JPS63216396A - Semiconductor light emitting devices - Google Patents

Semiconductor light emitting devices

Info

Publication number
JPS63216396A
JPS63216396A JP5072487A JP5072487A JPS63216396A JP S63216396 A JPS63216396 A JP S63216396A JP 5072487 A JP5072487 A JP 5072487A JP 5072487 A JP5072487 A JP 5072487A JP S63216396 A JPS63216396 A JP S63216396A
Authority
JP
Japan
Prior art keywords
light emitting
active layer
etching
layer
semiconductor light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5072487A
Other languages
Japanese (ja)
Inventor
Akihiko Kasukawa
秋彦 粕川
Masayuki Iwase
正幸 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP5072487A priority Critical patent/JPS63216396A/en
Publication of JPS63216396A publication Critical patent/JPS63216396A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate obtaining a highly reliable laser by removing the effect of the damage of a reflecting surface by providing a non-exciting region, etc. inside the reflecting surface in light emitting devices formed by facing the reflecting surfaces each other by etching. CONSTITUTION:Inside the edge faces 6, 7 of a resonator formed by facing each other by etching in semiconductor light emitting devices, a window region which is made transparent against non-exciting regions 9, 9' or the wavelength of the oscillation of a laser is provided. For example, after an n-type InP clad layer 2, an InGaAsP active layer 3, a p-type InP clad layer 4 and a p-type GaInAsP cap layer 4' are formed on an n-type InP substrate 1, reflecting surfaces 6, 7 are formed by dry etching by using a TiO2 film as a mask material 5. Then, after the exposed active layer 3 is slightly removed by shaving by selective etching, In and P are carried in the groove of the active layer from the clad layers 2, 4 of the both sides of the active layer 3 by heating to 600 deg.C in the atmosphere of PH3 and the non-exciting regions 9, 9' are provided by forming InP single crystal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はエツチングにより共振器端面を削り出して作製
する半導体発光素子に関し、特に信頼性を高めた半導体
発光素子を提供するものでおる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a semiconductor light emitting device manufactured by cutting out a resonator end face by etching, and particularly provides a semiconductor light emitting device with improved reliability.

(従来の技術〕 近年光通信や光情報分野の発展には著しいものがあり、
それらの実用化は急速に進展してい′る。こうした中で
信号の媒体であるレーザーの光源としては指向性や単色
性に優れた半導体発光素子が不可欠なものとなっている
(Conventional technology) In recent years, there has been remarkable development in the fields of optical communication and optical information.
Their practical application is progressing rapidly. Under these circumstances, semiconductor light emitting devices with excellent directivity and monochromaticity have become indispensable as light sources for lasers, which are signal media.

上記半導体発光素子(以下単に発光素子と記す)を作製
する際に、該素子のレーザー共振器端面、即ち発光素子
内で発生するレーザーの反射面であって、レーザーの出
力方向に直交する面を形成する時には通常は結晶の襞間
面をそのまま共振器端面(以下反射面と記す)として用
いている。しかも襞間という単純な操作で得られるため
、盛んに利用されている。
When manufacturing the above-mentioned semiconductor light emitting device (hereinafter simply referred to as a light emitting device), the laser resonator end face of the device, that is, the surface that reflects the laser generated within the light emitting device and is perpendicular to the output direction of the laser, is During formation, the interfold surfaces of the crystal are usually used as they are as resonator end surfaces (hereinafter referred to as reflective surfaces). Moreover, it is widely used because it can be obtained by a simple operation of interfolding.

この襞間面を反射面として利用する発光素子は該素子を
単体で用いる限りは何ら問題はない。
There is no problem with a light emitting element that utilizes the interfold surface as a reflective surface as long as the element is used alone.

しかし、上記襞間面では結晶が断絶しているため、この
ような発光素子にディテクターや駆動用回路等信の光機
能デバイスを一体に集積させることはできない。従って
発光素子を基にして光集積回路や光集積デバイスを構成
するには襞間以外の方法でレーザー反射面をつくる必要
がある。
However, since the crystal is discontinued at the interfold plane, optical functional devices such as a detector and a driving circuit cannot be integrated into such a light emitting element. Therefore, in order to construct an optical integrated circuit or optical integrated device based on a light emitting element, it is necessary to create a laser reflecting surface by a method other than between the folds.

これに対処するために、従来から襞間面でない面をエツ
チングにより平坦に削り出して反射面とする方法が行な
われている。一般的なエツチングの方法には化学反応を
利用する化学エツチングと励起状態の分子、原子又はイ
オン等の低温プラズマを利用するドライエツチングとが
あるが、化学エツチングはエツチング速度が結晶面の方
向や結晶の種類により異なってしまい、このままでは反
射面として使うのには不適当である。一方ドライエツチ
ングはエツチングの選択性が小さく歩留り及び再現性に
優れ、良好な微細加工性を有するため、集積化に最も適
した反射面の形成方法である。
In order to cope with this problem, a method has conventionally been used in which a surface that is not an interfold surface is cut flat by etching to form a reflective surface. General etching methods include chemical etching, which uses chemical reactions, and dry etching, which uses low-temperature plasma of molecules, atoms, or ions in an excited state. This varies depending on the type of surface, and as it is, it is unsuitable for use as a reflective surface. On the other hand, dry etching has low etching selectivity, excellent yield and reproducibility, and good microfabrication, so it is the most suitable method for forming reflective surfaces for integration.

発光素子にはInP系や(3aAs系があり、その構造
は異なった種類で格子定数の等しい半導体結晶同士を同
じ結晶方位で接合させたヘテロ接合が2箇所存在するダ
ブルへテロ構造が一般的である。例えばInP系ではI
nP単結晶基板上にInP単結晶のクラッド層を成長さ
せ、その上にInGaAsP単結晶の活性層及びInP
単結晶のクラッド層を順に成長させた多層構造となって
いる。このように積層した結晶を襞間等の方法により切
り出し、電極を形成して発光素子とする。該素子に電圧
を印加することにより、各単結晶の積層方向と直交する
方向にレーザーが発せられる。
Light-emitting devices include InP-based and (3aAs-based), and their structure generally has a double heterostructure in which there are two heterojunctions in which semiconductor crystals of different types with the same lattice constant are joined in the same crystal orientation. For example, in InP system, I
An InP single crystal cladding layer is grown on an nP single crystal substrate, and an InGaAsP single crystal active layer and an InP single crystal cladding layer are grown on top of the InP single crystal cladding layer.
It has a multilayer structure in which single-crystal cladding layers are grown in sequence. The thus laminated crystals are cut out by a method such as interfolding, and electrodes are formed to form a light emitting element. By applying a voltage to the element, a laser is emitted in a direction perpendicular to the stacking direction of each single crystal.

(発明が解決しようとする問題点) ドライエツチングによりレーザーの反射面を形成して、
発光素子を作製した場合、該反射面はドライエツチング
の実施中に低温プラズマにより過度の物理的ダメージを
受けたり使用雰囲気中の酸素、水分又は他の不純物の吸
着により化学的変質を受けたりする。一方発光素子を構
成する活性層はレーザー発振を行なっている部位である
が反射面に露出する活性層が上記のような損傷を受けた
場合はレーザーの発振状態の不安定性が増大し、寿命が
短くなる等信頼性の低下が問題となっていた。
(Problem to be solved by the invention) A laser reflective surface is formed by dry etching,
When a light emitting device is fabricated, the reflective surface may be subjected to excessive physical damage due to low temperature plasma during dry etching or chemical alteration due to adsorption of oxygen, moisture or other impurities in the operating atmosphere. On the other hand, the active layer that makes up the light emitting device is the part that performs laser oscillation, but if the active layer exposed to the reflective surface is damaged as described above, the instability of the laser oscillation state will increase and the lifespan will be shortened. There was a problem of decreased reliability due to shorter lengths.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこれに鑑み種々検討の結果、信頼性の高い半導
体発光素子を開発したもので、エツチングにより反射面
を対向して形成する発光素子において、該反射面内側に
非励起領域を設けることを特徴とするものである。
In view of this, as a result of various studies, the present invention has developed a highly reliable semiconductor light emitting device.In a light emitting device in which reflective surfaces are formed facing each other by etching, a non-excited region is provided inside the reflective surfaces. This is a characteristic feature.

(作 用) 上記のような非励起領域を形成するには、エツチングに
よりレーザーの反射面を削り出す時に又は該反射面を削
り出した後に活性層だけを選択エツチングによりわずか
に深くエツチングして凹状の溝を形成させ、しかる後質
量輸送法により該溝を挟んで両側に突出したクラッド層
から結晶を構成する原子を凹状の溝に輸送し、クラッド
層と同じ結晶を形成させ、表面の凹凸をなくして新たな
反射面とすればよい。
(Function) In order to form the above-mentioned non-excited region, when or after cutting out the laser reflecting surface by etching, only the active layer is selectively etched slightly deeper to create a concave shape. After that, the atoms constituting the crystal are transported from the cladding layer protruding on both sides of the groove to the concave groove using the mass transport method, forming the same crystal as the cladding layer, and smoothing out the surface irregularities. It can be removed and used as a new reflective surface.

(実施例) 本発明の一実施例としてレーザー波長1.3μmのI 
rlGaAs P/ I rl P半導体発光素子を第
1図(イ)、(ロ)、(ハ)に示す。先ず第1図(イ)
に示すようにn型−InP単結晶基板(1)上に該基板
(1)と同じ結晶方位でn型−InP単結晶クラッド層
(2)を成長させ、該クラッド層(2)の上にInGa
ASP単結晶活性層(3)をヘテロ接合を形成するよう
に結晶成長させ、ざらに該活性層(3)の上にp型−I
nP単結晶クラッド層(4) 、 p型−GaInAs
Pキャップ層(4゛)を同じくヘテロ接合を形成するよ
うに結晶成長させた後、該キャップ層(4°)表面にT
i0z膜をエツチングのマスク材(5)として施し、そ
の後該マスク材(5)のエツチングパターンによりマス
ク材(5)の形成面をエツチングにより削り出した。し
かるi多層 12−Arガスによる低温プラズマを用い
たドライエツチングにより反射面(6)、 (7)を各
層の方向と直交する方向で襞間面以外の対向する面に形
成した。
(Example) As an example of the present invention, I
An rlGaAs P/IrlP semiconductor light emitting device is shown in FIGS. 1(a), (b), and (c). First, Figure 1 (a)
As shown in the figure, an n-type InP single crystal cladding layer (2) is grown on an n-type InP single crystal substrate (1) in the same crystal orientation as the substrate (1), and on top of the cladding layer (2). InGa
The ASP single crystal active layer (3) is crystal-grown to form a heterojunction, and the p-type -I layer is roughly grown on the active layer (3).
nP single crystal cladding layer (4), p-type-GaInAs
After crystal-growing a P cap layer (4°) to form a heterojunction, T
The i0z film was applied as an etching mask material (5), and then the surface on which the mask material (5) was formed was etched out according to the etching pattern of the mask material (5). Reflective surfaces (6) and (7) were formed on opposing surfaces other than the inter-fold surfaces in a direction perpendicular to the direction of each layer by dry etching using low-temperature plasma using 12-Ar gas.

次に第1図(ロ)に示すように上記反射面(6)、 (
7)に露出している活性層(3)を選択エツチングによ
り、わずかに削り取った後、この半導体結晶(8)をP
H3雰囲気中にて600 ’Cに加熱し、質量輸送現象
により活性層(3)両側のクララド層(2)、 (4)
から1n及びP@選択エツチングされた活性層の溝部に
輸送し、第1図(ハ)に示すようにInP単結晶を形成
して非励起領域(9L(9“)を設け、端面、即ち反射
面(6)、 (7)を平坦化する。その後マスク材(5
)を除去し、基板(1)側及びその反対側に電極(10
)、 (11)を形成した。
Next, as shown in Figure 1 (b), the reflective surface (6), (
After slightly scraping off the active layer (3) exposed in 7) by selective etching, this semiconductor crystal (8) is
Heating to 600'C in H3 atmosphere, mass transport phenomenon creates Clarado layers (2), (4) on both sides of active layer (3).
1n and P@ are transported to the groove of the selectively etched active layer, and as shown in FIG. Planarize surfaces (6) and (7). Then mask material (5)
) is removed, and electrodes (10
), (11) were formed.

このように作製した半導体発光素子のレーザー反射面の
活性層にはレーザー発振に寄与しない非励起領域が形成
されていることが確められlこ。
It was confirmed that a non-excited region that does not contribute to laser oscillation was formed in the active layer of the laser reflecting surface of the semiconductor light emitting device fabricated in this way.

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば半導体発光素子にあけるレー
ザー反射面の損傷の影響を除去でき信頼性の高いレーザ
ーを得ることができる等工業上顕著な効果を奏するもの
でおる。
As described above, the present invention has industrially significant effects such as being able to eliminate the effects of damage to the laser reflecting surface in the semiconductor light emitting device and producing a highly reliable laser.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)、(ロ)、(ハ)は本発明の一実施例を示
すもので、(イ)は単結晶を層状に成長させた側断面図
、(ロ)は活性層を選択エツチングした状態を示す側断
面図、(ハ)は最終製品を示す側断面図である。 1・・・・・・・・n型InP基板 2・・・・・・・・n型InPクラッド層3・・・・・
・・・I nGaASP活性層4・・・・・・・・p型
1nPクラッド層4°・・・・・・・・p型GaInA
SPキャップ層5・・・・・・・・マスク材 6.7・・・・・・反射面 8・・・・・・・・半導体発光素子 9.9°・・・・・・非励起領域 to、 ii・・・・電極
Figures 1 (a), (b), and (c) show one embodiment of the present invention, in which (a) is a side sectional view of a single crystal grown in layers, and (b) is a selected active layer. (C) is a side sectional view showing the etched state, and (c) is a side sectional view showing the final product. 1...N-type InP substrate 2...N-type InP cladding layer 3...
...I nGaASP active layer 4...P-type 1nP cladding layer 4°...P-type GaInA
SP cap layer 5...Mask material 6.7...Reflecting surface 8...Semiconductor light emitting element 9.9°...Non-excitation region to, ii...electrode

Claims (1)

【特許請求の範囲】[Claims] エッチングにより共振器端面を対向して形成する半導体
発光素子において、該共振器端面内側に非励起領域或い
はレーザの発振波長に対し透明となる窓領域を設けるこ
とを特徴とする半導体発光素子。
1. A semiconductor light emitting device in which resonator end faces are formed by etching to face each other, and the semiconductor light emitting device is characterized in that a non-excitation region or a window region transparent to the oscillation wavelength of a laser is provided inside the resonator end face.
JP5072487A 1987-03-05 1987-03-05 Semiconductor light emitting devices Pending JPS63216396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5072487A JPS63216396A (en) 1987-03-05 1987-03-05 Semiconductor light emitting devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5072487A JPS63216396A (en) 1987-03-05 1987-03-05 Semiconductor light emitting devices

Publications (1)

Publication Number Publication Date
JPS63216396A true JPS63216396A (en) 1988-09-08

Family

ID=12866814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5072487A Pending JPS63216396A (en) 1987-03-05 1987-03-05 Semiconductor light emitting devices

Country Status (1)

Country Link
JP (1) JPS63216396A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608750A (en) * 1993-07-29 1997-03-04 Hitachi, Ltd. Semiconductor laser device and a method for the manufacture thereof
JP2013191622A (en) * 2012-03-12 2013-09-26 Mitsubishi Electric Corp Semiconductor light-emitting element and manufacturing method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608750A (en) * 1993-07-29 1997-03-04 Hitachi, Ltd. Semiconductor laser device and a method for the manufacture thereof
JP2013191622A (en) * 2012-03-12 2013-09-26 Mitsubishi Electric Corp Semiconductor light-emitting element and manufacturing method of the same

Similar Documents

Publication Publication Date Title
US3996492A (en) Two-dimensional integrated injection laser array
JPS63216396A (en) Semiconductor light emitting devices
JPH05327112A (en) Manufacture of semiconductor laser
JP2003017809A (en) Semiconductor light-emitting element and manufacturing method therefor
JP3857141B2 (en) Optical semiconductor device and manufacturing method thereof
JP2006303052A (en) Semiconductor laser device and manufacturing method thereof
JPS63196089A (en) Manufacture of semiconductor light emitting device
JPS6058692A (en) Manufacture of semiconductor laser element
EP1284529A2 (en) Method of manufacturing semiconductor element, and semiconductor element manufactured with this method
JPH104240A (en) Semiconductor light emitting diode, wafer and their manufacturing method
JPH05327121A (en) Surface emitting type semiconductor laser
JPS6077486A (en) Manufacture of semiconductor laser element
JPH06140718A (en) Manufacture of edge emitting type semiconductor laser element
JPH04305991A (en) Semiconductor laser element
JP2847770B2 (en) Method for forming protective layer on end face of semiconductor laser cavity
JPS6292490A (en) Distributed feedback type semiconductor laser
JP3049916B2 (en) Semiconductor laser
JPS63305582A (en) Semiconductor laser
JPH08213709A (en) Optical part and driving of the same
JPH05308173A (en) Semiconductor laser
JPH06177480A (en) Semiconductor laser element and manufacture thereof
JP2005123416A (en) Surface emitting laser element and manufacturing method thereof, and surface emitting laser array and optical transmission system
JPS58142589A (en) Preparation of buried hetero structured semiconductor laser
JPS6350877B2 (en)
JPH05235477A (en) Manufacture of semiconductor element