JPS63216652A - Highly accurate metal cutting method - Google Patents

Highly accurate metal cutting method

Info

Publication number
JPS63216652A
JPS63216652A JP4958387A JP4958387A JPS63216652A JP S63216652 A JPS63216652 A JP S63216652A JP 4958387 A JP4958387 A JP 4958387A JP 4958387 A JP4958387 A JP 4958387A JP S63216652 A JPS63216652 A JP S63216652A
Authority
JP
Japan
Prior art keywords
tool
workpiece
cutting
accuracy
tool slide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4958387A
Other languages
Japanese (ja)
Other versions
JPH0729258B2 (en
Inventor
Yuichi Okazaki
祐一 岡崎
Tsuguo Kono
河野 嗣男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP62049583A priority Critical patent/JPH0729258B2/en
Publication of JPS63216652A publication Critical patent/JPS63216652A/en
Publication of JPH0729258B2 publication Critical patent/JPH0729258B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Automatic Control Of Machine Tools (AREA)

Abstract

PURPOSE:To secure machined form accuracy so easily without accumulating each part accuracy in a machine, by measuring a distance between a tool slide and the ground surface of a workpiece with a noncontact displacement gauge, displacing a tool rest on the basis of the signal, and controlling the infeed rate. CONSTITUTION:During revolution of a spindle 1, a tool slide 5 is moved in the X-axis direction along a guide 4, and cutting by a tool 8 takes place. At this time, a distance between the tool slide and the ground surface 3b of a workpiece 3 is measured by a noncontact displacement gauge 7 of an electrostatic capacity system or the like, and on the basis of this measuring signal, a control unit 18 generates an infeed rate control signal for cutting along the preset object form, displacing a tool rest 6 to some extent, thus control over an infeed rate is carried out. Thus, control accuracy in a relative positional relationship between the tool and the workpiece, namely, accuracy of finishing is securable simply and easily without accumulating each part accuracy in a machine.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、高精度切削加工法に関するものであり、特に
超精密な加工面を得るのに適した切削加工法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a high-precision cutting method, and particularly to a cutting method suitable for obtaining an ultra-precision machined surface.

[従来の技術] 非球面金属鏡等の光学部品の製造に用いられている超精
密ダイヤモンド旋削は、工具と工作物の相対位置関係が
きわめて正確に工作物被削面形状に転写される性質をも
ち、超精密な加工面を得るのに適している。この場合、
工具と工作物の相対位置関係を正確に制御することが、
高精度の加工面を得るための第1の条件である。
[Prior art] Ultra-precision diamond turning, which is used to manufacture optical parts such as aspherical metal mirrors, has the property that the relative positional relationship between the tool and the workpiece is extremely accurately transferred to the shape of the workpiece surface. , suitable for obtaining ultra-precise machined surfaces. in this case,
Accurately controlling the relative position of the tool and workpiece
This is the first condition for obtaining a highly accurate machined surface.

従来は、この条件を満たすために、旋盤の主要な構成要
素、即ち主軸と工具スライドの運動精度を高めることに
労力が注がれてきた。しかし、それらの要素の連動精度
の向上には多大の困難が伴うと同時に、旋盤を構成する
それ以外の要素、例えば、主軸から工具スライドに至る
間の機械構造あるいは工作物取付具等の熱変形や荷重に
よる変形を十分に小さくすることも、非常に困難であり
、結果として、このような方法では、十分な精度で工具
と工作物の相対位置関係を制御することが、特に工作物
の寸法が大きい場合にきわめて難しい。
Conventionally, in order to meet this requirement, efforts have been focused on improving the motion accuracy of the main components of the lathe, namely the spindle and the tool slide. However, it is very difficult to improve the interlocking precision of these elements, and at the same time, thermal deformation of other elements that make up the lathe, such as the mechanical structure from the spindle to the tool slide, or workpiece fixtures, etc. It is also very difficult to sufficiently reduce the deformation caused by the load and the load, and as a result, with this method, it is difficult to control the relative positional relationship between the tool and the workpiece with sufficient accuracy, especially when changing the dimensions of the workpiece. This is extremely difficult when .

[発明が解決しようとする問題点」 本発明は、工具と工作物の相対位置関係の制御精度即ち
加工形状精度を、機械各部の精度の積み上げによること
なく、工具と工作物の相対位置関係を直接検出しつつ加
工を進めることによって、簡単且つ容易に得ようとする
ものである。
[Problems to be Solved by the Invention] The present invention improves the control accuracy of the relative positional relationship between the tool and the workpiece, that is, the machining shape accuracy, without relying on accumulating the accuracy of each part of the machine. It is intended to be obtained simply and easily by proceeding with processing while directly detecting it.

〔問題点を解決するための手段、作用]上記課題を解決
するため、本発明の第1の高精度切削加工法は、切削工
具を用いた高精度加工面の切削において、工具スライド
上に、工具の切り込み量を微小に制御できる工具台と、
工具スライドと工作物既被削面との距離を計測可能な非
接触変位計とを設け、上記変位計の出力信号に基いて工
具台を変位させ、予め設定した目的形状に沿う切削を行
うように切り込み量を制御することを特徴とするもので
ある。
[Means and effects for solving the problem] In order to solve the above problems, the first high-precision cutting method of the present invention provides the following method: When cutting a high-precision machined surface using a cutting tool, A tool stand that can minutely control the depth of cut of the tool,
A non-contact displacement meter that can measure the distance between the tool slide and the machined surface of the workpiece is installed, and the tool stand is displaced based on the output signal of the displacement meter to perform cutting along a preset target shape. The feature is that the amount of cut is controlled.

また、本発明の第2の切削加工法は、切削工具を用いた
高精度加工面の切削において、工具スライド上に、工具
の切り込み量を微小に制御できる工具台と、工具スライ
ドと工作物既被削面との距離を計測可能な二つの間隔を
置いて配設された非接触変位計とを設け、上記両変位計
の出力信号に基いて工具スライドと工作物回転軸との間
の方位変化の影響を排除して工具台を変位させ、予め設
定した目的形状に沿う切削を行うように切り込み量を制
御することを特徴とするものである。
In addition, in the second cutting method of the present invention, when cutting a high-precision machined surface using a cutting tool, a tool stand that can minutely control the amount of cut of the tool is placed on the tool slide, and the tool slide and the workpiece are placed on the tool slide. Two non-contact displacement meters are installed at intervals that can measure the distance to the workpiece surface, and the orientation change between the tool slide and the workpiece rotation axis is detected based on the output signals of both displacement meters. This method is characterized by displacing the tool rest while eliminating the influence of the above, and controlling the depth of cut so as to perform cutting along a preset target shape.

上記方法においては、工具による切削が、主軸回転中に
工具スライドを案内に沿って移動させることによって行
われ、この際、非接触変位計は既に切削の終った被削面
との間の距離を常に計測し、この変位計の出力信号に基
いて、予め設定した目的形状に沿う切削を行うように工
具台が位置制御される。
In the above method, cutting by the tool is performed by moving the tool slide along the guide while the spindle is rotating, and at this time, the non-contact displacement meter constantly measures the distance between the cut surface and the cut surface. Based on the output signal of this displacement meter, the position of the tool stand is controlled so as to perform cutting along a preset target shape.

上記工具スライドは、運動中に工作物回転軸に対して傾
きを生じる可能性があるが、その影響が大きい場合には
、二つの非接触変位計により既切削面と工具スライドと
の距離を計測し、それらの変位計の出力に基づいて工具
スライドと工作物回転軸との間の方位変化の影響を除去
した距、離の測定を行えばよい。
The tool slide mentioned above may tilt with respect to the workpiece rotation axis during movement, but if this influence is large, measure the distance between the cut surface and the tool slide using two non-contact displacement meters. However, based on the outputs of these displacement meters, the distance between the tool slide and the workpiece rotation axis can be measured while removing the influence of changes in orientation.

このようにして切削加工を行うと、工具と工作物の相対
位置関係の制御精度、即ち加工形状精度を、機械各部の
精度の積み上げによることなく、工具と工作物の相対位
置関係の直接的な検出により簡単且つ容易に高めること
ができる。
When cutting is performed in this way, the control accuracy of the relative positional relationship between the tool and the workpiece, that is, the machining shape accuracy, can be improved by directly controlling the relative positional relationship between the tool and the workpiece, without relying on accumulating the accuracy of each part of the machine. It can be simply and easily enhanced by detection.

[実施例] 以下に、図面を参照して、本発明の高精度切削加工法を
実施するための切削加工装置の構成について説明する。
[Example] The configuration of a cutting device for carrying out the high-precision cutting method of the present invention will be described below with reference to the drawings.

第1図は、本発明の加工法を旋盤による正面切削に適用
した切削加工装置の構成を示し、この切削加工装置にお
いては、旋盤の主軸1に工作物取付具2を介して工作物
3が取り付けられ、この工作物3は主軸lにより工作物
回転軸3aのまわりに回転駆動される。一方、案内4に
沿って移動する工具スライド5には、切り込み量を微小
に制御できる微小変位工具台6、及び工具スライド5と
工作物被削面3bとの切込み方向の距離を測定できる非
接触変位計7が取付けられ、微小変位工具台6の先端に
は工具8が取付けられている。
FIG. 1 shows the configuration of a cutting device in which the processing method of the present invention is applied to face cutting using a lathe. In this cutting device, a workpiece 3 is attached to the main shaft 1 of the lathe via a workpiece fixture 2. The workpiece 3 is rotated around the workpiece rotation axis 3a by the main shaft l. On the other hand, the tool slide 5 that moves along the guide 4 includes a small displacement tool stand 6 that can minutely control the amount of cut, and a non-contact displacement tool that can measure the distance in the cutting direction between the tool slide 5 and the workpiece surface 3b. A total of 7 tools are attached, and a tool 8 is attached to the tip of the minute displacement tool stand 6.

微小変位工具台6は、例えば第2図のような構造にする
ことができる。同図に示す微小変位工具台6は、剛性の
ある四つの辺部材11を四隅に位置する薄肉の弾性屈曲
部12において連結し、これらを弾性のある金属材で一
体に形成することにより弾性変形案内部材10を構成し
、この案内部材10上に工具8を固定すると共に、上下
の辺部材11.11からの凸部13.13間にそれらを
平行移動させるための圧電素子14を設け、工具8の一
端にその工具の変位を検出するための非接触変位計15
を対設している。従って、上記圧電素子14への制御入
力によって凸部13.13間の間隔を変化させると、切
込み方向に工具8の位置を制御することができ、変位計
15によってその位置を検出することができる。
The minute displacement tool stand 6 can have a structure as shown in FIG. 2, for example. The micro-displacement tool stand 6 shown in the same figure connects four rigid side members 11 at thin elastic bending parts 12 located at the four corners, and is made of an elastic metal material to allow elastic deformation. The tool 8 is fixed on the guide member 10, and a piezoelectric element 14 is provided between the convex portions 13.13 from the upper and lower side members 11.11 to move the tool in parallel. A non-contact displacement meter 15 is installed at one end of 8 to detect the displacement of the tool.
are set up opposite. Therefore, by changing the distance between the protrusions 13.13 by controlling the piezoelectric element 14, the position of the tool 8 in the cutting direction can be controlled, and the position can be detected by the displacement meter 15. .

上記旋盤においては、工具8による切削が、主軸回転中
に工具スライド5を案内4に沿ってX方向に移動させる
ことによって行われる。この際、非接触変位計7は既に
切削の終った被削面3bに対向するように位置させ、切
削中に工作物既被削面との間の距離を常に計測させる。
In the lathe described above, cutting with the tool 8 is performed by moving the tool slide 5 in the X direction along the guide 4 while the main shaft is rotating. At this time, the non-contact displacement meter 7 is positioned so as to face the cut surface 3b that has already been cut, and constantly measures the distance between it and the already cut surface of the workpiece during cutting.

この変位計7及び工具の変位量を検出する変位計15と
しては、静電容量式、渦電流式、あるいは光学式等の変
位計を用いることができる。
As the displacement meter 7 and the displacement meter 15 for detecting the amount of displacement of the tool, a capacitance type, eddy current type, or optical type displacement meter can be used.

上記微小変位工具台6及び非接触変位計7に接続されて
いる制御装置18は、非接触変位計7の出力信号に基づ
き、予め設定した目的形状に沿う切削を行うための切込
み量制御信号を発生させ、その制御信号により工具台6
を変位させて切り込み量の制御を行うもので、この制御
装置18においては次のような演算が行われる。
A control device 18 connected to the minute displacement tool stand 6 and the non-contact displacement meter 7 generates a depth of cut control signal for cutting along a preset target shape based on the output signal of the non-contact displacement meter 7. The tool stand 6 is generated by the control signal.
The control device 18 controls the amount of cut by displacing the .

いま、時刻Eにおける変位出力を5(t)、工具台6へ
の制御入力、即ち工具台6の切込み量をu (t)とし
、また、切削された工作物3の形状をz (X)と表現
する。ここに、Xは中心から半径方向へ、2は厚み方向
、へとった座標である。
Now, let the displacement output at time E be 5(t), the control input to the tool rest 6, that is, the depth of cut of the tool rest 6, be u (t), and the shape of the cut workpiece 3 be z (X) Expressed as. Here, X is a coordinate taken from the center in the radial direction, and 2 is a coordinate taken in the thickness direction.

切削中、工具スライド5はXの方向に一定速度Vで運動
しており、時刻上に工具はx=vtの位置にあるとする
。そして、工具スライド5は運動中に工作物回転軸3a
に対して傾き角の変化が生じないものと仮定すると、以
下の関係が成り立つ。
It is assumed that during cutting, the tool slide 5 is moving in the X direction at a constant speed V, and the tool is at the position x=vt at time. During the movement, the tool slide 5 rotates around the workpiece rotation axis 3a.
Assuming that there is no change in the inclination angle, the following relationship holds true.

s (t) = −z (x −v τ) + Z (
X) + u (t)Φ・・(1) °方向の距離)である。
s (t) = −z (x −v τ) + Z (
X) + u (t) Φ... (1) distance in the ° direction).

目標とする工作物3の形状を20(X)とし、制御量す
る切り込み量u (t)を、 u(t) = 5(t) +z (v (t−τ) )
 −Zo(x)・  拳 ・ (2) とすれば、Z (X)=20(+りとなり、主軸1や工
具スライド5の運動誤差、機械構造の変形等に起因する
工具8と工作物3間の相対位置関係の制御誤差とは無関
係に工作物形状を希望する値に一致させることができる
Assuming that the shape of the target workpiece 3 is 20 (X), the depth of cut u (t) to be controlled is: u (t) = 5 (t) +z (v (t - τ) )
-Zo(x)・Fist・(2) If Z (X)=20(+), the tool 8 and workpiece 3 due to motion errors of the spindle 1 and tool slide 5, deformation of the machine structure, etc. The shape of the workpiece can be made to match the desired value regardless of control errors in the relative positional relationship between the two.

但し、切削に際して、工作物3の形状Z (X)は、予
め、−Vτ≦X≦0 の区間で既知であることが必要で
ある。しかし、この短い区間においては、上述した制御
を行わない通常の方法によって切削を行っても、得られ
る面形状に対する外乱の影響は十分に小さいと考えられ
るので、その切削面を形状の既知なる参照面とすること
もできる。この場合、上記参照面をgg1次参次面照面
、(2)式の制御則に従って切削を行うことにより、0
≦X≦Vτの区間で得られる工作物3形状が確定できる
。このようにして得られた面を第2次参照面として、同
様の制御を行えば1次なる区間Vτ≦X≦2vτでも工
作物3形状が確定できる。
However, during cutting, the shape Z (X) of the workpiece 3 needs to be known in advance in the range -Vτ≦X≦0. However, in this short section, even if cutting is performed using the normal method without the above-mentioned control, the influence of disturbance on the resulting surface shape is considered to be sufficiently small, so the cut surface can be used as a reference with a known shape. It can also be a face. In this case, by using the reference surface as the gg primary reference surface and cutting according to the control law of equation (2), the 0
The shape of the workpiece 3 obtained in the interval ≦X≦Vτ can be determined. By using the surface thus obtained as a secondary reference surface and performing similar control, the shape of the workpiece 3 can be determined even in the primary section Vτ≦X≦2vτ.

このようにして、形状の既知なる第1次参照面から出発
し、上記制御を行いながら切削加工を行うことにより、
主軸lの伸び縮み、機械構造の変形、工具スライド5の
蛇行等による、工具8と工作物3の望まざる相対位置関
係誤差の影響を受けることなく、広い面にわたって工作
物3形状Z (X)を希望する値20(X)に一致させ
ることができる。
In this way, by starting from the primary reference surface with a known shape and performing cutting while performing the above control,
The shape Z (X) of the workpiece 3 can be maintained over a wide area without being affected by undesired relative positional errors between the tool 8 and the workpiece 3 due to expansion and contraction of the spindle l, deformation of the machine structure, meandering of the tool slide 5, etc. can be made to match the desired value 20(X).

次に、上述した装置を用いて行った本発明に関連する実
験例について説明する。
Next, an example of an experiment related to the present invention conducted using the above-mentioned apparatus will be explained.

第4図は、アルミニウム合金の正面切削において、工具
スライド5に工作物3から離間する方向の外力を作用さ
せて、機械構造に変形を与え、その結果束じた工具スラ
イドと工作物との間の距離変化が工作物3被削面形状に
及ぼす影響を示すものであり、従って本発明に基づく制
御は行っていない。なお、この実験では、図中に示すよ
うに、被削面に0.2ルm、 0.5給m及び1.0ル
mに相当する凸部が形成される程度に機械構造に対し変
形を与えている。
Figure 4 shows that during face cutting of aluminum alloy, an external force is applied to the tool slide 5 in the direction of separating it from the workpiece 3, deforming the machine structure, and as a result, there is a gap between the bundled tool slide and the workpiece. This figure shows the effect of a distance change on the shape of the cut surface of the workpiece 3, and therefore, control based on the present invention is not performed. In this experiment, as shown in the figure, the machine structure was deformed to the extent that convex portions corresponding to 0.2 m, 0.5 m, and 1.0 m were formed on the machined surface. giving.

一方、第5図は、上述の0.5gmの場合について、本
発明に基づく制御により被削面の変形が除去されている
状態を示している。
On the other hand, FIG. 5 shows a state in which the deformation of the cut surface is removed by the control based on the present invention in the case of 0.5 gm described above.

前述した第1図及び第2図の装置例における工具スライ
ド5は、運動中に工作物回転軸3aに対して傾きを生じ
る可能性がある。また、主軸1には回転に伴って回転軸
の方位変化(アンギュラモーション)が存在し、これも
工具スライド5と工作物回転軸3aとの間の方位変化を
招く。そして、第1図の構成では、この方位変化と、工
具スライド5と工作物3の距離変化とを区別することが
できない。
The tool slide 5 in the device example shown in FIGS. 1 and 2 described above may tilt with respect to the workpiece rotation axis 3a during movement. Furthermore, as the spindle 1 rotates, there is a change in the orientation of the rotation axis (angular motion), which also causes a change in the orientation between the tool slide 5 and the workpiece rotation axis 3a. In the configuration shown in FIG. 1, it is not possible to distinguish between this change in orientation and a change in the distance between the tool slide 5 and the workpiece 3.

このような工具スライド5と工作物回転軸3aとの間の
方位変化の影響が大きい場合には、第3図に示すような
工具スライド25を用いるのが有効である。同図に示す
工具スライド25は、工作物23の既切削面と工具スラ
イド25との距離を測る二つの非接触変位計27a、2
7bを、工具28から二つの異なる位置d I + d
 2に配置し、それらの変位計27a、27bの出力に
基づいて、工具スライド5と工作物回転ノ、i41リシ
1−L1 軸3aとの間の方位変化の影響を除去した距離の測定を
行うようにしているが、その他の構成は第1図の装置例
の場合と実質的に同一である。
When the influence of such a change in orientation between the tool slide 5 and the workpiece rotation axis 3a is large, it is effective to use a tool slide 25 as shown in FIG. 3. The tool slide 25 shown in the figure has two non-contact displacement meters 27a and 2 that measure the distance between the cut surface of the workpiece 23 and the tool slide 25.
7b from the tool 28 in two different positions d I + d
2, and based on the outputs of these displacement meters 27a and 27b, the distance between the tool slide 5 and the workpiece rotation axis 3a is measured while removing the influence of changes in orientation. However, the other configurations are substantially the same as the example of the apparatus shown in FIG.

第3図の装置例における変位計27a、27bの出力を
51(t)、52(t) 、工具スライド25の傾き角
をθとすると、 51(t) = u (t) + z (x) −z 
(x−d+) −d+θ52(t) = u (t) 
+ z (り −z (x−d2) −d2θが成り立
ち、これより、 −51(t) + 52(t) ) を得る。
If the outputs of the displacement meters 27a and 27b in the example of the device shown in FIG. 3 are 51(t) and 52(t), and the tilt angle of the tool slide 25 is θ, then 51(t) = u (t) + z (x) −z
(x-d+) -d+θ52(t) = u (t)
+ z (ri −z (x−d2) −d2θ holds, and from this, −51(t) + 52(t) ) is obtained.

ここで、 −d2(z (x−d+)+ 5t(t))]  −Z
o(x)とおけば、Z (K) −Zo(x)となり、
第1図の実施例の場合と同様に、希望する形状の被削面
が得られる。
Here, −d2(z (x−d+)+5t(t))] −Z
If we set o(x), then Z (K) −Zo(x),
As in the case of the embodiment shown in FIG. 1, a cut surface having a desired shape can be obtained.

以上に説明した高精度切削加工法は、旋盤による正面切
削を例にして説明したが、本発明はかかる正面研削に限
定されるものではなく、例えば円筒研削等においても同
様に適用することができる。
Although the high-precision cutting method described above has been explained using front cutting using a lathe as an example, the present invention is not limited to such front grinding, and can be similarly applied to, for example, cylindrical grinding. .

[発明の効果] 以上に詳述したように、本発明の高精度切削加工法によ
れば、工具と工作物の相対位置関係の制御精度即ち加工
精度を、機械各部の精度の積みLげによることなく、工
具と工作物の相対位置関係を直接検出しつつ加工を進め
ることによって、簡単且つ容易に得ることができる。
[Effects of the Invention] As detailed above, according to the high-precision cutting method of the present invention, the control accuracy of the relative positional relationship between the tool and the workpiece, that is, the machining accuracy, is determined by the cumulative accuracy of each part of the machine. This can be simply and easily obtained by proceeding with machining while directly detecting the relative positional relationship between the tool and the workpiece.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る高精度切削加工法を実施する装置
の構成図、第2図は上記装置における微小変位工具台の
側面図、第3図は工具スライドと工作物回転軸との間の
方位変化に対応できるようにした他の装置例の構成図、
第4図及び第5図は本発明に関連する実験の結果を示す
線図である。 3.23@・工作物、 5.25−・工具スライド、6
・会工具台、  ?、27a、2?b * m変位計、
8.28・・工具、  18・@制御装舒。 第 第1図 R 2図
Fig. 1 is a block diagram of an apparatus for carrying out the high-precision cutting method according to the present invention, Fig. 2 is a side view of a micro-displacement tool stand in the above-mentioned apparatus, and Fig. 3 is an illustration of the space between the tool slide and the workpiece rotation axis. A configuration diagram of another example of equipment that can respond to changes in the orientation of
FIGS. 4 and 5 are diagrams showing the results of experiments related to the present invention. 3.23@・Workpiece, 5.25-・Tool slide, 6
・Kai tool stand, ? , 27a, 2? b*m displacement meter,
8.28...Tools, 18.@Control equipment. Figure 1 R Figure 2

Claims (1)

【特許請求の範囲】 1、切削工具を用いた高精度加工面の切削において、工
具スライド上に、工具の切り込み量を微小に制御できる
工具台と、工具スライドと工作物既被削面との距離を計
測可能な非接触変位計とを設け、上記変位計の出力信号
に基いて工具台を変位させ、予め設定した目的形状に沿
う切削を行うように切り込み量を制御することを特徴と
する高精度切削加工法。 2、切削工具を用いた高精度加工面の切削において、工
具スライド上に、工具の切り込み量を微小に制御できる
工具台と、工具スライドと工作物既被削面との距離を計
測可能な二つの間隔を置いて配設された非接触変位計と
を設け、上記両変位計の出力信号に基いて工具スライド
と工作物回転軸との間の方位変化の影響を排除して工具
台を変位させ、予め設定した目的形状に沿う切削を行う
ように切り込み量を制御することを特徴とする高精度切
削加工法。
[Claims] 1. In cutting a high-precision machined surface using a cutting tool, there is a tool stand on the tool slide that can minutely control the depth of cut of the tool, and a distance between the tool slide and the already machined surface of the workpiece. A non-contact displacement meter capable of measuring the displacement meter is provided, the tool rest is displaced based on the output signal of the displacement meter, and the depth of cut is controlled so as to perform cutting along a preset target shape. Precision cutting method. 2. When cutting high-precision machined surfaces using cutting tools, two tools are installed on the tool slide: a tool stand that can minutely control the depth of cut of the tool, and a device that can measure the distance between the tool slide and the already machined surface of the workpiece. non-contact displacement meters arranged at intervals are provided, and the tool rest is displaced based on the output signals of both displacement meters while eliminating the influence of changes in orientation between the tool slide and the workpiece rotation axis. , a high-precision cutting method characterized by controlling the depth of cut so as to perform cutting along a preset target shape.
JP62049583A 1987-03-04 1987-03-04 High precision cutting method Expired - Lifetime JPH0729258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62049583A JPH0729258B2 (en) 1987-03-04 1987-03-04 High precision cutting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62049583A JPH0729258B2 (en) 1987-03-04 1987-03-04 High precision cutting method

Publications (2)

Publication Number Publication Date
JPS63216652A true JPS63216652A (en) 1988-09-08
JPH0729258B2 JPH0729258B2 (en) 1995-04-05

Family

ID=12835238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62049583A Expired - Lifetime JPH0729258B2 (en) 1987-03-04 1987-03-04 High precision cutting method

Country Status (1)

Country Link
JP (1) JPH0729258B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57194854A (en) * 1981-05-23 1982-11-30 Agency Of Ind Science & Technol Ultra-precision machining

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57194854A (en) * 1981-05-23 1982-11-30 Agency Of Ind Science & Technol Ultra-precision machining

Also Published As

Publication number Publication date
JPH0729258B2 (en) 1995-04-05

Similar Documents

Publication Publication Date Title
US4794736A (en) Arrangement for mechanically and accurately processing a workpiece with a position detecting pattern or patterns
JP2018069391A5 (en) Grinding apparatus and rolling bearing manufacturing method using the same
JP2018069391A (en) Grinding device
JPS61146454A (en) Method of positioning work of nc control machine and nc control machine for executing said method
US5067282A (en) Method and apparatus for non-contact measuring and, in case, abrasive working of surfaces
JP4799472B2 (en) Measuring method and apparatus for tool edge position, workpiece processing method and machine tool
US5390151A (en) Method and device for measuring the center of rotation of a rotating shaft
JPS63216652A (en) Highly accurate metal cutting method
US11187881B2 (en) Method and device for producing an optical component having at least three monolithically arranged optical functional surfaces and optical component
JPH11123656A (en) Roll measuring method and its device
JP2010253604A (en) Scanning motion error measuring method
JPH076786B2 (en) Non-contact rotation accuracy measurement method
Zhang et al. Miniaturized interferometric 3-D sensor for shape measurement inside of cutting lathes
JPH0323297B2 (en)
JPH04299209A (en) Method and apparatus for detecting position of center of rotation rotary shaft
JP3309138B2 (en) Measuring method of rotation center position of rotating body by measuring displacement of three points and measuring device therefor
JPH03256651A (en) High precision shape machining method for high hardness material and device therefor
Sung et al. A swing arm method for profile measurement of large optical concave surfaces in the lapping process
JPH0557521A (en) Working device
JPH0651263B2 (en) Rotation axis center detection method
JPH05642B2 (en)
RU2215635C2 (en) Attachment for calibrating cutting tool
de Castro Dynamic Accuracy Assessment of Machine Tools and Equipment Using a Laser Interferometer
JPS63109977A (en) Automatic grinding wheel dimension measuring device for numerically controlled grinder
JPH01205957A (en) High precision cutting and machining method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term