフォーム20´´をロール等に巻き取り、繊維層供給部110として引抜成形材料の製造装置100に備え付ける。ここで、2つ以上の層を積層するとは、単純に2つ以上の層を重ね合わせたものだけでなく、2つ以上の層を重ね合わせた後に、別途織る等をして繊維をまとめること、及び、2つ以上の層を重ね合わせた後に、別途バインダを用いる等をすること、等も含む。以下においては、2つ以上の層を単に重ね合わせること、2つ以上の層を重ね合わせた後に別途織る等をして繊維をまとめること、2つ以上の層を重ね合わせた後に別途バインダを用いること等も含む概念として、積層するという表現を用いる。 Next, the first fiber layer prepared in step S12 and the second fiber layer prepared in step S14 are laminated to form a preform 20 ″ (step S16). Then, the formed preform 20 ″ is wound around a roll or the like, and provided as the fiber layer supply unit 110 in the pultruded material manufacturing apparatus 100. Here, “stacking two or more layers” means not only simply stacking two or more layers, but also stacking fibers by stacking two or more layers and then weaving separately. In addition, after the two or more layers are overlapped, a separate binder is used. In the following, two or more layers are simply overlapped, two or more layers are overlapped and then weaved separately, etc., and fibers are combined, and after two or more layers are overlapped, a separate binder is used. The concept of stacking is used as a concept including things.
 複合材料の基材30を含む引抜成形材料10を製造する場合、積層の順序が図9に示す複合材料の基材30´と同じになるように、ステップS12で準備した0度ファイバー層のプリフォームと、ステップS14で準備した+60度ファイバー層のプリフォームと、を積層する。複合材料の基材40を含む引抜成形材料10を製造する場合、積層の順序が図10に示す複合材料の基材40´と同じになるように、ステップS12で準備した0度ファイバー層のプリフォームと、ステップS14で準備した+60度ファイバー層のプリフォーム及び-60度ファイバー層のプリフォームと、を積層する。 When the pultruded material 10 including the composite material 30 is manufactured, the 0-degree fiber layer prepared in step S12 is prepared so that the stacking order is the same as that of the composite material 30 ′ shown in FIG. The reforming and the +60 degree fiber layer preform prepared in step S14 are laminated. When the pultruded material 10 including the composite material 40 is manufactured, the 0-degree fiber layer prepared in Step S12 is prepared so that the stacking order is the same as the composite material 40 ′ shown in FIG. The reforming and the +60 degree fiber layer preform and the −60 degree fiber layer preform prepared in step S14 are laminated.
 複合材料の基材60を含む引抜成形材料10を製造する場合、積層の順序が図11に示す複合材料の基材60´と同じになるように、ステップS12で準備した4枚の0度ファイバー層のプリフォームと、ステップS14で準備した2枚の-60度ファイバー層のプリフォーム、1枚の90度ファイバー層のプリフォーム及び+60度ファイバー層のプリフォームと、を積層する。 When manufacturing the pultruded material 10 including the composite material base 60, the four 0 degree fibers prepared in step S12 so that the stacking order is the same as the composite material base 60 'shown in FIG. The two layered preforms, the -60 degree fiber layer preform, the 90 degree fiber layer preform, and the +60 degree fiber layer preform prepared in step S14 are laminated.
 本実施形態に係る引抜成形材料の製造方法は、複合材料の基材60を含む引抜成形材料10を製造する場合、ステップS16で、積層の順序が図11に示す複合材料の基材60´と同じになるように各プリフォームを積層する。そのため、複合材料の基材60´は、引抜成形されることで製造される複合材料の基材60を備える引抜成形材料10における強化繊維64f、66f、68fの繊維方向の角度64θ、66θ、68θが要求角度を精度よく実現することができる。 In the pultruded material manufacturing method according to the present embodiment, when the pultruded material 10 including the composite material base 60 is manufactured, in step S16, the stacking order is the composite material base 60 ′ shown in FIG. Laminate each preform to be the same. Therefore, the composite material base material 60 ′ has fiber direction angles 64θ, 66θ, 68θ of the reinforcing fibers 64 f, 66 f, 68 f in the pultruded material 10 including the composite material base material 60 manufactured by pultrusion. However, the required angle can be realized with high accuracy.
 次に、ステップS16で形成したプリフォーム20´´を樹脂プール132に浸すことで、プリフォーム20´´に含まれる第1繊維層及び第2繊維層に熱硬化性樹脂を含浸させて、複合材料の基材20´を形成する(ステップS18)。ステップS18により、第1繊維層は全て第1層となり、第2繊維層は全て第2層となる。本実施形態では、第1繊維層及び第2繊維層を樹脂プールに溜めた熱硬化性樹脂に浸すことで、第1繊維層及び第2繊維層に熱硬化性樹脂を含浸しているが、本発明はこれに限定されず、熱硬化性樹脂を第1繊維層及び第2繊維層に塗布する等その他の方法を用いて、第1繊維層及び第2繊維層に熱硬化性樹脂を含浸してもよい。 Next, the preform 20 ″ formed in step S16 is immersed in the resin pool 132, so that the first fiber layer and the second fiber layer included in the preform 20 ″ are impregnated with the thermosetting resin, and combined. A base material 20 'of material is formed (step S18). By step S18, all the first fiber layers become the first layer, and all the second fiber layers become the second layer. In the present embodiment, the first fiber layer and the second fiber layer are impregnated with the thermosetting resin by immersing the first fiber layer and the second fiber layer in the thermosetting resin stored in the resin pool. The present invention is not limited to this, and the first fiber layer and the second fiber layer are impregnated with the thermosetting resin by using other methods such as applying a thermosetting resin to the first fiber layer and the second fiber layer. May be.
 ステップS18で形成した複数枚の複合材料の基材20´を、長手方向に対して直交する平面内の所定の形状となるように変形されて、長手方向に搬送させながら、成形金型140に導入される。例えば、複合材料の基材20a´及び複合材料の基材20b´は、所定の箇所でX軸方向に沿って折り曲げ加工されて、複数枚の複合材料の基材20´でT字が形成されて、成形金型140に導入される。成形金型140に導入された複数枚の複合材料の基材20´を、引抜成形加工して、複数の複合材料の基材20を含む複合材料成形体を形成する(ステップS22)。ステップS22により、複合材料の基材20´における第2層の強化繊維は、X軸方向に強い引抜力が加えられ、繊維方向の長手方向に対する角度が第2繊維層の一部で0度に近づけられる。すなわち、ステップS22により、複合材料の基材20´における第2層の強化繊維は、X軸方向に強い引抜力が加えられ、90度ファイバー層を除いて繊維方向の長手方向に対する角度が同じプラスマイナスの方向のまま小さくなる。これにより、複合材料の基材20における第2層の強化繊維の繊維方向の長手方向に対する角度は、要求角度より一定の角度だけ絶対値が大きい値となっていた複合材料の基材20´における第2層の強化繊維の繊維方向の長手方向に対する角度と比較して同じプラスマイナスの方向のまま小さくなり、所望の角度である要求角度に近づけられる。 The plurality of composite base materials 20 ′ formed in step S <b> 18 are deformed so as to have a predetermined shape in a plane orthogonal to the longitudinal direction, and are transferred to the molding die 140 while being conveyed in the longitudinal direction. be introduced. For example, the composite material base material 20a ′ and the composite material base material 20b ′ are bent along the X-axis direction at predetermined locations, and a T-shape is formed by a plurality of composite material base materials 20 ′. And introduced into the molding die 140. A plurality of composite material base materials 20 ′ introduced into the molding die 140 are pultruded to form a composite material molded body including the plurality of composite material base materials 20 (step S 22). By the step S22, a strong pulling force is applied in the X-axis direction to the second layer reinforcing fibers in the base material 20 'of the composite material, and the angle with respect to the longitudinal direction in the fiber direction is 0 degree in a part of the second fiber layer. It can be approached. That is, in step S22, the second layer reinforcing fiber in the composite base material 20 ′ is applied with a strong pulling force in the X-axis direction, and the angle with respect to the longitudinal direction in the fiber direction is the same except for the 90-degree fiber layer. It remains smaller in the negative direction. Thereby, the angle of the reinforcing material of the second layer in the base material 20 of the composite material with respect to the longitudinal direction of the fiber direction in the base material 20 ′ of the composite material whose absolute value is larger than the required angle by a certain angle. Compared with the angle of the reinforcing fiber of the second layer with respect to the longitudinal direction of the fiber direction, the direction remains the same plus / minus direction and can be made closer to the required angle which is a desired angle.
 ここで、ステップS22における引き抜き力を制御することで、強化繊維の角度を同じに保持するかまたは強化繊維の角度を同じプラスマイナスの方向のまま小さくするか、並びに強化繊維の角度を同じプラスマイナスの方向のままどの程度小さくするかを適切に制御することができる。具体的には、ステップS22における引き抜き力が一定未満であれば、強化繊維の角度を同じに保持することができる。ステップS22における引き抜き力が一定以上であれば、強化繊維の角度を同じプラスマイナスの方向のまま小さくすることができる。ステップS22における引き抜き力が一定以上であり、その一定値に対して大きくする程度を制御することで、強化繊維の角度を同じプラスマイナスの方向のままどの程度小さくするかを制御することができる。 Here, by controlling the pulling-out force in step S22, the angle of the reinforcing fiber is kept the same, or the angle of the reinforcing fiber is made smaller while keeping the same plus / minus direction, and the angle of the reinforcing fiber is kept the same plus / minus. Thus, it is possible to appropriately control how much it is reduced in the direction of. Specifically, if the pulling force in step S22 is less than a certain value, the angles of the reinforcing fibers can be kept the same. If the pulling-out force in step S22 is a certain level or more, the angle of the reinforcing fiber can be reduced while keeping the same plus / minus direction. By controlling the extent to which the pulling force in step S22 is greater than or equal to a certain value and increasing it with respect to the certain value, it is possible to control how much the angle of the reinforcing fiber is decreased in the same plus / minus direction.
 例えば、複合材料の基材60を含む引抜成形材料10を製造する場合、強化繊維64f´を含む第2層64´(-60度ファイバー層)は、そのすぐ+Z方向に積層された第1層62´(0度ファイバー層)を介してX軸方向に強い引張応力が加えられて、強化繊維64f´の繊維方向の角度64θ´がX軸方向に沿う方向に変更されて角度が同じまたは小さくなり、強化繊維64fを含む第2層64(-45度ファイバー層)となる。また、強化繊維68f´を含む第2層68´(+60度ファイバー層)は、そのすぐ-Z方向に積層された第1層62´(0度ファイバー層)を介してX軸方向に強い引張応力が加えられて、強化繊維68f´の繊維方向の角度68θ´がX軸方向に沿う方向に変更されて角度が同じまたは小さくなり、強化繊維68fを含む第2層68(-45度ファイバー層)となる。一方、強化繊維66f´を含む第2層66´(90度ファイバー層)は、その+Z方向に積層された第2層64´(-60度ファイバー層)及び第1層62´(0度ファイバー層)と、その-Z方向に積層された第2層68´(+60度ファイバー層)及び第1層62´(0度ファイバー層)と、を介してX軸方向に引張応力が加えられる。しかし、強化繊維66f´の繊維方向の角度66θ´は90度であるため、強化繊維66f´の繊維方向の角度66θ´がX軸方向に沿う方向に変更されることなく、強化繊維66fを含む第2層66(90度ファイバー層)となる。 For example, when the pultruded material 10 including the composite base material 60 is manufactured, the second layer 64 ′ (−60 degree fiber layer) including the reinforcing fiber 64f ′ is immediately stacked in the + Z direction. A strong tensile stress is applied in the X-axis direction via 62 '(0 degree fiber layer), and the angle 64θ' in the fiber direction of the reinforcing fiber 64f 'is changed to a direction along the X-axis direction so that the angle is the same or smaller. Thus, the second layer 64 (-45 degree fiber layer) including the reinforcing fibers 64f is formed. In addition, the second layer 68 ′ (+60 degree fiber layer) including the reinforcing fiber 68f ′ has a strong tensile force in the X-axis direction via the first layer 62 ′ (0 degree fiber layer) laminated immediately in the −Z direction. When stress is applied, the angle 68θ ′ in the fiber direction of the reinforcing fiber 68f ′ is changed in the direction along the X-axis direction so that the angle becomes the same or smaller, and the second layer 68 including the reinforcing fiber 68f (−45 degree fiber layer) ) On the other hand, the second layer 66 ′ (90 degree fiber layer) including the reinforcing fiber 66f ′ is composed of the second layer 64 ′ (−60 degree fiber layer) and the first layer 62 ′ (0 degree fiber) laminated in the + Z direction. Layer), and the second layer 68 ′ (+60 degree fiber layer) and the first layer 62 ′ (0 degree fiber layer) laminated in the −Z direction, a tensile stress is applied in the X-axis direction. However, since the fiber direction angle 66θ ′ of the reinforcing fiber 66f ′ is 90 degrees, the fiber direction angle 66θ ′ of the reinforcing fiber 66f ′ is not changed in the direction along the X-axis direction, and includes the reinforcing fiber 66f. It becomes the 2nd layer 66 (90 degree fiber layer).
 ステップS12からステップS22までの処理と並行して、間隙基材供給部120で間接基材22´´を供給し、間接基材22´´を樹脂プール122に浸すことで、間接基材22´´に熱硬化性樹脂を含浸させて間隙材料22´を形成し、間隙材料22´を複数枚の複合材料の基材20´の隙間に配して複数枚の複合材料の基材20と共に成形金型140に導入して、間隙材料22を複合材料成形体の間隙に配することが好ましい(ステップS24)。本実施形態に係る引抜成形材料の製造方法は、ステップS24で、間隙材料22を複合材料成形体の間隙に配する。そのため、複合材料成形体の間隙を間隙材料22で好適に充填した引抜成形材料10を製造することができる。 In parallel to the processing from step S12 to step S22, the indirect base material 22 ″ is supplied by the gap base material supply unit 120, and the indirect base material 22 ″ is immersed in the resin pool 122. ′ Is impregnated with a thermosetting resin to form a gap material 22 ′, and the gap material 22 ′ is arranged in a gap between a plurality of composite material base materials 20 ′ and molded together with a plurality of composite material base materials 20. It is preferable to introduce the gap material 22 into the gap of the composite material molded body by introducing it into the mold 140 (step S24). In step S24, the pultruded material manufacturing method according to the present embodiment places the gap material 22 in the gap of the composite material molded body. Therefore, the pultrusion molding material 10 in which the gap between the composite material moldings is suitably filled with the gap material 22 can be manufactured.
 ステップS18以降において、加熱部により、複合材料の基材20´に含まれる熱硬化性樹脂を半硬化状態又は硬化状態にすることが好ましい。また、ステップS24の途中において、加熱部により、間隙材料22´に含まれる熱硬化性樹脂を半硬化状態又は硬化状態にすることが好ましい。 After step S18, it is preferable that the thermosetting resin contained in the base material 20 ′ of the composite material is made into a semi-cured state or a cured state by the heating unit. In the middle of step S24, it is preferable that the thermosetting resin contained in the gap material 22 ′ is brought into a semi-cured state or a cured state by the heating unit.
 本実施形態に係る引抜成形材料の製造方法は、さらに、複合材料の基材20´のY方向又はZ方向の外側の表面に表面層24´を設けることができ、これにより、表面層24を複合材料の基材20の外側の表面に設けることができる。詳細には、ステップS12からステップS22までの処理、並びにステップS24の処理と並行して、表面繊維層供給部130で強化繊維24´´を供給し、強化繊維24´´を樹脂プール132に浸すことで、強化繊維24´´に熱硬化性樹脂を含浸させて表面層24´を形成し、表面層24´を複合材料の基材20´の外側の表面に配して複数枚の複合材料の基材20と共に成形金型140に導入して、表面層24を複合材料の基材20の外側の表面に設けることができる。本実施形態に係る引抜成形材料の製造方法は、複合材料の基材20´のY方向又はZ方向の外側の表面に表面層24´を設けることができるので、成形金型140を用いた引抜成形を精度よく行うことができる。 In the method of manufacturing the pultruded material according to the present embodiment, the surface layer 24 ′ can be further provided on the outer surface in the Y direction or the Z direction of the base material 20 ′ of the composite material. It can be provided on the outer surface of the composite substrate 20. Specifically, in parallel with the processing from step S12 to step S22 and the processing of step S24, the reinforcing fiber 24 ″ is supplied by the surface fiber layer supply unit 130, and the reinforcing fiber 24 ″ is immersed in the resin pool 132. Thus, the reinforcing fiber 24 ″ is impregnated with a thermosetting resin to form a surface layer 24 ′, and the surface layer 24 ′ is arranged on the outer surface of the base material 20 ′ of the composite material. The surface layer 24 can be provided on the outer surface of the composite material substrate 20 by introducing it into the molding die 140 together with the substrate 20. In the method of manufacturing the pultruded material according to the present embodiment, the surface layer 24 ′ can be provided on the outer surface in the Y direction or the Z direction of the base material 20 ′ of the composite material. Molding can be performed with high accuracy.
 本実施形態に係る引抜成形材料の製造方法は、以上のような構成を有するため、強化繊維の繊維方向が要求角度を実現するように複合材料の基材及び引抜成形材料を製造することができ、引抜成形により成形される複合材料の基材の性能を要求性能に応じて調整することができる。そのため、本実施形態に係る引抜成形材料の製造方法は、引抜成形により成形される複合材料の基材の長手方向以外の剛性及び強度等の性能を調整することができる。 Since the pultruded material manufacturing method according to the present embodiment has the above-described configuration, the composite material base material and the pultruded material can be manufactured so that the fiber direction of the reinforcing fiber achieves the required angle. The performance of the composite material base material formed by pultrusion can be adjusted according to the required performance. Therefore, the method for producing a pultruded material according to the present embodiment can adjust performances such as rigidity and strength other than the longitudinal direction of the base material of the composite material molded by pultrusion.
 本実施形態に係る引抜成形材料の製造方法の変形例について以下に説明する。図13は、図1の引抜成形材料10を製造する引抜成形材料の製造方法のフローの一例を示すフローチャートである。本実施形態に係る引抜成形材料の製造方法の変形例について、図13を用いて説明する。本実施形態に係る引抜成形材料の製造方法の変形例は、図13に示すように、第1層準備工程としての第1層形成工程S32と、第2層準備工程としての第2層形成工程S34と、積層工程S36と、引抜成形工程S22と、間隙材料形成工程S24と、を備える。以下においては、第1層形成工程S32、第2層形成工程S34及び積層工程S36を適宜、それぞれ単に、ステップS32、ステップS34及びステップS36と称する。 A modification of the method for manufacturing a pultrusion material according to this embodiment will be described below. FIG. 13 is a flowchart showing an example of a flow of a pultrusion material manufacturing method for manufacturing the pultrusion material 10 of FIG. A modification of the pultrusion material manufacturing method according to the present embodiment will be described with reference to FIG. As shown in FIG. 13, the modification example of the method for manufacturing the pultruded material according to the present embodiment includes a first layer forming step S32 as a first layer preparing step and a second layer forming step as a second layer preparing step. S34, lamination | stacking process S36, pultrusion molding process S22, and gap | interval material formation process S24 are provided. Hereinafter, the first layer forming step S32, the second layer forming step S34, and the stacking step S36 are simply referred to as step S32, step S34, and step S36, respectively, as appropriate.
 まず、繊維方向が長手方向に沿って配向された強化繊維で構成された第1繊維層に熱硬化性樹脂を含浸させて、第1層を形成する(ステップS32)。熱硬化性樹脂の含浸方法については、ステップS18の所で述べたいかなる方法も用いることができる。第1層は、詳細には、0度ファイバー層に熱硬化性樹脂を含浸させた複合材料の基材である。複合材料の基材30を含む引抜成形材料10を製造する場合、ステップS32では、1枚の第1層を準備する。複合材料の基材40を含む引抜成形材料10を製造する場合、ステップS32では、1枚の第1層を準備する。複合材料の基材60を含む引抜成形材料10を製造する場合、ステップS32では、4枚の第1層を準備する。 First, a first layer is formed by impregnating a first fiber layer composed of reinforcing fibers whose fiber direction is oriented along the longitudinal direction with a thermosetting resin (step S32). As a method for impregnating the thermosetting resin, any method described in Step S18 can be used. Specifically, the first layer is a base material of a composite material in which a 0-degree fiber layer is impregnated with a thermosetting resin. When manufacturing the pultrusion molding material 10 including the base material 30 of the composite material, in step S32, one first layer is prepared. When manufacturing the pultrusion molding material 10 including the base material 40 of the composite material, in step S32, one first layer is prepared. When manufacturing the pultrusion molding material 10 including the base material 60 of the composite material, in step S32, four first layers are prepared.
 また、繊維方向が第1層と対向することになる対向面の面内方向、かつ、長手方向に対して所定の角度の方向に配向された強化繊維で構成された第2繊維層に熱硬化性樹脂を含浸させて、第2層を形成する(ステップS34)。繊維方向が第1層と対向することになる対向面の面内方向は、本実施形態では、シートの面内方向と一致する。第2層は、詳細には、強化繊維の繊維方向の配向の角度に応じて、+30度ファイバー層、+45度ファイバー層、+60度ファイバー層、90度ファイバー層、-30度ファイバー層、-45度ファイバー層、-60度ファイバー層等が例示される。 Also, thermosetting is performed on the second fiber layer composed of reinforcing fibers oriented in the in-plane direction of the facing surface where the fiber direction faces the first layer and in a direction at a predetermined angle with respect to the longitudinal direction. A second layer is formed by impregnating with a conductive resin (step S34). In the present embodiment, the in-plane direction of the facing surface in which the fiber direction faces the first layer coincides with the in-plane direction of the sheet. Specifically, the second layer is a +30 degree fiber layer, a +45 degree fiber layer, a +60 degree fiber layer, a 90 degree fiber layer, a −30 degree fiber layer, −45 depending on the orientation angle of the reinforcing fiber in the fiber direction. Degree fiber layer, -60 degree fiber layer and the like.
 複合材料の基材30を含む引抜成形材料10を製造する場合、ステップS34では、複合材料の基材30に含まれる第2層34(+45度ファイバー層)よりも強化繊維の繊維方向の配向角度が同じプラスマイナスの方向に大きい60度ファイバー層を、1枚準備する。複合材料の基材40を含む引抜成形材料10を製造する場合、ステップS34では、複合材料の基材40に含まれる第2層44(+45度ファイバー層)よりも強化繊維の繊維方向の配向角度が同じプラスマイナスの方向に大きい+60度ファイバー層を1枚と、複合材料の基材40に含まれる第2層46(-45度ファイバー層)よりも強化繊維の繊維方向の配向角度が同じプラスマイナスの方向に大きい-60度ファイバー層を1枚と、を準備する。 When the pultruded material 10 including the composite material base 30 is manufactured, in step S34, the orientation angle of the reinforcing fibers in the fiber direction is more than the second layer 34 (+45 degree fiber layer) included in the composite material base 30. Prepare one 60 degree fiber layer that is larger in the same plus or minus direction. When the pultruded material 10 including the composite material 40 is manufactured, in step S34, the orientation angle of the reinforcing fibers in the fiber direction is more than the second layer 44 (+45 degree fiber layer) included in the composite material 40. The fiber layer orientation angle of the reinforcing fibers is the same as that of the second layer 46 (−45 degree fiber layer) included in the base material 40 of the composite material, plus one +60 degree fiber layer having the same plus / minus direction. Prepare a large -60 degree fiber layer in the negative direction.
 複合材料の基材60を含む引抜成形材料10を製造する場合、ステップS34では、複合材料の基材60に含まれる第2層64(-45度ファイバー層)よりも強化繊維の繊維方向の配向角度が同じプラスマイナスの方向に大きい-60度ファイバー層を2枚と、複合材料の基材60に含まれる第2層66(90度ファイバー層)と強化繊維の繊維方向の配向角度が同じである90度ファイバー層を1枚と、複合材料の基材40に含まれる第2層68(+45度ファイバー層)よりも強化繊維の繊維方向の配向角度が同じプラスマイナスの方向に大きい+60度ファイバー層を2枚と、を準備する。 When the pultruded material 10 including the composite material 60 is manufactured, in step S34, the orientation of the reinforcing fibers in the fiber direction is more than that of the second layer 64 (−45 degree fiber layer) included in the composite material 60. Two -60 degree fiber layers having the same angle in the same plus / minus direction, the second layer 66 (90 degree fiber layer) included in the base material 60 of the composite material, and the orientation angle of the reinforcing fibers in the fiber direction are the same. One +90 degree fiber layer and a +60 degree fiber in which the orientation angle in the fiber direction of the reinforcing fiber is larger in the same plus / minus direction than the second layer 68 (+45 degree fiber layer) included in the base material 40 of the composite material Prepare two layers.
 本実施形態では、第1層形成工程S32、第2層形成工程S34の順番に処理しているが、本発明はこれに限定されることなく、第2層形成工程S34、第1層形成工程S32の順番に処理してもよく、第1層形成工程S32及び第2層形成工程S34を同時に処理してもよい。 In the present embodiment, the first layer forming step S32 and the second layer forming step S34 are processed in this order. However, the present invention is not limited to this, and the second layer forming step S34 and the first layer forming step are performed. You may process in order of S32 and may process 1st layer formation process S32 and 2nd layer formation process S34 simultaneously.
 次に、ステップS32で準備した第1層と、ステップS34で準備した第2層と、を積層して、複合材料の基材20´を形成する(ステップS36)。 Next, the first layer prepared in step S32 and the second layer prepared in step S34 are stacked to form a composite material base material 20 '(step S36).
 複合材料の基材30を含む引抜成形材料10を製造する場合、積層の順序が図9に示す複合材料の基材30´と同じになるように、ステップS32で準備した0度ファイバー層と、ステップS34で準備した+60度ファイバー層と、を積層する。複合材料の基材40を含む引抜成形材料10を製造する場合、積層の順序が図10に示す複合材料の基材40´と同じになるように、ステップS32で準備した0度ファイバー層と、ステップS34で準備した+60度ファイバー層及び-60度ファイバー層と、を積層する。 When producing the pultruded material 10 including the composite material base 30, the 0-degree fiber layer prepared in step S <b> 32 so that the stacking order is the same as the composite material base 30 ′ shown in FIG. 9; The +60 degree fiber layer prepared in step S34 is laminated. When producing the pultruded material 10 including the composite material base 40, the 0-degree fiber layer prepared in step S32 so that the stacking order is the same as the composite material base 40 'shown in FIG. The +60 degree fiber layer and the -60 degree fiber layer prepared in step S34 are laminated.
 複合材料の基材60を含む引抜成形材料10を製造する場合、積層の順序が図11に示す複合材料の基材60´と同じになるように、ステップS32で準備した4枚の0度ファイバー層と、ステップS34で準備した2枚の-60度ファイバー層、1枚の90度ファイバー層及び2枚の+60度ファイバー層と、を積層する。 When the pultruded material 10 including the composite material base 60 is manufactured, the four 0 degree fibers prepared in step S32 so that the stacking order is the same as the composite material base 60 'shown in FIG. And the two -60 degree fiber layers, one 90 degree fiber layer, and two +60 degree fiber layers prepared in step S34.
 本実施形態に係る引抜成形材料の製造方法の変形例は、ステップS36で、積層の順序が図11に示す複合材料の基材60´と同じになるように各層を積層する。そのため、複合材料の基材60´は、引抜成形されることで製造される複合材料の基材60を備える引抜成形材料10における強化繊維64f、66f、68fの繊維方向の角度64θ、66θ、68θが要求角度を精度よく実現することができる。 In a modified example of the pultruded material manufacturing method according to the present embodiment, in step S36, the layers are stacked so that the stacking order is the same as that of the composite material base 60 'shown in FIG. Therefore, the composite material base material 60 ′ has fiber direction angles 64θ, 66θ, 68θ of the reinforcing fibers 64 f, 66 f, 68 f in the pultruded material 10 including the composite material base material 60 manufactured by pultrusion. However, the required angle can be realized with high accuracy.
 ステップS36で形成した複数枚の複合材料の基材20´を、長手方向に対して直交する平面内の所定の形状となるように変形されて、長手方向に搬送させながら、成形金型140に導入される。その後のステップS22及びステップS24は、上記と同じなので、それらの詳細な説明を省略する。また、熱硬化性樹脂を加熱するための加熱部についても、複合材料の基材20´のY方向又はZ方向の外側の表面に表面層24´を設ける表面層形成工程についても、上記と同じなので、それらの詳細な説明を省略する。 The plurality of composite base materials 20 ′ formed in step S <b> 36 are deformed so as to have a predetermined shape in a plane orthogonal to the longitudinal direction, and are conveyed to the molding die 140 while being transported in the longitudinal direction. be introduced. Since subsequent steps S22 and S24 are the same as described above, their detailed description is omitted. Further, the heating layer for heating the thermosetting resin is the same as described above for the surface layer forming step of providing the surface layer 24 'on the outer surface in the Y direction or Z direction of the base material 20' of the composite material. Therefore, detailed description thereof will be omitted.
 本実施形態に係る引抜成形材料の製造方法の変形例は、以上のような構成を有するため、上記の本実施形態に係る引抜成形材料の製造方法と同様の作用効果が得られる。すなわち、本実施形態に係る引抜成形材料の製造方法の変形例は、強化繊維の繊維方向が要求角度を実現するように複合材料の基材及び引抜成形材料を製造することができ、引抜成形により成形される複合材料の基材の性能を要求性能に応じて調整することができる。 Since the modified example of the method for manufacturing a pultruded material according to the present embodiment has the above-described configuration, the same effects as those of the method for manufacturing the pultruded material according to the present embodiment can be obtained. That is, the modified example of the method for producing a pultruded material according to the present embodiment can produce a composite material base material and a pultruded material so that the fiber direction of the reinforcing fiber achieves the required angle. The performance of the base material of the composite material to be molded can be adjusted according to the required performance.
 10 引抜成形材料
 20,20´,20a,20a´,20b,20b´,20c,20c´,30,30´,40,40´,60,60´ 複合材料の基材
 20´´,20a´´,20b´´,20c´´ プリフォーム
 22,22´ 間隙材料
 22´´ 間接基材
 24,24´,24a,24a´,24b,24b´,24c,24c´ 表面層
 24´´,24a´´,24b´´,24c´´,32f,32f´,34f,34f´,42f,42f´,44f,44f´,46f,46f´,62f,62f´,64f,64f´,66f,66f´,68f,68f´ 強化繊維
 32,32´,42,42´,62,62´ 第1層
 34,34´,44,44´,46,46´,64,64´,66,66´,68,68´ 第2層
 34θ,34θ´,44θ,44θ´,46θ,46θ´,64θ,64θ´,66θ,66θ´,68θ,68θ´ 角度
 100 引抜成形材料の製造装置
 110,110a,110b,110c 繊維層供給部
 112,112a,112b,112c,122,132,132a,132b,132c 樹脂プール
 120 間隙基材供給部
 130,130a,130b,130c 表面繊維層供給部
 140 成形金型
 D,D´ 矢印
10 pultrusion molding material 20, 20 ′, 20a, 20a ′, 20b, 20b ′, 20c, 20c ′, 30, 30 ′, 40, 40 ′, 60, 60 ′ base material of composite material 20 ″, 20a ″ , 20b ″, 20c ″ Preform 22, 22 ′ Gap material 22 ″ Indirect substrate 24, 24 ′, 24a, 24a ′, 24b, 24b ′, 24c, 24c ′ Surface layer 24 ″, 24a ″ 24b ″, 24c ″, 32f, 32f ′, 34f, 34f ′, 42f, 42f ′, 44f, 44f ′, 46f, 46f ′, 62f, 62f ′, 64f, 64f ′, 66f, 66f ′, 68f , 68f 'Reinforcing fiber 32, 32', 42, 42 ', 62, 62' First layer 34, 34 ', 44, 44', 46, 46 ', 64, 64', 66, 66 ', 68, 68 ′ Second layer 34θ, 34θ ′, 44θ, 44θ ′, 46 , 46θ ′, 64θ, 64θ ′, 66θ, 66θ ′, 68θ, 68θ ′ Angle 100 Pulsating material manufacturing apparatus 110, 110a, 110b, 110c Fiber layer supply unit 112, 112a, 112b, 112c, 122, 132, 132a , 132b, 132c Resin pool 120 Gap base material supply unit 130, 130a, 130b, 130c Surface fiber layer supply unit 140 Mold D, D ′ arrow

Claims (12)

  1.  長手方向に延び、強化繊維に熱硬化性樹脂を含浸させた複合材料の基材であって、
     前記強化繊維の繊維方向が前記長手方向に沿って配向された第1層と、
     前記第1層に積層され、前記強化繊維の繊維方向が前記第1層と対向する対向面の面内方向、かつ、前記長手方向に対して所定の角度の方向に配向された第2層と、
     を含み、
     前記複合材料に要求される前記強化繊維の繊維方向の前記長手方向に対する角度を要求角度としたとき、前記所定の角度は、前記要求角度以上であることを特徴とする複合材料の基材。
    A base material of a composite material extending in the longitudinal direction and impregnating a reinforcing fiber with a thermosetting resin,
    A first layer in which the fiber direction of the reinforcing fibers is oriented along the longitudinal direction;
    A second layer laminated on the first layer, wherein the fiber direction of the reinforcing fibers is oriented in the in-plane direction of the facing surface facing the first layer and in a direction at a predetermined angle with respect to the longitudinal direction; ,
    Including
    The base material for a composite material, wherein the predetermined angle is equal to or greater than the required angle, when an angle of the reinforcing fiber required for the composite material with respect to the longitudinal direction is a required angle.
  2.  前記第1層は、複数設けられ、
     前記第2層は、前記第1層の間に設けられていることを特徴とする請求項1に記載の複合材料の基材。
    A plurality of the first layers are provided,
    The composite material substrate according to claim 1, wherein the second layer is provided between the first layers.
  3.  前記第2層は、複数積層され、
     複数の前記第2層は、前記第1層に近い層における前記所定の角度が、前記第1層から遠い層における前記所定の角度よりも小さいことを特徴とする請求項1または請求項2に記載の複合材料の基材。
    A plurality of the second layers are laminated,
    3. The plurality of second layers, wherein the predetermined angle in a layer close to the first layer is smaller than the predetermined angle in a layer far from the first layer. A substrate of the composite material described.
  4.  請求項1から請求項3のいずれか1項に記載の複数枚の複合材料の基材において、前記所定の角度が引抜成形を施す前よりも前記要求角度に近づけられた複合材料の基材を含むことを特徴とする引抜成形材料。 The composite material substrate according to any one of claims 1 to 3, wherein the predetermined angle is closer to the required angle than before the pultrusion is performed. A pultrusion molding material characterized by containing.
  5.  前記所定の角度が引抜成形を施す前よりも前記要求角度に近づけられた前記複合材料の基材の間隙に配された間隙材料をさらに含むことを特徴とする請求項4に記載の引抜成形材料。 5. The pultrusion material according to claim 4, further comprising a gap material disposed in a gap of the base material of the composite material in which the predetermined angle is closer to the required angle than before the pultrusion is performed. .
  6.  長手方向に延び、強化繊維に熱硬化性樹脂を含浸させた複合材料の基材の製造方法であって、
     前記強化繊維の繊維方向が前記長手方向に沿って配向された第1層を準備する第1層準備工程と、
     前記強化繊維の繊維方向が前記第1層と対向することになる対向面の面内方向、かつ、前記長手方向に対して所定の角度の方向に配向された第2層を準備する第2層準備工程と、
     前記第1層と前記第2層とを積層する積層工程と、
     を含み、
     前記複合材料に要求される前記強化繊維の繊維方向の前記長手方向に対する角度を要求角度としたとき、前記所定の角度は、前記要求角度以上であることを特徴とする複合材料の基材の製造方法。
    A method for producing a base material of a composite material extending in a longitudinal direction and impregnating a reinforcing fiber with a thermosetting resin,
    A first layer preparation step of preparing a first layer in which the fiber direction of the reinforcing fibers is oriented along the longitudinal direction;
    A second layer for preparing a second layer in which the fiber direction of the reinforcing fiber is oriented in the in-plane direction of the facing surface that faces the first layer and in a direction at a predetermined angle with respect to the longitudinal direction A preparation process;
    A laminating step of laminating the first layer and the second layer;
    Including
    Production of a base material for a composite material, wherein the predetermined angle is equal to or greater than the required angle when the angle of the reinforcing fiber required for the composite material with respect to the longitudinal direction is a required angle Method.
  7.  前記第1層準備工程では、前記強化繊維で構成された第1繊維層を準備し、
     前記第2層準備工程では、前記強化繊維で構成された第2繊維層を準備し、
     前記積層工程では、前記第1繊維層と前記第2繊維層とを積層し、
     前記積層工程の後に、前記第1繊維層と前記第2繊維層とに前記熱硬化性樹脂を含浸させる含浸工程をさらに含むことを特徴とする請求項6に記載の複合材料の基材の製造方法。
    In the first layer preparation step, a first fiber layer composed of the reinforcing fibers is prepared,
    In the second layer preparation step, a second fiber layer composed of the reinforcing fibers is prepared,
    In the lamination step, the first fiber layer and the second fiber layer are laminated,
    The composite material substrate according to claim 6, further comprising an impregnation step of impregnating the first fiber layer and the second fiber layer with the thermosetting resin after the laminating step. Method.
  8.  前記第1層準備工程では、前記強化繊維に熱硬化性樹脂を含浸させて前記第1層を形成し、
     前記第2層準備工程では、前記強化繊維に熱硬化性樹脂を含浸させて前記第2層を形成し、
     前記積層工程では、熱硬化性樹脂を含浸させて前記第1層と前記第2層とを積層することを特徴とする請求項6に記載の複合材料の基材の製造方法。
    In the first layer preparation step, the reinforcing fiber is impregnated with a thermosetting resin to form the first layer,
    In the second layer preparing step, the reinforcing fiber is impregnated with a thermosetting resin to form the second layer,
    The method for producing a base material for a composite material according to claim 6, wherein in the laminating step, the first layer and the second layer are laminated by impregnating a thermosetting resin.
  9.  前記第1層準備工程では、前記第1層を複数準備し、
     前記積層工程では、前記第2層を、複数の前記第1層の間に積層することを特徴とする請求項6から請求項8のいずれか1項に記載の複合材料の基材の製造方法。
    In the first layer preparation step, a plurality of the first layers are prepared,
    9. The method for producing a composite material substrate according to claim 6, wherein, in the stacking step, the second layer is stacked between the plurality of first layers. 10. .
  10.  前記第2層準備工程では、前記第2層を複数形成し、
     前記積層工程では、複数層の前記第2層を、前記第1層に近い層における前記所定の角度が、前記第1層から遠い層における前記所定の角度よりも小さくなるように積層することを特徴とする請求項6から請求項9のいずれか1項に記載の複合材料の基材の製造方法。
    In the second layer preparation step, a plurality of the second layers are formed,
    In the stacking step, the plurality of second layers are stacked such that the predetermined angle in a layer close to the first layer is smaller than the predetermined angle in a layer far from the first layer. The method for producing a composite material substrate according to any one of claims 6 to 9, wherein the composite material is a substrate.
  11.  請求項6から請求項10のいずれか1項に記載の複合材料の基材の製造方法で製造した複数枚の複合材料の基材を引抜成形して複合材料成形体を形成する引抜工程を含むことを特徴とする引抜成形材料の製造方法。 A drawing step of forming a composite material molded body by pultruding a plurality of composite material base materials manufactured by the composite material base material manufacturing method according to any one of claims 6 to 10. A method for producing a pultrusion material.
  12.  引抜成形された前記複合材料の基材の間隙に間隙材料を配する間隙材料形成工程をさらに含むことを特徴とする請求項11に記載の引抜成形材料の製造方法。 12. The method for producing a pultruded material according to claim 11, further comprising a gap material forming step of arranging a gap material in a gap between the pultruded composite material base materials.
PCT/JP2017/024672 2016-07-06 2017-07-05 Composite material substrate, pultruded material, method for producing composite material substrate, and method for producing pultruded material WO2018008689A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-134524 2016-07-06
JP2016134524 2016-07-06

Publications (1)

Publication Number Publication Date
WO2018008689A1 true WO2018008689A1 (en) 2018-01-11

Family

ID=60912817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024672 WO2018008689A1 (en) 2016-07-06 2017-07-05 Composite material substrate, pultruded material, method for producing composite material substrate, and method for producing pultruded material

Country Status (1)

Country Link
WO (1) WO2018008689A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020100122A (en) * 2018-12-25 2020-07-02 フクビ化学工業株式会社 Frp pultrusion molded body, and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002307585A (en) * 2001-04-10 2002-10-23 Ishikawajima Harima Heavy Ind Co Ltd Frp structural material
JP2016504975A (en) * 2013-01-30 2016-02-18 アールティーエル マテリアルズ リミテッド Apparatus and method for producing a composite from a plurality of components

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002307585A (en) * 2001-04-10 2002-10-23 Ishikawajima Harima Heavy Ind Co Ltd Frp structural material
JP2016504975A (en) * 2013-01-30 2016-02-18 アールティーエル マテリアルズ リミテッド Apparatus and method for producing a composite from a plurality of components

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020100122A (en) * 2018-12-25 2020-07-02 フクビ化学工業株式会社 Frp pultrusion molded body, and method of manufacturing the same
JP7117993B2 (en) 2018-12-25 2022-08-15 フクビ化学工業株式会社 FRP pultruded body and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5297088B2 (en) Pre-patterned layup kit and method for manufacturing the same
JP4933584B2 (en) Manufacturing method of resin-impregnated composite material having multiple orientations
US9724891B2 (en) Bead-stiffened composite parts
CN101171122B (en) Method for the manufacturing a hollow fiber reinforced structural member
US6838148B1 (en) Carbon-fibre-reinforced SMC for multi-axially reinforced components
JP2011042170A (en) Fiber-reinforced plastic structure and method for manufacturing the same
JP2006501085A (en) Manufacturing method of composite material
JP2009191092A (en) Preform for fpr member, manufacturing method thereof, and manufacturing method of frp member using the same
KR20150110308A (en) Placement of prepreg tows in high angle transition regions
CN104903081A (en) Method of fabricating a curved composite structure using composite prepreg tape
US8852709B2 (en) Composite material part with large variation in thickness
WO2018008689A1 (en) Composite material substrate, pultruded material, method for producing composite material substrate, and method for producing pultruded material
CA2938645C (en) Composite material structure
US20090321985A1 (en) Method for the manufacture of one or more pairs of components in composite material
WO2021157082A1 (en) Method for manufacturing composite-material structure body, method for manufacturing laminated body, laminated body, and lamination mold
JP6641489B2 (en) Composite member, pultrusion molding apparatus and pultrusion molding method
US11247417B2 (en) Composite material member, gap material, pultrusion device, and pultrusion method
EP3388215A1 (en) Sandwich panel, method for producing unidirectional prepreg, and method for producing sandwich panel
JP2018001681A (en) Composite material, pultrusion molding device, and pultrusion molding method
JPH01237130A (en) Continuous, length light-weight fiber reinforced composite resin pultrusion product and its manufacture
JP3493131B2 (en) Method for manufacturing bisect type fiber reinforced plastic honeycomb core
KR102464661B1 (en) Hybrid rotor sail manufacturing method with high performance reinforced structure
JP2010031088A (en) Partially impregnated tow prepreg and apparatus for producing the same
JPS60240435A (en) Preparation of fiber reinforced resin structure
EP3508459A1 (en) Fiber reinforced materials with improved fatigue performance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17824292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17824292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP