JPS63217529A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPS63217529A
JPS63217529A JP4867087A JP4867087A JPS63217529A JP S63217529 A JPS63217529 A JP S63217529A JP 4867087 A JP4867087 A JP 4867087A JP 4867087 A JP4867087 A JP 4867087A JP S63217529 A JPS63217529 A JP S63217529A
Authority
JP
Japan
Prior art keywords
magnetic recording
ferromagnetic metal
recording medium
film layer
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4867087A
Other languages
Japanese (ja)
Inventor
Hideaki Niimi
秀明 新見
Noboru Isoe
磯江 昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP4867087A priority Critical patent/JPS63217529A/en
Publication of JPS63217529A publication Critical patent/JPS63217529A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To enhance reliability by forming a thin ferromagnetic metallic film layer on a substrate while blowing an oxidizing gas to the section where the surface part of the thin ferromagnetic metallic film layer is formed and forming a layer contg. an oxide to the surface part of the thin film layer. CONSTITUTION:The substrate 1 which is a polyimide film delivered from a delivery roll 5 is transferred along a cylindrical can roll 7 heated at 250 deg.C in a vacuum vessel 5 in which a high vacuum is maintained by a vacuum evacua tion system 4; thereafter, the substrate is taken up by a take-up roll 8. An evaporation source 9 consisting of a Co-20at.% Cr alloy provided in the lower part of the roll 7 is heated to evaporate the ferromagnetic metal. The incident angle of the vapor flow of the ferromagnetic metal on the substrate 1 which is the polyimide film is controlled by a deposition preventive plate 10; in addi tion, gaseous oxygen is blown from a gaseous oxygen introducing port 11 toward the part P where the surface part of a perpendicularly magnetized film is formed to maintain the forming speed of the film at >=500A/s, by which the magnetic recording medium having the perpendicularly magnetized film is pro duced. A floppy disk having 5 inch diameter is thereafter produced by blanking such medium.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気記録媒体に係わり、さらに詳しくは耐摩耗
性が良好で耐久性に優れた信頼性の高い強磁性金属薄膜
を有する磁気記録媒体の製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a magnetic recording medium, and more specifically, a magnetic recording medium having a highly reliable ferromagnetic metal thin film with good wear resistance and excellent durability. Relating to a manufacturing method.

〔従来の技術〕[Conventional technology]

真空蒸着法、スパッタリング法あるいはメッキ法などで
作られるCo−Ni、 Go−Cr、 Go−Ni−P
などの強磁性体薄膜を有する、いわゆるC。
Co-Ni, Go-Cr, Go-Ni-P made by vacuum evaporation, sputtering, plating, etc.
The so-called C has a ferromagnetic thin film such as.

を主成分とする強磁性金属薄膜型の磁気記録媒体は、高
密度磁気記録に適した優れた磁気特性を持つ反面、耐摩
耗性に劣るという欠点があり実用上問題になっている。
Although ferromagnetic metal thin film type magnetic recording media mainly composed of ferromagnetic metal have excellent magnetic properties suitable for high-density magnetic recording, they have the drawback of poor wear resistance, which has become a practical problem.

特に、垂直磁気記録用のC。In particular, C for perpendicular magnetic recording.

−Cr系磁性膜、ハードディスク用のCo−Ni系磁性
膜など、Coを主成分として酸素濃度が10原子%以゛
下含有する磁性膜を有する磁気記録媒体においては耐摩
耗性が悪く、磁気ヘッドなどとの摺接によって磁性膜が
摩耗あるいは損傷を受は易く、そのため磁気記録媒体と
しての耐久性ならびに信頼性が劣るという欠点があった
。この欠点を解消するために、例えばポリエステルやポ
リスチレンなどの高分子物質からなる保護膜、あるいは
種々の金属保護膜を磁性膜の上に設けることが試みられ
ているが、前者においては磁性膜との接着力が弱いため
に剥離され易いという欠点があり、後者においては金属
の保護膜が軟らかいために十分な耐摩耗性が得られない
という問題があった。
- Magnetic recording media with magnetic films containing Co as a main component and an oxygen concentration of 10 atomic % or less, such as Cr-based magnetic films and Co-Ni-based magnetic films for hard disks, have poor wear resistance, and magnetic heads The magnetic film is easily abraded or damaged due to sliding contact with other objects such as the like, and as a result, the durability and reliability of the magnetic recording medium are poor. In order to overcome this drawback, attempts have been made to provide a protective film made of polymeric substances such as polyester or polystyrene, or various metal protective films on the magnetic film, but in the former case, They have the disadvantage that they are easily peeled off due to their weak adhesive strength, and in the latter case, there is a problem that sufficient abrasion resistance cannot be obtained because the metal protective film is soft.

また、金属の酸化物、例えば酸化ニッケルの保護膜を設
けた磁気記録媒体が特開昭59−193536号公報に
おいて提案されているが、これらの金属酸化物からなる
保護膜は硬さの点においては十分であるが、かなり脆い
ために磁気ヘッドなどとの摺接によって削り取られてし
まい、磁気記録媒体としての耐久性に劣るという欠点が
あり、さらに、磁性膜の形成と保護膜の形成という2つ
の工程が必要であり量産性に問題があった。
Furthermore, a magnetic recording medium provided with a protective film of a metal oxide, such as nickel oxide, has been proposed in Japanese Patent Application Laid-Open No. 59-193536, but these protective films made of metal oxides have a hardness. Although this is sufficient, it has the disadvantage that it is quite brittle and can be scraped off by sliding contact with a magnetic head, resulting in inferior durability as a magnetic recording medium. This method requires two steps, which poses problems in mass production.

また、酸素などを主成分とする酸化性ガス雰囲気中での
プラズマによる酸化処理、あるいはオゾン雰囲気中での
酸化処理によって、強磁性金属薄膜層の最表面に含まれ
ているCOを酸化して保護膜とする方法が種々提案され
ている(特開昭58−17544号公報、同58−41
439号公報、同58−26319号公報、同58−2
6322号公報、同58−133628号公報)。
In addition, the CO contained in the outermost surface of the ferromagnetic metal thin film layer is oxidized and protected by plasma oxidation treatment in an oxidizing gas atmosphere containing oxygen as the main component, or oxidation treatment in an ozone atmosphere. Various methods have been proposed for forming films (Japanese Patent Application Laid-open No. 58-17544, 58-41).
Publication No. 439, Publication No. 58-26319, Publication No. 58-2
No. 6322, No. 58-133628).

しかし、これらの方法では強磁性金属薄膜層の表面に形
成されるCoの酸化層は、厚さが薄いため耐摩耗性保護
膜として必ずしも十分でなく、強磁性金属薄膜層の表面
に十分な膜厚の安定した耐摩耗性の酸化層を形成させる
ためには長時間処理が必要となり、そのため磁気記録媒
体の量産性が非常に悪いという問題があった。
However, in these methods, since the Co oxide layer formed on the surface of the ferromagnetic metal thin film layer is thin, it is not necessarily sufficient as a wear-resistant protective film. In order to form a wear-resistant oxide layer with a stable thickness, a long treatment time is required, which poses a problem in that the mass production of magnetic recording media is extremely poor.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上述した従来技術における強磁性金属薄膜型
磁気記録媒体の耐摩耗性に劣るという問題点を解消し、
耐摩耗性に優れた強磁性金属薄膜層を有する磁気記録媒
体を量産性よく製造する方法を提供することを目的とす
る。
The present invention solves the problem of poor wear resistance of ferromagnetic metal thin film magnetic recording media in the prior art described above,
An object of the present invention is to provide a method for mass-producing a magnetic recording medium having a ferromagnetic metal thin film layer with excellent wear resistance.

〔問題点を解決するための手段〕[Means for solving problems]

上記本発明の目的は、真空蒸着法、スパッタリング法、
イオンプレーティング法、イオンビームデポジション法
などのベーパデポジション法によって、非磁性基体上に
、磁気記録層である強磁性金属薄膜層を形成させる場合
に、上記強磁性金属薄膜層の表面部分が形成される部位
に酸化性ガスを吹き付けることによって、強磁性金属薄
膜層の表面に酸化物を含む層を形成させることにより、
達成される。
The purpose of the present invention is to use a vacuum evaporation method, a sputtering method,
When a ferromagnetic metal thin film layer, which is a magnetic recording layer, is formed on a nonmagnetic substrate by a vapor deposition method such as an ion plating method or an ion beam deposition method, the surface portion of the ferromagnetic metal thin film layer is By spraying an oxidizing gas onto the ferromagnetic metal thin film layer to form a layer containing an oxide on the surface of the ferromagnetic metal thin film layer,
achieved.

そして1本発明の方法により強磁性金属薄膜層を形成さ
せる場合に、特に成膜速度を500Å/s以上とすると
、吹き付けた酸化性ガスが、強磁性金属蒸気によってシ
ールドされて1強磁性金属薄膜層の内部が形成される部
位に酸化性ガスが拡散するのを防止できるので、強磁性
金属薄膜層内部における酸化性ガスによる結晶配向の乱
れを防ぐことができ磁気特性の低下を招くことがない。
When a ferromagnetic metal thin film layer is formed by the method of the present invention, especially when the film formation rate is set to 500 Å/s or more, the blown oxidizing gas is shielded by the ferromagnetic metal vapor and the ferromagnetic metal thin film layer is Since it is possible to prevent oxidizing gas from diffusing into the area where the inside of the layer is formed, it is possible to prevent the crystal orientation from being disturbed by the oxidizing gas inside the ferromagnetic metal thin film layer, thereby preventing deterioration of magnetic properties. .

上記成膜速度は速い程、酸化性ガスの拡散防止効果は大
きくなるが、その上限は、使用するベーパデポジション
装置の成膜能力の限界まで許される。
The higher the film formation rate, the greater the effect of preventing the diffusion of oxidizing gas, but its upper limit is allowed up to the limit of the film formation capacity of the vapor deposition apparatus used.

本発明の強磁性金属薄膜層を形成する強磁性材料は、C
o、Ni、Faなどの単体金属もしくはこれらを主成分
とする合金、例えばFe−Co、Fe−3i、Fe−R
h、Fe−V、Fe−Ti、Fe−C。
The ferromagnetic material forming the ferromagnetic metal thin film layer of the present invention is C
Single metals such as O, Ni, and Fa, or alloys containing these as main components, such as Fe-Co, Fe-3i, and Fe-R
h, Fe-V, Fe-Ti, Fe-C.

−Cr、 Co−P、 Cro−B、 Co−3L、 
Co−V、Go−Y、 Co−8+a、 Go−Mn、
 Co−Pd、Co −Pt、 Go−Ti、 Co−
5b、 Co−Fe、 Go−Fe−Ni、Go−Ni
、Co−Ni−8b、Go−Ni−P、Go−Ni−B
、Go−Cr、Co−Ni−Cr、Co−Ni−Ag、
 Go−Ni−Pd、 Go−Ni−Zn、 G。
-Cr, Co-P, Cro-B, Co-3L,
Co-V, Go-Y, Co-8+a, Go-Mn,
Co-Pd, Co-Pt, Go-Ti, Co-
5b, Co-Fe, Go-Fe-Ni, Go-Ni
, Co-Ni-8b, Go-Ni-P, Go-Ni-B
, Go-Cr, Co-Ni-Cr, Co-Ni-Ag,
Go-Ni-Pd, Go-Ni-Zn, G.

−Cu、Co−Ni−Cu、Go−W、Co−N1−W
、Co−Mn−P、Co−5u+−Cu、Go−Ni−
Zn−P、Co−Ni−Mo−Cr、Co−V−Crな
どを用いることができ、これらを真空蒸着、イオンプレ
ーティング、スパッタリング、イオンビームデポジショ
ン法などのベーパデポジション法によって基体上に形成
させることができる。
-Cu, Co-Ni-Cu, Go-W, Co-N1-W
, Co-Mn-P, Co-5u+-Cu, Go-Ni-
Zn-P, Co-Ni-Mo-Cr, Co-V-Cr, etc. can be used, and these can be deposited onto a substrate by a vapor deposition method such as vacuum evaporation, ion plating, sputtering, or ion beam deposition method. can be formed.

本発明の方法において、強磁性金属薄膜層の表面部に形
成させる酸化物を含む層の膜厚は、50〜500人の範
囲が好ましく、より好ましい範囲は100〜200人で
ある。上記膜厚が50人未満であると耐摩耗性の向上効
果が少なく、また500人を超えるとスペーシングロス
が大きくなるので好ましくない。
In the method of the present invention, the thickness of the layer containing an oxide formed on the surface of the ferromagnetic metal thin film layer is preferably in the range of 50 to 500 layers, and more preferably in the range of 100 to 200 layers. If the film thickness is less than 50, the effect of improving wear resistance will be small, and if it exceeds 500, spacing loss will increase, which is not preferable.

本発明の方法に用いる酸化性ガスは、酸素、酸素リッチ
ガス、空気、あるいはHe、Arなどの不活性ガス、ま
たはN2などに希釈された酸素ガスを用いることができ
る。
The oxidizing gas used in the method of the present invention may be oxygen, oxygen-rich gas, air, an inert gas such as He or Ar, or oxygen gas diluted with N2 or the like.

また、本発明の方法が適用できる磁気記録媒体は、ポリ
エチレンテレフタレート、ポリエステル、ポリイミド、
ポリアミド、ポリ塩化ビニルなどの合成樹脂製のフィル
ムあるいはAA、AI1合金、Ti、Ti合金、ステン
レスなどの金属板を基体とするテープ、シート、カード
、ディスク状などの種々の形態の磁気記録媒体を包含す
る。
Further, magnetic recording media to which the method of the present invention can be applied include polyethylene terephthalate, polyester, polyimide,
Magnetic recording media in various forms such as tapes, sheets, cards, and disks are based on films made of synthetic resins such as polyamide and polyvinyl chloride, or metal plates such as AA, AI1 alloy, Ti, Ti alloy, and stainless steel. include.

〔実施例〕〔Example〕

以下に本発明の一実施例を挙げ1図面に基づいてさらに
詳細に説明する。
An embodiment of the present invention will be described below in more detail based on one drawing.

第2図に示す真空蒸着装置を用い、第1図に示す断面構
造の垂直磁化膜を有する磁気記録媒体を作製した。なお
、第3図は、第2図に示した真空蒸着装置の要部(蒸着
部)拡大図である。図に示すごとく、真空排気系4によ
って高真空に保たれた真空槽5内において、送り出しロ
ール6から送り出されたポリイミドフィルムの基体1は
、250℃に加熱された円筒状キャンロール7に沿って
移動した後、巻き取りロール8によって巻き取られる。
A magnetic recording medium having a perpendicularly magnetized film having the cross-sectional structure shown in FIG. 1 was manufactured using the vacuum evaporation apparatus shown in FIG. In addition, FIG. 3 is an enlarged view of the main part (evaporation part) of the vacuum evaporation apparatus shown in FIG. 2. As shown in the figure, in a vacuum chamber 5 maintained at a high vacuum by an evacuation system 4, a polyimide film substrate 1 sent out from a delivery roll 6 is moved along a cylindrical can roll 7 heated to 250°C. After moving, it is wound up by a winding roll 8.

このとき1円筒状キャンロール7の下部に配置されてい
るGo−20at%Cr合金からなる強磁性金属の蒸発
源9を加熱し1強磁性金属を蒸発させて、防着板10に
よって強磁性金属蒸気流のポリイミドフィルムの基体1
に対する入射角を制御すると共に、酸素ガス導入口11
から、垂直磁化膜の表面部分が形成される部位P(第3
図)に向けて、酸素ガスを100 m Q / win
吹き付けつつ、蒸着速度1000Å/sで、膜厚が30
00人のGo−20at%Cr合金からなる垂直磁化膜
を有する磁気記録媒体を製造した後、これを打ち抜き、
5インチ径のフロッピーディスクを作製した。
At this time, the ferromagnetic metal evaporation source 9 made of Go-20 at% Cr alloy placed at the bottom of the first cylindrical can roll 7 is heated to evaporate the first ferromagnetic metal, and the ferromagnetic metal is Vapor flow polyimide film substrate 1
In addition to controlling the incident angle to the oxygen gas inlet 11
, a portion P where the surface portion of the perpendicular magnetization film is formed (third
100 m Q/win of oxygen gas toward
While spraying, the deposition rate was 1000 Å/s, and the film thickness was 30 Å/s.
After manufacturing a magnetic recording medium having a perpendicular magnetization film made of 00000 Go-20 at% Cr alloy, it was punched out.
A floppy disk with a diameter of 5 inches was prepared.

〔比較例〕[Comparative example]

酸素ガスの導入を省略した以外は、実施例と同様にして
フロッピーディスクを作製した。
A floppy disk was produced in the same manner as in the example except that the introduction of oxygen gas was omitted.

以上の実施例および比較例によって作製したフロッピー
ディスクについて、磁気ヘッドをコンタクト状態にして
、記録密度150kBPIで、再生出力が初期値の半分
になるまでのパス回数を測定し、磁気記録媒体としての
耐摩耗性を評価した。
For the floppy disks manufactured according to the above examples and comparative examples, the number of passes until the reproduction output becomes half of the initial value at a recording density of 150 kBPI was measured with the magnetic head in contact state, and the durability as a magnetic recording medium was measured. Wear resistance was evaluated.

その結果を第1表に示す。The results are shown in Table 1.

第   1   表 第1表から明らかなごとく、本発明の方法によって製造
した磁気記録媒体は、極めて耐摩耗性に優れていること
が判る。
Table 1 As is clear from Table 1, the magnetic recording medium manufactured by the method of the present invention has extremely excellent wear resistance.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したごとく1本発明の強磁性金属薄膜層
の表面部分が形成される部位に向けて酸化性ガスを吹き
つけることにより、十分な膜厚で安定した組成の耐摩耗
性に優れた酸化物を含む層を極めて容易に形成させるこ
とができるので、耐久性ならびに信頼性の高い磁気記録
媒体を量産性よく安価に製造することができる。
As explained in detail above, (1) By blowing an oxidizing gas toward the area where the surface portion of the ferromagnetic metal thin film layer of the present invention is formed, a film with a sufficient thickness and a stable composition with excellent wear resistance can be obtained. Since a layer containing an oxide can be formed extremely easily, a magnetic recording medium with high durability and reliability can be manufactured at low cost with good mass productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例において作製した磁気記録媒体
の断面構造を示す模式図、第2図は本発明の実施例にお
いて用いた真空蒸着装置の構造を示す模式図、第3図は
第2図に示す真空蒸着装置の要部(蒸着部)拡大図であ
る。 1・・・基体       2・・・垂直磁化膜3・・
・酸化物を含む層  4・・・真空排気系5・・・真空
槽      6・・・送り出しロール7・・・円筒状
キャンロール 8・・・巻き取りロール  9・・・蒸発源10・・・
防着板      11・・・酸素ガス導入口P・・・
垂直磁化膜の表面部分が形成される部位才1 図 才2図 十3 図 7−−−日商A大′キV〉ロール 9−−一χ、2ミンノ呼叱 10−−−ア古廂す反 11−一−ρ襲東ガ°ス溝入口
FIG. 1 is a schematic diagram showing the cross-sectional structure of a magnetic recording medium manufactured in an example of the present invention, FIG. 2 is a schematic diagram showing the structure of a vacuum evaporation apparatus used in an example of the present invention, and FIG. FIG. 3 is an enlarged view of the main part (deposition part) of the vacuum evaporation apparatus shown in FIG. 2; 1...Substrate 2...Perpendicular magnetization film 3...
- Layer containing oxide 4... Vacuum exhaust system 5... Vacuum tank 6... Delivery roll 7... Cylindrical can roll 8... Winding roll 9... Evaporation source 10...
Anti-adhesion plate 11...Oxygen gas inlet P...
The part where the surface portion of the perpendicularly magnetized film is formed Figure 1 Figure Figure 2 Figure 7 Sutan 11-1-ρ East Gas Ditch Entrance

Claims (1)

【特許請求の範囲】 1、非磁性基体上に、ベーパデポジション法によって強
磁性金属薄膜よりなる磁気記録層を形成させて磁気記録
媒体を製造する方法において、上記強磁性金属薄膜層の
表面部分が形成される部位に酸化性ガスを吹き付けなが
ら強磁性金属薄膜層を成膜し、該強磁性金属薄膜層の表
面部分に酸化物を含む層を形成させることを特徴とする
磁気記録媒体の製造法。 2、ベーパデポジション法が、真空蒸着法、スパッタリ
ング法、イオンプレーティング法、イオンビームデポジ
ション法のうちより選ばれる少なくとも1種の方法であ
り、強磁性金属薄膜層の形成速度が500Å/s以上で
あることを特徴とする特許請求の範囲第1項に記載の磁
気記録媒体の製造法。 3、強磁性金属薄膜層が、Coの単体金属もしくはCo
を主成分とする合金よりなる垂直磁化膜であることを特
徴とする特許請求の範囲第1項または第2項に記載の磁
気記録媒体の製造法。
[Claims] 1. A method for manufacturing a magnetic recording medium by forming a magnetic recording layer made of a ferromagnetic metal thin film on a non-magnetic substrate by a vapor deposition method, wherein the surface portion of the ferromagnetic metal thin film layer is 1. Manufacturing a magnetic recording medium characterized by forming a ferromagnetic metal thin film layer while blowing an oxidizing gas onto a region where oxidizing gas is formed, and forming a layer containing an oxide on the surface portion of the ferromagnetic metal thin film layer. Law. 2. The vapor deposition method is at least one method selected from vacuum evaporation, sputtering, ion plating, and ion beam deposition, and the formation rate of the ferromagnetic metal thin film layer is 500 Å/s. A method for manufacturing a magnetic recording medium according to claim 1, which is characterized in that the method is as follows. 3. The ferromagnetic metal thin film layer is a simple metal of Co or Co
3. The method of manufacturing a magnetic recording medium according to claim 1, wherein the magnetic recording medium is a perpendicularly magnetized film made of an alloy containing as a main component.
JP4867087A 1987-03-05 1987-03-05 Production of magnetic recording medium Pending JPS63217529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4867087A JPS63217529A (en) 1987-03-05 1987-03-05 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4867087A JPS63217529A (en) 1987-03-05 1987-03-05 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS63217529A true JPS63217529A (en) 1988-09-09

Family

ID=12809761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4867087A Pending JPS63217529A (en) 1987-03-05 1987-03-05 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS63217529A (en)

Similar Documents

Publication Publication Date Title
US4643915A (en) Process for producing magnetic recording medium
US20020094458A1 (en) Magnetic recording medium and process for producing the same
JPS63217529A (en) Production of magnetic recording medium
JPS6148128A (en) Manufacture of magnetic recording medium
JPH0221046B2 (en)
US20020068193A1 (en) Magnetic recording medium and process for producing the same
JP2605803B2 (en) Magnetic recording media
JPH04335206A (en) Magnetic recording medium
JPH01124115A (en) Magnetic recording medium and its production
JPS59157828A (en) Magnetic recording medium
JPH01319119A (en) Magnetic recording medium
JPS61294635A (en) Magnetic recording medium
JPH0381202B2 (en)
JPH02152007A (en) Magnetic recording medium
JPS61284829A (en) Magnetic recording medium
JPH07182644A (en) Magnetic recording medium
JPH061550B2 (en) Method of manufacturing magnetic recording medium
JPH06282841A (en) Magnetic recording medium and manufacture thereof
JPH0142046B2 (en)
JPS62298917A (en) Magnetic recording medium
JPH04232613A (en) Magnetic recording medium and its manufacture
JPS63152018A (en) Magnetic recording medium
JPH01149218A (en) Perpendicular magnetic recording medium
JPS62279516A (en) Vertical magnetic recording medium
JPH04248126A (en) Production of magnetic recording medium