JPS63216339A - Composite exposure using electron beam and light - Google Patents

Composite exposure using electron beam and light

Info

Publication number
JPS63216339A
JPS63216339A JP62048749A JP4874987A JPS63216339A JP S63216339 A JPS63216339 A JP S63216339A JP 62048749 A JP62048749 A JP 62048749A JP 4874987 A JP4874987 A JP 4874987A JP S63216339 A JPS63216339 A JP S63216339A
Authority
JP
Japan
Prior art keywords
electron beam
light
fluorescent material
pattern
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62048749A
Other languages
Japanese (ja)
Inventor
Yoichi Usui
洋一 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62048749A priority Critical patent/JPS63216339A/en
Publication of JPS63216339A publication Critical patent/JPS63216339A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Beam Exposure (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To obtain a high-resolution pattern by a method wherein, after a fluorescent material has been installed between an electron beam radiating part and a photographic plate, a resist is exposed to light after an electron beam has been transformed into the light energy and the local heating of a substrate or the accumulation of an electric charge is suppressed. CONSTITUTION:An electron beam radiating part 11 forms an electron beam 14, which is accelerated by a voltage of 20 keV by using a conventional electron beam lithography aligner, in accordance with a pattern to be formed by an optoelectronic system; it controls the optoelectronic system in such a way that it exposes the pattern one after another. The controlled electron beam 14 irradiates a fluorescent material 13 where a quartz glass plate is coated with a fluorescent substance. The electron beam 14 is converted into the light 15 due to the action of the fluorescent substance; it passes through the fluorescent material 13; the light 15 corresponding to the shape of the electron beam is emitted rom the opposite face. The converted light 15 which corresponds to the shape of the electron beam 14 exposes a photoresist 12c in accordance with the shape of the pattern without causing the scattering.

Description

【発明の詳細な説明】 〔(概要〕 本発明は電子ビーム照射部から出る電子ビームを蛍光材
を介して光に変換し、この光によって乾板を露光するこ
とにより、電子ビームによる近接効果や乾板の加熱、電
荷の蓄積を抑えつつ、乾板の露光を高速かつ高解像度で
行うことができる。
[Detailed Description of the Invention] [(Summary)] The present invention converts the electron beam emitted from the electron beam irradiation section into light through a fluorescent material, and exposes the dry plate with this light, thereby eliminating the proximity effect caused by the electron beam and the dry plate. Exposure of the dry plate can be performed at high speed and high resolution while suppressing heating and charge accumulation.

〔産業上の利用分野〕[Industrial application field]

本発明は電子ビーム・光複合露光方法に関し、特に、電
子ビーム露光の高速描画性を維持しながら、乾板を露光
する段階の電子ビームを蛍光材によって光に変換させて
光による露光を行う電子ビーム・光複合露光方法に関す
る。
The present invention relates to an electron beam/light composite exposure method, and in particular to an electron beam exposure method that converts the electron beam at the stage of exposing a dry plate into light using a fluorescent material to perform light exposure while maintaining the high-speed drawing performance of electron beam exposure. -Relating to optical compound exposure method.

〔従来の技術〕[Conventional technology]

従来の露光装置、例えば半導体装置の製造工程などに用
いられる電子ビーム描画露光装置は、近年の半導体装置
の高集積化により形成パターンがますます微細化し、ホ
トリソグラフィの波長による限界とされるサブミクロン
加工用として注目されている。
Conventional exposure equipment, such as electron beam lithography equipment used in the manufacturing process of semiconductor devices, has become increasingly finer due to the high integration of semiconductor devices in recent years. It is attracting attention as a material for processing.

電子ビーム露光装置(第3図を参照)は、電子ビーム1
4を電子レンズ16.17.18やスリット19.20
などの電子光学系を用いて0.5μm以下の細いビーム
あるいは10μm以下の矩形にビームに成形し、ウェハ
への直描きゃマスク、レチクルの作成においてレジスト
などを塗布した乾板に回路パターンを高速に描画露光す
るものである。
The electron beam exposure device (see Fig. 3) uses an electron beam 1
4 as electronic lens 16.17.18 or slit 19.20
The circuit pattern is formed into a thin beam of 0.5 μm or less or a rectangular beam of 10 μm or less using an electron optical system, and then drawn directly onto a wafer. When creating a mask or reticle, a circuit pattern is quickly drawn on a dry plate coated with resist, etc. It is used for drawing exposure.

第6図は従来の露光状!虚を示す断面図である。Figure 6 shows the conventional exposure! It is a cross-sectional view showing an imaginary state.

電子ビーム34でウェハ(石英基板32b)へ直描きす
る場合は、電子がウェハまで通過するように加速するこ
とができるが、マスクレチクルを形成する場合は、加工
精度を良くするため電子ビームを10〜50KeV程度
まで加速しなくてはならず、このため電子ビーム34が
レジスト32を突き抜けて石英基板32bに当たり、電
子ビームがエネルギーを放出することによって基板が局
所的に加熱される(加熱部分37)ことが知られている
。なお、石英基板32b、クロム膜32a、レジスト3
2からなる3層構造のものは乾板と呼称される。
When directly writing on a wafer (quartz substrate 32b) with the electron beam 34, the electrons can be accelerated so that they pass through to the wafer, but when forming a mask reticle, the electron beam is The electron beam 34 must be accelerated to about 50 KeV, and therefore the electron beam 34 penetrates the resist 32 and hits the quartz substrate 32b, and the substrate is locally heated by emitting energy from the electron beam (heated portion 37). It is known. Note that the quartz substrate 32b, the chromium film 32a, the resist 3
A three-layer structure consisting of two is called a dry plate.

また電子ビーム露光装置で加速された電子ビーム34は
レジスト32をほとんど露光せずに、電子ビーム34が
レジスト32に当たった際に発生する2次電子35がレ
ジストを露光させる。このような散乱過程で発生する2
次電子35は方向性がまちまちなため露光部分を制御す
ることが難しい。
Further, the electron beam 34 accelerated by the electron beam exposure device hardly exposes the resist 32, but the secondary electrons 35 generated when the electron beam 34 hits the resist 32 expose the resist. 2 generated in such a scattering process
Since the secondary electrons 35 have different directions, it is difficult to control the exposed portion.

〔発明が解決しようとする問題点〕 このように従来技術では、加工精度を上げるため加速し
た電子ビームを用いると、レジストを通過して石英基板
32bにまで達する電子が多くなり、電子ビームによっ
て基板が局所的に加熱せられ(加熱部分37)その熱に
よってレジスト(特にネガ型のレジストの場合)が架橋
する反応が起こったり、熱による近接効果が生じ、所望
のパターン形状が得られないという問題がある。
[Problems to be Solved by the Invention] As described above, in the prior art, when an accelerated electron beam is used to improve processing accuracy, more electrons pass through the resist and reach the quartz substrate 32b, and the electron beam damages the substrate. is locally heated (heated portion 37), and the heat causes a crosslinking reaction in the resist (especially in the case of a negative resist), or a proximity effect occurs due to heat, making it impossible to obtain the desired pattern shape. There is.

また電子はマイナスの電荷を持っているため、電子ビー
ムの照射によってレジストや基板部分に蓄積される電荷
が電子ビームに形容を与えるという問題がある。
Furthermore, since electrons have a negative charge, there is a problem in that the charges accumulated in the resist and substrate portions due to electron beam irradiation give shape to the electron beam.

加速された電子ビームは、レジスト32に当たった際の
散乱過程で方向性がまちまちな2次電子35を放出し、
これがレジストを露光する。このため、第6図に示す如
く、レジストの所望の位置に正確にビームを当てたとし
ても(破線で示す部分)、形成されるレジストパターン
(露光部分36)は例えばビームよりも大きい円錐状に
露光されたり、あるいはビームを細く絞ると場合によっ
ては散乱でパターンが形成されない状態も生じ得る。こ
れはパターンの最終的な解像力に形容を及ぼすため重要
な問題である。
The accelerated electron beam emits secondary electrons 35 with different directions during the scattering process when it hits the resist 32.
This exposes the resist. Therefore, as shown in FIG. 6, even if the beam is applied accurately to the desired position of the resist (the part indicated by the broken line), the resist pattern (exposed part 36) that is formed will be, for example, in the shape of a cone larger than the beam. If the beam is exposed to light or the beam is narrowed down, a pattern may not be formed due to scattering in some cases. This is an important issue because it affects the final resolution of the pattern.

本発明はこのような点にかんがみて創作されたものであ
り、電子ビームによる基板の局所的な加熱や電荷の蓄積
、および2次電子の散乱によるパターンの解像力の低下
を防止する露光方法を提供することを目的とする。
The present invention was created in view of the above points, and provides an exposure method that prevents local heating of a substrate and accumulation of charges caused by an electron beam, as well as a reduction in pattern resolution due to scattering of secondary electrons. The purpose is to

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記問題点を解決するため、第1図及び第2図
に示す如く、電子ビーム照射部11と試料12との間に
蛍光材13を介在させ、該蛍光材13によって電子ビー
ム14を光15に変換して該試料12の露光を行うこと
とする。
In order to solve the above problems, the present invention interposes a fluorescent material 13 between the electron beam irradiation section 11 and the sample 12, as shown in FIGS. The sample 12 is exposed by converting it into light 15.

上記電子ビーム照射部11は、従来の電子ビーム描画露
光装置をそのまま使用することができる。
As the electron beam irradiation section 11, a conventional electron beam exposure apparatus can be used as is.

第3図に示す如く、電子ビーム照射部11は電子銃21
から出される10〜50KeV程度加速された負の電荷
をもつ電子を照射レンズ16、投影レンズ17、ビーム
を縮小投影する縮小結像レンズ18などの電子レンズや
ビームを成形する第1.第2スリツト19゜20などの
電子光学系を用いて0.5μm以下の細いビームまたは
10μm以下の矩形にビームに成形するものである。ビ
ニムデフレクター23、スリットデフレクタ−22はビ
ーム位置の偏向や形状を変えるはたらきをする。
As shown in FIG. 3, the electron beam irradiation section 11 includes an electron gun 21
Electron lenses such as the irradiation lens 16, the projection lens 17, and the reduction imaging lens 18 that reduces and projects the beam, and the first lens that shapes the beam, emit negatively charged electrons accelerated by about 10 to 50 KeV. The beam is formed into a thin beam of 0.5 μm or less or a rectangular beam of 10 μm or less using an electron optical system such as a second slit 19° 20. The vinyl deflector 23 and the slit deflector 22 function to change the deflection and shape of the beam position.

上記蛍光材13は、電子ビームを光に変換させて透過さ
せるあらゆる蛍光物質を意味し、必ずしも蛍光物質のみ
から成っていなくてもよい。例えば石英ガラス板に蛍光
物質を塗ったものなどを好ましく用いることができる。
The fluorescent material 13 means any fluorescent material that converts an electron beam into light and transmits it, and does not necessarily have to be made of only a fluorescent material. For example, a quartz glass plate coated with a fluorescent substance can be preferably used.

またレジスト上に直接蛍光物質の層を塗布形成するもの
でもよい。
Alternatively, a layer of fluorescent material may be formed by directly coating the resist.

上記試料12は、基板12a、基板上のクロム膜12b
1クロム膜上のレジスト12cの3層構造のもので乾板
とも呼称され、電子ビーム14を前記蛍光材13によっ
て変換した光15でレジスト12cが露光される。レジ
スト12cは例えば一般的に使われるものとしてホトレ
ジスト(ポジ型、ネガ型)などがある。
The sample 12 includes a substrate 12a and a chromium film 12b on the substrate.
It has a three-layer structure of a resist 12c on a chromium film, and is also called a dry plate, and the resist 12c is exposed to light 15 obtained by converting the electron beam 14 by the fluorescent material 13. The resist 12c is, for example, a commonly used photoresist (positive type, negative type).

上記電子ビーム照射部11と乾板12との間に蛍光材1
3を介在させるとは、電子ビーム照射部11から出てく
る加速、成形された電子ビーム14が蛍光材13を通っ
て光に変換されてからレジス) 12cに至るように蛍
光材13を電子ビーム照射部11と乾板12との間に置
くことをいう。蛍光材13と乾板12との位置関係はで
きるだけ近接し、かつ、平行であることが望ましい。変
換された光15が忠実に乾板12上に照射される必要が
あるからである。
A fluorescent material 1 is provided between the electron beam irradiation section 11 and the dry plate 12.
3 means that the accelerated and shaped electron beam 14 coming out of the electron beam irradiation unit 11 passes through the fluorescent material 13 and is converted into light, and then the fluorescent material 13 is transferred to the electron beam so that it reaches the register 12c. This means that it is placed between the irradiation section 11 and the dry plate 12. It is desirable that the fluorescent material 13 and the dry plate 12 be as close to each other as possible and parallel to each other. This is because the converted light 15 needs to be faithfully irradiated onto the dry plate 12.

〔作用〕[Effect]

本発明では、電子ビーム照射部11と乾板12との間に
蛍光材13を介在させることにより、電子ビームを光エ
ネルギーに変換してレジス)12cを露光するため、従
来からの電子ビームによる基板の局所的な加熱や電荷の
蓄積を抑えることができ、またレジスI・12cに電子
ビーム14が当たって発生していた2次電子による散乱
露光が減少するため、解像度の高い所望のパターンを得
ることができる。
In the present invention, the fluorescent material 13 is interposed between the electron beam irradiation section 11 and the dry plate 12 to convert the electron beam into light energy and expose the resist 12c. Local heating and charge accumulation can be suppressed, and scattered exposure due to secondary electrons generated when the electron beam 14 hits the resist I/12c is reduced, so a desired pattern with high resolution can be obtained. Can be done.

〔実施例〕〔Example〕

以下、図面を参照して本発明実施例を詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の構成図、第2図は本発明露光状態説明
図、第3図は本発明実施例1の構成断面図、第4図は実
施例2の支持部材断面図、その(alば待機状態図、(
b)は乾板挿入状態図、(C)は支持完了状態図、第5
図は第4図(C1の部分拡大図である。
FIG. 1 is a configuration diagram of the present invention, FIG. 2 is an explanatory diagram of the exposure state of the present invention, FIG. 3 is a configuration sectional view of Embodiment 1 of the present invention, and FIG. 4 is a sectional view of the support member of Embodiment 2, its ( If al, the standby state diagram, (
b) is a diagram of the dry plate insertion state, (C) is a diagram of the completed support state, 5th
The figure is a partially enlarged view of FIG. 4 (C1).

実施例1 電子ビーム照射部11は、実施例1では第3図に示すよ
うな従来の電子ビーム描画露光装置を用いて20KeV
の電圧で加速した電子ビーム14を電子光学系によって
形成パターンに合わせて成形し、パターン内を逐次露光
するように電子光学系を制御する。
Embodiment 1 In Embodiment 1, the electron beam irradiation unit 11 is irradiated with 20 KeV using a conventional electron beam exposure apparatus as shown in FIG.
The electron beam 14 accelerated at a voltage of 1 is shaped by an electron optical system according to the pattern to be formed, and the electron optical system is controlled so as to sequentially expose the inside of the pattern.

再び第2図に戻ると、制御された電子ビーム14は、石
英ガラスに蛍光物質を塗布しである蛍光材13上に照射
される。蛍光物質の作用によって電子ビーム14は光1
5に変換され、蛍光材13を透過して反対の面から電子
ビームの形状に対応した光15がでてくる。
Returning to FIG. 2 again, the controlled electron beam 14 is irradiated onto a fluorescent material 13 made of quartz glass coated with a fluorescent material. Due to the action of the fluorescent substance, the electron beam 14 becomes light 1
5, and passes through the fluorescent material 13 and emerges from the opposite surface as light 15 corresponding to the shape of the electron beam.

変換された光15によって露光されるレジスト1.2c
にはホトレジストを使い、2.5■厚の石英の基板12
a上に蓄積電荷を逃がす金属膜例えばクロム膜12bを
1000人厚で形成した後、その上に5000人の厚さ
でホトレジスト12cを塗布したものを用いた(図の膜
厚は説明の便宜上実際の比率とは異なる)。
Resist 1.2c exposed by converted light 15
A quartz substrate 12 with a thickness of 2.5 cm was used for the photoresist.
After forming a metal film such as a chromium film 12b with a thickness of 1000 mm on top of a to release accumulated charges, a photoresist 12c was coated on top of it with a thickness of 5000 mm (the film thickness in the figure is the actual thickness for convenience of explanation). ratio).

蛍光材13と乾板12との位置関係は、ホトレジストと
蛍光材とが平行かつ近接した位置で固定されるようにし
である。ごのため電子ビーム14の形状に対応する変換
された光15は散乱することもなくホトレジストをパタ
ーン形状に従って露光する。
The positional relationship between the fluorescent material 13 and the dry plate 12 is such that the photoresist and the fluorescent material are fixed in parallel and close positions. Therefore, the converted light 15 corresponding to the shape of the electron beam 14 exposes the photoresist according to the pattern shape without being scattered.

実施例1の露光装置でパターンを露光すると、従来の電
子ビーム露光装置の利点である高速rtM画性を維持し
ながら、電子ビームを光に変換するため、電子ビームに
よる基板の局所的な加熱や電荷の蓄積によるパターン形
状への悪影響を低減することができ、また2次電子の散
乱によるパターン形状の像のボケも防止することができ
る。
When exposing a pattern using the exposure apparatus of Example 1, the electron beam is converted into light while maintaining the high-speed rtM image quality that is an advantage of the conventional electron beam exposure apparatus, so the electron beam does not cause local heating of the substrate or It is possible to reduce the adverse effect on the pattern shape due to the accumulation of charges, and it is also possible to prevent the image of the pattern shape from becoming blurred due to the scattering of secondary electrons.

実施例2 実施例2では実施例1と同様な装置を用いて露光を行っ
たが、異なる点は蛍光材13と乾板12とを専用の支持
部材を用いて密着支持した後に露光を行ったことである
Example 2 In Example 2, exposure was performed using the same apparatus as in Example 1, but the difference was that exposure was performed after the fluorescent material 13 and dry plate 12 were closely supported using a dedicated support member. It is.

第4図(C1に示す如く、実施例2の支持部材は、蛍光
材13を支持するホルダー25の板バネ26が乾板12
を載せた基板12aごと蛍光材13の下面へ押しつけて
両者を密着させる構造を備えたものである。
As shown in FIG. 4 (C1), in the support member of Example 2, the leaf spring 26 of the holder 25 supporting the fluorescent material 13 is connected to the dry plate 12.
The substrate 12a on which the fluorescent material 12a is placed is pressed against the lower surface of the fluorescent material 13 to bring them into close contact.

同図fa)は乾板12を載せた基板12aが未装着の状
態で、板バネ26は図示省略の押さえ治具によって下向
き矢印方向に押さえられ、乾板12の挿入を待機してい
る。
In the figure fa), the board 12a on which the dry plate 12 is mounted is not attached, and the leaf spring 26 is pressed down in the direction of the arrow by a pressing jig (not shown), waiting for the dry plate 12 to be inserted.

同図(b)は図面に対して手前方向から乾板12を挿入
するようにして前述の押さえ治具で押さえられた十反ハ
゛ネ26上に載せる。
In FIG. 2B, the dry plate 12 is inserted from the front side of the drawing and placed on the ten-tan wire 26 held down by the above-mentioned holding jig.

同図(C1は押さえ治具を外して仮バネ26の復元力で
上向き矢印方向に付勢されて乾板12と蛍光材13とは
密着支持される。蛍光材13は交換が容易なように第5
図に示す如く、固定ネジ27でホルダー25に固定する
手段を用いた。
In the same figure (C1, the holding jig is removed and the dry plate 12 and the fluorescent material 13 are supported in close contact with each other by being urged in the upward arrow direction by the restoring force of the temporary spring 26.The fluorescent material 13 is attached to the 5
As shown in the figure, means for fixing to the holder 25 with fixing screws 27 was used.

このような支持部材を用いて露光を行うと、成形した電
子ビームの形状がそのまま光に変換された状態で直接乾
板を露光するので所望のパターン形状に忠実な露光が可
能となる。
When exposure is performed using such a support member, the shape of the shaped electron beam is directly converted into light and the dry plate is directly exposed, making it possible to perform exposure faithful to the desired pattern shape.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように本発明の電子ビーム・光複合露光
方法は、電子ビームによる基板の局所的な加熱や電荷の
蓄積を抑え、さらに2次電子の散乱を低減できるため、
解像力の高い所望の形状のパターンを得ることができる
As described above, the electron beam/light composite exposure method of the present invention can suppress local heating of the substrate and accumulation of charges caused by the electron beam, and further reduce scattering of secondary electrons.
A pattern with a desired shape and high resolution can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成図、 第2図は本発明露光状態説明図、 第3図は本発明実施例1の構成断面図、第4図は実施例
2の支持部材断面図、その(Jl)は待機状態図、(b
)は乾板挿入状態図、(C)は支持完了状態図、 第5図は第4図(C1の部分拡大図、 第6図は従来の露光状態を示す断面図である。 第1図ないし第5図について、 11は電子ビーム照射部、 12は乾板(試料)、 12aは基板、 12bはクロム膜、 12cはレジスト、 13は蛍光材、 14は電子ビーム、 15光、 16は照射レンズ、 17は投影レンズ、 18は縮小結像レンズ、 19は第1スリツト、 20は第2スリツト、 21は電子銃、 22はスリットデフレクタ−1 23はビームデフレクタ−1 24は露光部分、 25はホルダー、 26は仮バネ、 27は固定ネジである。
FIG. 1 is a configuration diagram of the present invention, FIG. 2 is an explanatory diagram of the exposure state of the present invention, FIG. 3 is a configuration sectional view of Embodiment 1 of the present invention, and FIG. 4 is a sectional view of the support member of Embodiment 2, its ( Jl) is a standby state diagram, (b
) is a diagram of the dry plate inserted state, (C) is a diagram of the completed support state, FIG. 5 is a partially enlarged view of FIG. 4 (C1), and FIG. 6 is a sectional view showing the conventional exposure state. Regarding Figure 5, 11 is an electron beam irradiation unit, 12 is a dry plate (sample), 12a is a substrate, 12b is a chrome film, 12c is a resist, 13 is a fluorescent material, 14 is an electron beam, 15 is light, 16 is an irradiation lens, 17 18 is a projection lens, 18 is a reduction imaging lens, 19 is a first slit, 20 is a second slit, 21 is an electron gun, 22 is a slit deflector 1, 23 is a beam deflector 1, 24 is an exposure part, 25 is a holder, 26 is a temporary spring, and 27 is a fixing screw.

Claims (1)

【特許請求の範囲】[Claims] 電子ビーム照射部(11)と試料(12)との間に蛍光
材(13)を介在させ、該蛍光材(13)によって電子
ビーム(14)を光(15)に変換して該試料(12)
の露光を行うことを特徴とする電子ビーム・光複合露光
方法。
A fluorescent material (13) is interposed between the electron beam irradiation unit (11) and the sample (12), and the fluorescent material (13) converts the electron beam (14) into light (15) to illuminate the sample (12). )
A combined electron beam/light exposure method characterized by performing exposure.
JP62048749A 1987-03-05 1987-03-05 Composite exposure using electron beam and light Pending JPS63216339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62048749A JPS63216339A (en) 1987-03-05 1987-03-05 Composite exposure using electron beam and light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62048749A JPS63216339A (en) 1987-03-05 1987-03-05 Composite exposure using electron beam and light

Publications (1)

Publication Number Publication Date
JPS63216339A true JPS63216339A (en) 1988-09-08

Family

ID=12811930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62048749A Pending JPS63216339A (en) 1987-03-05 1987-03-05 Composite exposure using electron beam and light

Country Status (1)

Country Link
JP (1) JPS63216339A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129911A (en) * 1988-11-09 1990-05-18 Mitsubishi Electric Corp Lithography equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129911A (en) * 1988-11-09 1990-05-18 Mitsubishi Electric Corp Lithography equipment

Similar Documents

Publication Publication Date Title
JP4857355B2 (en) Pattern mask holding device and method using two holding systems
JPS596506B2 (en) Electrophotographic engraving method
JP2000091191A (en) Electron beam aligning mask, method therefor, and aligning device
US4554458A (en) Electron beam projection lithography
KR20010043665A (en) A compact photoemission source, field and objective lens arrangement for high throughput electron beam lithography
JP3251875B2 (en) Charged particle beam exposure system
JPH0142134B2 (en)
JP2003506823A (en) Patterned thermally conductive photocathode for electron beam source
JPS63216339A (en) Composite exposure using electron beam and light
WO2004006307A1 (en) Electron beam exposure method and system therefor
Gordon et al. Pathways in device lithography
JPH09275068A (en) Electron beam exposure system
JPS5915380B2 (en) Fine pattern transfer device
JPS60240125A (en) Exposing method
WO1999048129A1 (en) Tandem optical scanner/stepper and photoemission converter for electron beam lithography
Hilleringmann Lithography
JPS60152026A (en) Manufacture of curved surface reticle
JP2002025424A (en) Patterned orientational carbon nanotube cathode, manufacturing method of the same, charged particle beam exposure system, and manufacturing method of semiconductor device
JPS63216341A (en) Transcription by using photoelectron
JPH04258109A (en) Device and method for x-ray exposure
JPS63216340A (en) Electron beam aligner
JP2001068404A (en) Protective member for electron beam transfer mask and electron beam projection aligner
JPS61125127A (en) Electron beam exposure device
JPH0277112A (en) Electron beam exposure
JP2000058448A (en) Electron beam transfer equipment and semiconductor device manufacturing method therefor