JPS63216954A - Production of zr based alloy plate having excellent cold workability - Google Patents

Production of zr based alloy plate having excellent cold workability

Info

Publication number
JPS63216954A
JPS63216954A JP4937087A JP4937087A JPS63216954A JP S63216954 A JPS63216954 A JP S63216954A JP 4937087 A JP4937087 A JP 4937087A JP 4937087 A JP4937087 A JP 4937087A JP S63216954 A JPS63216954 A JP S63216954A
Authority
JP
Japan
Prior art keywords
hot rolling
cold
based alloy
alloy
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4937087A
Other languages
Japanese (ja)
Inventor
Masao Koike
小池 正夫
Tsuyoshi Kodama
小玉 強
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4937087A priority Critical patent/JPS63216954A/en
Publication of JPS63216954A publication Critical patent/JPS63216954A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PURPOSE:To produce a Zr based alloy having good cold workability to which cold working can be executed without a heat treatment, by heating the Zr based alloy to a specific temp., subjecting said alloy to hot rolling and thereafter quenching the same at a specific cooling speed. CONSTITUTION:The Zr based alloy is heated to 850-950 deg.C and is subjected to the hot rolling in such a manner that FeZr deposited at the time of blooming is allowed to form a solid solution, the grain coarsening of the alloy by the pre-treatment of the hot rolling is prevented and the fine granulation of the same is executed by the hot rolling. Said alloy is then quenched at the cooling ratio of 50 deg.C/sec to control the new deposition of FeZr. The Zr based alloy having the good cold workability (ductility) to which the cold working (cold rolling and cold molding) can be executed without the heat treatment is thereby obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、冷間加工性、特に延性のすぐれたZr(ジル
コニウム)基合金板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a Zr (zirconium)-based alloy sheet having excellent cold workability, particularly ductility.

〔従来の技術〕[Conventional technology]

Zr系材料、すなわち純Zr及びZr合金は優れた耐食
性、耐熱性を有すると共に熱中性子吸収断面積が小さい
ため、耐食、耐熱合金として、更に原子炉用材料として
最近多用されつつある。
Zr-based materials, ie, pure Zr and Zr alloys, have excellent corrosion resistance and heat resistance and have a small thermal neutron absorption cross section, so they have recently been increasingly used as corrosion-resistant and heat-resistant alloys and as materials for nuclear reactors.

このZr板は、熱間圧延法により、または薄物の場合、
熱間圧延法と冷間圧延法の併用により製造されている。
This Zr plate is produced by hot rolling, or in the case of a thin product,
Manufactured using a combination of hot rolling and cold rolling methods.

冷間圧延用素材を製造する方法としては、Zr基合金に
ついて最終熱間加工後、β相領域(β変態点以上)に昇
温した後、急冷する方法(特開昭6l−143571)
号や、Zrについて810℃以上で加熱し、810℃〜
β変態点間で熱延し、急冷後さらに焼鈍する方法(特公
昭62−4463号)が開示されている。これらの方法
はいずれも熱間加工後、熱処理したのち冷間加工するも
のである。
A method for producing a material for cold rolling is a method in which a Zr-based alloy is heated to a β-phase region (beta transformation point or higher) after final hot working, and then rapidly cooled (Japanese Patent Laid-Open No. 61-143571).
No., Zr is heated at 810℃ or higher, 810℃~
A method (Japanese Patent Publication No. Sho 62-4463) has been disclosed in which hot rolling is carried out between the β transformation point, followed by rapid cooling and further annealing. All of these methods involve hot working, heat treatment, and then cold working.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、前者の方法は、結晶粒が粗大化するために冷間
変形能に劣り、後者の方法は焼鈍工程があるためにそれ
だけコスト高になっていた。 Zr基合金が用途上優れ
た性質を有しているにも拘らず、−m工業用は勿論、原
子力用機器にもその使用がためられれる最大の理由は原
材料費が極めて高価であるためである。したがって、優
れた加工性を確保しながら、少くとも加工費は極力低減
させる必要があった。
However, the former method has poor cold deformability due to coarsening of crystal grains, and the latter method requires an annealing step, which increases the cost accordingly. Although Zr-based alloys have excellent properties in terms of applications, the main reason why they are reluctant to use them not only for industrial purposes but also for nuclear power equipment is that the raw material costs are extremely high. be. Therefore, it was necessary to at least reduce processing costs as much as possible while ensuring excellent workability.

しかし、従来、上記加工性に関する材料面からの理論的
研究は殆んど知られておらず、さらに具体的な加工性改
善手段についても報告は少なく、有効な手段は見い出さ
れていないのが現状である。
However, until now, there has been little known theoretical research on the above-mentioned processability from a material perspective, and there have been few reports on specific measures to improve processability, and currently no effective measures have been found. It is.

そこで本発明の目的は、熱間加工後、熱処理なしに冷間
加工に供しうる冷間加工性(延性)の良好なZr基合金
製造方法の提供にある。
Therefore, an object of the present invention is to provide a method for manufacturing a Zr-based alloy with good cold workability (ductility), which can be subjected to cold working without heat treatment after hot working.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するための本発明は、熱間圧延によっ
てZr基合金板を製造するに際し、温度850〜950
℃で加熱し、熱間圧延を行った後、冷却速度50℃/秒
以上で急冷することを特徴とするものである。ここで、
Zr基合金としては純Zrおよびジルカロイ−2,ジル
カロイ−4として知られている低合金ジルコニウムが対
象である。
In order to solve the above problems, the present invention is aimed at producing a Zr-based alloy sheet by hot rolling at a temperature of 850 to 950.
It is characterized by heating at 0.degree. C., hot rolling, and then rapidly cooling at a cooling rate of 50.degree. C./second or more. here,
Examples of Zr-based alloys include pure Zr and low-alloy zirconium known as Zircaloy-2 and Zircaloy-4.

〔作 用〕[For production]

後述するようにZr基合金板の加工性劣化の原因は、熱
間加工後の冷却時、粒界に析出する粗大なFe、Zrの
影響と結晶粒径の影響が大である。従って、熱間加工の
最終工程である熱延工程を上記温度内で行えば、粗大な
Fe2Zrを固溶化できる。さらに熱延後冷却を、冷却
速度を上記速度範囲として行えば、冷却時に粗大なFe
、Zrの再析出を防止することができ、かつ、結晶粒を
細粒化することができるため加工性を格段に向上させる
ことができる。
As will be described later, the deterioration in workability of Zr-based alloy sheets is largely due to the influence of coarse Fe and Zr precipitated at grain boundaries during cooling after hot working, and the influence of crystal grain size. Therefore, if the hot rolling step, which is the final step of hot working, is performed within the above temperature range, coarse Fe2Zr can be converted into a solid solution. Furthermore, if cooling after hot rolling is performed with the cooling rate in the above speed range, coarse Fe
, Zr redecipitation can be prevented, and crystal grains can be made finer, so workability can be significantly improved.

〔発明の具体的構成〕[Specific structure of the invention]

以下、本発明をさらに具体的に説明する。 The present invention will be explained in more detail below.

まず、本発明完成に至った過程を説明する。本発明者ら
は、Zr基合金板における加工性劣化の原因について検
討を重ね、次の知見を得た。
First, the process that led to the completion of the present invention will be explained. The present inventors have repeatedly investigated the causes of deterioration in workability in Zr-based alloy sheets, and have obtained the following knowledge.

(1)  加工性劣化の主たる原因は、粒界に金属間化
合物Fe2Zrが析出し、成長することによる。
(1) The main cause of deterioration in workability is that the intermetallic compound Fe2Zr precipitates and grows at grain boundaries.

(2)  このFe、Zrは、分塊圧延後の冷却過程で
、冷却速度が遅いため粒界に析出、粗大化し、後の熱間
圧延工程を経ても残存し、冷間加工性を劣化させる。
(2) During the cooling process after blooming rolling, these Fe and Zr precipitate at grain boundaries and become coarse due to the slow cooling rate, and remain even after the subsequent hot rolling process, deteriorating cold workability. .

(3)分塊圧延後、FezZrを固溶させる目的の溶体
化処理を行っても、後の熱延工程でFe2Zrが粒界に
再度析出し加工性を劣化させる。
(3) Even if a solution treatment for the purpose of dissolving FezZr is performed after the blooming rolling, Fe2Zr precipitates again at the grain boundaries in the subsequent hot rolling process and deteriorates the workability.

(4)  F e z Z rの溶体化は、必ずしも従
来行われているようにβ変態点以上の高温で行う必要は
なく、β変態点の上下近傍である850〜950℃加熱
で十分である。
(4) Solutionization of FezZr does not necessarily need to be carried out at a high temperature above the β-transformation point as conventionally done, and heating at 850 to 950°C, which is near the top and bottom of the β-transformation point, is sufficient. .

(5)  熱延材が細粒で、かつ加工歪が少なければ高
い冷間変形能(延性)を有する。
(5) If the hot rolled material has fine grains and has little processing strain, it will have high cold deformability (ductility).

以上の知見に基づき、分塊圧延後、製品化工程において
FezZrの析出を抑制し、細粒材とするには、 ■ 分塊圧延後析出した、粗大なFe、Zrを固溶化さ
せる。
Based on the above findings, in order to suppress the precipitation of FezZr in the product production process after blooming and to obtain a fine-grained material, (1) Coarse Fe and Zr precipitated after blooming are dissolved.

■ 適当な温度の低温熱間圧延する。■ Low-temperature hot rolling at an appropriate temperature.

■ 熱間圧延工程でのFe、Zrの再析出を抑制する。■ Suppress redecipitation of Fe and Zr during the hot rolling process.

ことが必要であるとともに、工業的安価に製造するため
に、溶体化処理、歪取り焼鈍などの新たな工程をもうけ
ず、むしろ従来行われている工程をも省略することに留
意しつつ本発明を完成したものである。
The present invention has been developed while keeping in mind that new processes such as solution treatment and strain relief annealing are not required, and that conventional processes are omitted in order to manufacture the product at low industrial cost. This is the completed version.

すなわち、本発明は熱延前加熱温度を850〜950℃
として、分塊圧延時に析出したFe、Zrを固溶させる
と共に熱延前加熱による粗粒化を防ぎ、熱延によ4細粒
化を行い、さらに熱間圧延後の冷却速度を50℃/S以
上とすることによりFe、Zrの新たな析出を抑制し、
製品Zr基合金板の冷間加工性を向上させたものである
That is, in the present invention, the heating temperature before hot rolling is 850 to 950°C.
As a result, Fe and Zr precipitated during blooming were dissolved in solid solution, and grain coarsening due to heating before hot rolling was prevented, grain refinement was performed by hot rolling, and the cooling rate after hot rolling was set to 50°C/ S or more suppresses new precipitation of Fe and Zr,
This product has improved cold workability of the Zr-based alloy sheet.

次に、熱間圧延工程における上述の数値限定の理由につ
いて図面を参照しながら説明する。第1図は第1表に示
す供試材Aにつき熱間圧延後、冷却速度100℃/Sで
冷却後の延性(=延び率。
Next, the reason for the above numerical limitation in the hot rolling process will be explained with reference to the drawings. Figure 1 shows the ductility (=elongation rate) of sample material A shown in Table 1 after hot rolling and cooling at a cooling rate of 100°C/S.

EJ)に及ぼす熱間圧延加熱温度の影響を示すものであ
るが、加熱温度が850〜950℃の範囲が最もElが
良好であることが判る。
This figure shows the effect of hot rolling heating temperature on EJ), and it can be seen that El is best when the heating temperature is in the range of 850 to 950°C.

この理由は、850℃以下の場合、熱延前に存在する粗
大なFezZrが加熱時にも固溶化せず、最終製品に於
ても残存するためElが劣ったものと考えられる。また
、950℃以上では加熱時にβ単相となり粗粒化するた
め、熱間圧延後も粗大なα粒となり、延性を悪化する。
The reason for this is considered to be that when the temperature is 850° C. or lower, coarse FezZr existing before hot rolling does not become a solid solution during heating and remains in the final product, resulting in poor El. Moreover, at 950° C. or higher, the steel becomes a single β phase during heating, resulting in coarse grains, resulting in coarse α grains even after hot rolling, which deteriorates ductility.

仕上温度は、通常の工程では加熱温度から150℃低下
した温度までの範囲に制御することが可能であるが、熱
延作業上のトラブル等により約700℃以下になれば冷
間加工に近い状態となり多くの加工歪を有することにな
り延性が低下するため、約700℃以上となる管理が望
ましい。
In normal processes, the finishing temperature can be controlled within a range of 150°C lower than the heating temperature, but if it falls below approximately 700°C due to problems during hot rolling, it will be in a state close to cold working. Therefore, it is desirable to control the temperature to about 700° C. or higher, since this results in a large amount of processing strain and reduces ductility.

次に、第2図は供試材Aにつき熱間圧延加熱温度が最適
温度900℃の場合の熱間圧延後のElに及ぼす冷却速
度の影響を示したものであり、50℃/S以上の冷却速
度で優れたElを示す。
Next, Figure 2 shows the influence of the cooling rate on El after hot rolling when the hot rolling heating temperature for specimen A is the optimum temperature of 900°C. Shows excellent El in cooling rate.

冷却速度が50℃/S未満の場合、FezZrが粒界に
析出し、延性を悪化させるためと考えられる。
This is considered to be because when the cooling rate is less than 50° C./S, FezZr precipitates at grain boundaries and deteriorates ductility.

冷却方法としては実用的には、熱延後直ちに水槽への浸
漬処理またはスプレー冷却などの方法を使用できる。
As a practical cooling method, methods such as immersion treatment in a water tank or spray cooling immediately after hot rolling can be used.

なお、冷間圧延、冷間成型等の冷間加工に供する前に、
矯正等の軽度の冷間加工や酸洗等の表面調整を加えるの
は本発明範囲に含まれることは勿論である。
In addition, before subjecting to cold processing such as cold rolling and cold forming,
It goes without saying that mild cold working such as straightening and surface conditioning such as pickling are included within the scope of the present invention.

〔実施例〕〔Example〕

次に実施例を示す。 Next, examples will be shown.

第1表に示す組成の純Zr(A) 、 ジルカロイ−2
(B)、シルカOイー 4 (C)インゴット(VAR
による1 tonインゴット)を1000℃の温度下で
鍛造、分塊圧延後、溶体化処理なしに各種熱間圧延条件
にて熱間圧延し、直ちにスプレー水冷却を行った後、得
られた熱間圧延まま材について引張りテスト及びミクロ
組織観察を行った。
Pure Zr(A) with the composition shown in Table 1, Zircaloy-2
(B), Silka O E 4 (C) Ingot (VAR
After forging and blooming a 1 ton ingot) at a temperature of 1000℃, hot rolling under various hot rolling conditions without solution treatment and immediately cooling with spray water. Tensile tests and microstructural observations were conducted on the as-rolled material.

第2表から明らかなように、熱間圧延加熱温度が700
℃と低い隘1はFezZrの析出が認められ、Elが劣
る一方、上記加熱温度が1000℃と高い磁5は結晶粒
が粗大化し、Elが低下している。また、その加熱温度
が900℃という適正値であっても、熱間圧延後の冷却
速度が10℃/Sと遅い11h6はFe!Zrの析出が
認められ、Elが劣る。
As is clear from Table 2, the hot rolling heating temperature is 700
Magnetic No. 1, which has a low heating temperature of 1000° C., shows precipitation of FezZr and is poor in El, while Magnetic No. 5, which has a high heating temperature of 1000° C., has coarse grains and a low El. Furthermore, even if the heating temperature is an appropriate value of 900°C, 11h6 has a slow cooling rate of 10°C/S after hot rolling, which is Fe! Precipitation of Zr was observed, and El was poor.

他方、本発明法の範囲を満足するl1h2,3.4゜7
.8,9.10.11.12はいずれもE1≧30%で
あり、良好であった。
On the other hand, l1h2, 3.4°7, which satisfies the scope of the method of the present invention
.. No. 8, 9, 10, 11, and 12 all had E1≧30% and were good.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明では、分塊圧延後の熱間圧延を制御
することにより従来方法のような熱間加工工程中又は熱
間加工後の溶体化処理工程および、熱間加工後の焼鈍工
程なしに、冷間加工用Zr基合金板を経済的に製造でき
る。
As described above, in the present invention, by controlling the hot rolling after blooming, the solution treatment step during or after hot working as in the conventional method and the annealing step after hot working can be achieved. Zr-based alloy sheets for cold working can be manufactured economically without any.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は熱間圧延後のElに及ぼす熱間圧延加熱温度の
影響を示す図、第2図は熱間圧延後のElに及ぼす熱間
圧延後の冷却速度の影響を示す図である。
FIG. 1 is a diagram showing the influence of hot rolling heating temperature on El after hot rolling, and FIG. 2 is a diagram showing the influence of cooling rate after hot rolling on El after hot rolling.

Claims (3)

【特許請求の範囲】[Claims] (1)冷間加工用Zr基合金板の製造方法であって、加
熱温度850〜950℃で熱間圧延を行なった後、冷却
速度50℃/sec以上で急冷したままであることを特
徴とする冷間加工性に優れたZr基合金板の製造方法。
(1) A method for manufacturing a Zr-based alloy sheet for cold working, characterized by hot rolling at a heating temperature of 850 to 950°C and then quenching at a cooling rate of 50°C/sec or more. A method for manufacturing a Zr-based alloy sheet with excellent cold workability.
(2)前記冷間加工が冷間圧延であることを特徴とする
特許請求の範囲第1項に記載の冷間加工性に優れたZr
基合金板の製造方法。
(2) Zr having excellent cold workability according to claim 1, wherein the cold working is cold rolling.
Method for manufacturing base alloy sheet.
(3)前記冷間加工が冷間成型加工であることを特徴と
する特許請求の範囲第1項に記載の冷間加工性に優れた
Zr基合金板の製造方法。
(3) The method for manufacturing a Zr-based alloy sheet with excellent cold workability according to claim 1, wherein the cold working is cold forming.
JP4937087A 1987-03-04 1987-03-04 Production of zr based alloy plate having excellent cold workability Pending JPS63216954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4937087A JPS63216954A (en) 1987-03-04 1987-03-04 Production of zr based alloy plate having excellent cold workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4937087A JPS63216954A (en) 1987-03-04 1987-03-04 Production of zr based alloy plate having excellent cold workability

Publications (1)

Publication Number Publication Date
JPS63216954A true JPS63216954A (en) 1988-09-09

Family

ID=12829139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4937087A Pending JPS63216954A (en) 1987-03-04 1987-03-04 Production of zr based alloy plate having excellent cold workability

Country Status (1)

Country Link
JP (1) JPS63216954A (en)

Similar Documents

Publication Publication Date Title
US5817193A (en) Metal alloys having improved resistance to intergranular stress corrosion cracking
US3676225A (en) Thermomechanical processing of intermediate service temperature nickel-base superalloys
JPS6289855A (en) High strength ti alloy material having superior workability and its manufacture
CN113174551B (en) Dual-phase high-strength high-plasticity titanium alloy with heterogeneous laminated structure and preparation method thereof
CN114657417B (en) High-strength plastic titanium alloy suitable for cold deformation processing and preparation method thereof
CN103650659B (en) A kind of preparation method of used by nuclear reactor zirconium-base alloy sheet material
US3645800A (en) Method for producing wrought zirconium alloys
JPS60100655A (en) Production of high cr-containing ni-base alloy member having excellent resistance to stress corrosion cracking
CN113308653B (en) Aluminum lithium alloy heat treatment preparation method based on spray forming
CN106834826B (en) A kind of aluminium alloy strips and its manufacturing method
JPS63216954A (en) Production of zr based alloy plate having excellent cold workability
JP6228231B2 (en) Zirconium alloy processing method, zirconium alloy obtained by the method, and nuclear reactor component comprising the alloy
JPH01127653A (en) Manufacture of alpha+beta type titanium alloy cold rolled plate
CN111893356A (en) Preparation process of high-strength rare earth aluminum alloy
EP0247264B1 (en) Method for producing a thin casting of cr-series stainless steel
US3399084A (en) Method of making aluminum bronze articles
JPS6067648A (en) Nuclear fuel covering pipe and its preparation
JPH039183B2 (en)
JPH02104642A (en) Production of aluminum alloy sheet for superplastic working
JPH11509634A (en) Fuel box and method of manufacturing fuel box
JPS62225B2 (en)
CN117418083A (en) Manufacturing method of low-anisotropy titanium alloy plate
JPH02270948A (en) Production of zirconium alloy tube
CN116926450A (en) Short-process preparation method of high-Mo nickel-based corrosion-resistant alloy plate
RU1822442C (en) Method for processing alloy of aluminium-copper-lithium system