JPH04258109A - Device and method for x-ray exposure - Google Patents

Device and method for x-ray exposure

Info

Publication number
JPH04258109A
JPH04258109A JP3039030A JP3903091A JPH04258109A JP H04258109 A JPH04258109 A JP H04258109A JP 3039030 A JP3039030 A JP 3039030A JP 3903091 A JP3903091 A JP 3903091A JP H04258109 A JPH04258109 A JP H04258109A
Authority
JP
Japan
Prior art keywords
substrate
exposed
mask
rays
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3039030A
Other languages
Japanese (ja)
Inventor
Keiko Chiba
啓子 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3039030A priority Critical patent/JPH04258109A/en
Publication of JPH04258109A publication Critical patent/JPH04258109A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To prevent electrification at the time of X-rays exposure and at the same time eliminate photoelectrons and Auger electrons which are generated at the time of exposure effectively and then a resist pattern to be formed with an improved accu racy by forming a substrate which is subjected to exposure of X rays of an X-rays exposure device and a means for fixing it in a specific structure. CONSTITUTION:Photoelectrons, Auger electrons, etc., which are generated in a substrate 2 when exposed to X rays pass through a conductive portion 22, a ground spring 26, and a substrate check 25 after being absorbed by a conductive film 23, and then flow to a chamber 1. Also, electrons which are generated from an X-ray mask 5 pass through a mask conductive film, a block 7, and a mask check 6, and then flow to the chamber 1. In this case, since a ground spring 26 whose pin tip is smaller than a thickness of a substrate 21 is used, X rays can be exposed with a proximity gap between a mask surface and a substrate to be exposed 2 being equal to a certain value and at the same time electrification of a resist film surface which is generated at the time of exposure of X rays can be prevented. Also, an excessive exposure of the resist can be prevented, thus forming a resist pattern with an improved dimension accuracy.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、X線リソグラフィーに
利用するX線露光装置及びX線露光方法に関し、更に詳
しくは、X線露光時の帯電を防止し、露光時に発生する
光電子やオージェ電子を有効に除去出来るX線露光装置
及びX線露光方法に関する。
[Industrial Application Field] The present invention relates to an X-ray exposure apparatus and an X-ray exposure method used in X-ray lithography, and more specifically, to preventing charging during X-ray exposure and reducing photoelectrons and Auger electrons generated during exposure. The present invention relates to an X-ray exposure apparatus and an X-ray exposure method that can effectively remove .

【0002】0002

【従来の技術】近年、半導体集積回路の高密度化及び高
速化に伴い、集積回路のパターン線幅が約3年間で70
%に縮小される傾向にある。又、大容量メモリ素子(例
えば4MDRAM)の更なる集積化により、16Mbi
t容量のもの等では0.5μmルールのデバイス設計が
行われる様になってきた。これに伴い焼付け装置にも一
層の高性能化が要求され、転写可能な最小線幅が0.5
μm以下という高性能が要求され始めてきている。この
為、露光光源波長としてX線領域(2〜20Å)の光を
利用したステッパが開発されつつある。これらのX線露
光装置を用いるプロセスでは、金属、セラミックス酸化
物等が付加されているX線被露光基板上にレジストパタ
ーンを形成するものであり、レジストのすぐ下の材料は
導電体であったり不導電体であったりし、その形状も段
差があるもの又はないもの等様々な形態が考えられる。 又、X線露光装置を用いる様なプロセスでは、高解像、
ハイアスペクトのレジストパターンが要求される為、使
用されるレジストには、ポリメチルメタクリレート(P
MMA)、化学増幅型レジスト(メインポリマーはノボ
ラック)等のポリマーが用いられている。
[Background Art] In recent years, with the increase in density and speed of semiconductor integrated circuits, the pattern line width of integrated circuits has increased to 70% in about 3 years.
% tends to be reduced. Furthermore, with further integration of large-capacity memory elements (for example, 4MDRAM), 16Mbi
For devices with a capacitance of t, device design has come to be based on the 0.5 μm rule. Along with this, even higher performance is required for printing equipment, and the minimum line width that can be transferred is 0.5
High performance of micrometers or less is beginning to be required. For this reason, steppers using light in the X-ray region (2 to 20 Å) as the exposure light source wavelength are being developed. In the process using these X-ray exposure devices, a resist pattern is formed on the X-ray exposed substrate to which metals, ceramic oxides, etc. have been added, and the material directly below the resist may be a conductor. It may be a non-conductor, and its shape may be various, such as one with or without steps. In addition, in processes that use X-ray exposure equipment, high resolution,
Since a high aspect resist pattern is required, the resist used is polymethyl methacrylate (P
Polymers such as MMA) and chemically amplified resists (main polymer is novolak) are used.

【0003】0003

【発明が解決しようとしている課題】しかしながら、上
記の如きレジストは高解像力等を満たすレジストである
ものの電気的には絶縁性の高い材料であり、又、レジス
トが塗布される基板も電気的には絶縁性の高い材料(例
えば酸化シリコン)等である場合も考えられ、レジスト
と基板、即ち被露光基板が電気的に高い絶縁性を有する
場合がある。又、X線露光装置では、従来の光に比べて
高エネルギーを持つX線を光源として用いる為、被露光
基板から光電子及びオージェ電子が発生する。更に、X
線露光装置では、X線の強度が低下しない様にヘリウム
雰囲気となっている場合があるが、この様な乾燥雰囲気
内でX線の露光を行うと露光時に被露光基板と気体の摩
擦による静電気が発生する。一方、X線露光時には、X
線マスク面と被露光基板との間のギャップは10〜数1
0μmの範囲の一定値に保たれている必要がある。従っ
て、以上の様なX線露光装置においてはX線露光を行う
と、レジスト表面が帯電され、一方、マスク面と被露光
基板との間のギャップが少ない為、マスク面とレジスト
表面とが接触して放電し、マスク面やレジスト表面が傷
付けられたり破損するという問題が生じる。更に、放出
される光電子やオージェ電子等の影響でレジストが過剰
露光され、微細パターン形成時に寸法精度等に狂い等を
生じるという問題も発生する。従って本発明の目的は、
上記従来技術の問題点を解決し、帯電防止性や寸法精度
に優れたX線露光装置及びX線露光方法を提供すること
である。
[Problems to be Solved by the Invention] However, although the resist as described above satisfies high resolution, etc., it is a material with high electrical insulating properties, and the substrate on which the resist is applied is also electrically insulating. The resist may be made of a highly insulating material (for example, silicon oxide), and the resist and the substrate, that is, the substrate to be exposed, may have high electrical insulation. Furthermore, since the X-ray exposure apparatus uses X-rays having higher energy than conventional light as a light source, photoelectrons and Auger electrons are generated from the exposed substrate. Furthermore, X
Line exposure equipment may have a helium atmosphere to prevent the intensity of the X-rays from decreasing, but if X-ray exposure is performed in such a dry atmosphere, static electricity may be generated due to friction between the exposed substrate and the gas during exposure. occurs. On the other hand, during X-ray exposure,
The gap between the line mask surface and the exposed substrate is 10 to several 1
It is necessary to maintain a constant value in the range of 0 μm. Therefore, in the above-mentioned X-ray exposure equipment, when X-ray exposure is performed, the resist surface is charged, and on the other hand, because there is a small gap between the mask surface and the exposed substrate, the mask surface and the resist surface are in contact with each other. This causes a problem in that the mask surface or resist surface is scratched or damaged due to discharge. Furthermore, the resist is overexposed due to the influence of emitted photoelectrons, Auger electrons, and the like, resulting in problems such as deviations in dimensional accuracy and the like when forming fine patterns. Therefore, the object of the present invention is to
It is an object of the present invention to provide an X-ray exposure apparatus and an X-ray exposure method that solve the above-mentioned problems of the prior art and have excellent antistatic properties and dimensional accuracy.

【0004】0004

【課題を解決する為の手段】上記目的は以下の本発明に
よって達成される。即ち、本発明は、X線光源部、X線
マスク部、X線被露光基板及び該基板を固定する手段と
からなるX線露光装置において、上記X線被露光基板の
最外周が導電部であり且つ該基板上に少なくとも一層の
電気導電性の高い膜を有し、且つ上記基板を所定位置に
固定する手段の少なくとも1部に基板の厚さよりも小さ
い導電部を有し、これらの導電部が夫々電気的に接触す
る様に形成されていることを特徴とするX線露光装置及
びこれを用いたX線露光方法である。
[Means for Solving the Problems] The above objects are achieved by the present invention as described below. That is, the present invention provides an X-ray exposure apparatus comprising an X-ray light source section, an X-ray mask section, a substrate to be exposed to X-rays, and means for fixing the substrate, in which the outermost periphery of the substrate to be exposed to X-rays is a conductive part. and has at least one highly electrically conductive film on the substrate, and at least a part of the means for fixing the substrate in a predetermined position has a conductive part smaller than the thickness of the substrate, and these conductive parts An X-ray exposure apparatus and an X-ray exposure method using the same are characterized in that the X-ray exposure apparatus and the X-ray exposure method are formed such that they are in electrical contact with each other.

【0005】[0005]

【作用】本発明のX線露光装置は、露光時の静電気の発
生や高エネルギーのX線により被露光基板から発生する
光電子及びオージェ電子が、X線被露光基板上の導電性
膜に吸収された後、該基板の最外周に設けられた導電部
、基板の固定手段に設けられた導電部を通って外部へ流
れる構成となっており、且つ、被露光基板の厚さよりも
基板の固定手段に設けられた導電部が小さい為、X線マ
スク面と被露光基板との間のプロキシミティギャップを
一定値に保ちつつX線を露光することが出来、且つX線
露光時に発生するレジスト膜面の帯電が防止され、その
結果X線マスクと基板とが接触し放電することがなくな
り、X線マスクや基板の破損を防止出来る。又、放出さ
れる光電子及びオージェ電子の影響でレジストが過剰露
光されることも防止出来る為、寸法精度よくレジストパ
ターンを形成することが出来る。
[Function] In the X-ray exposure apparatus of the present invention, photoelectrons and Auger electrons generated from the substrate to be exposed due to the generation of static electricity during exposure and high-energy X-rays are absorbed by the conductive film on the substrate to be exposed to X-rays. After that, the current flows to the outside through a conductive part provided on the outermost periphery of the substrate and a conductive part provided on the substrate fixing means, and the thickness of the substrate fixing means is smaller than the thickness of the substrate to be exposed. Because the conductive part provided on the surface is small, it is possible to expose X-rays while keeping the proximity gap between the X-ray mask surface and the substrate to be exposed at a constant value, and the resist film surface generated during X-ray exposure can be electrification is prevented, and as a result, the X-ray mask and the substrate will not come into contact with each other to cause discharge, and damage to the X-ray mask and the substrate can be prevented. Furthermore, it is possible to prevent the resist from being overexposed due to the influence of emitted photoelectrons and Auger electrons, so that a resist pattern can be formed with high dimensional accuracy.

【0006】[0006]

【実施例】以下、図面を使用して本発明の実施例を説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to the drawings.

【0007】実施例1 図1は本発明のX線露光装置の断面を図解的に説明する
図である。本露光装置は、図1に示した様に、被露光基
板2とそれを固定する手段である基板チャック3との間
に電気的接点4を有しており、更に、基板チャック3は
チャンバー1と導通している。又、X線マスク5の一側
面部と、マスクチャック6の一部を構成するX線マスク
の位置決めを行うブロック7との間に電気的接点を有し
、更に、ブロック部7とチャンバー1とは導通しており
、チャンバー1がアース電位となっている。尚、チャン
バー1内はヘリウム雰囲気であり、その圧力は100t
orr程度となっている。
Embodiment 1 FIG. 1 is a diagram illustrating a cross section of an X-ray exposure apparatus according to the present invention. As shown in FIG. 1, this exposure apparatus has an electrical contact point 4 between a substrate to be exposed 2 and a substrate chuck 3 which is a means for fixing it, and furthermore, the substrate chuck 3 has a chamber 1. It is conducting. Further, there is an electrical contact point between one side of the X-ray mask 5 and a block 7 for positioning the X-ray mask that constitutes a part of the mask chuck 6, and furthermore, there is an electrical contact between the block part 7 and the chamber 1. is conductive, and the chamber 1 is at ground potential. The inside of chamber 1 is a helium atmosphere, and the pressure is 100 tons.
It is about orr.

【0008】図2は、図1に示した被露光基板2とそれ
を固定する手段である基板チャック3の部分拡大図であ
る。被露光基板21は最外周に導電部22をもつSiウ
エハーである。この導電部22は、銅を10μmの厚さ
に部分蒸着することにより形成される。被露光基板21
の形成材料としては本実施例で使用したSiウエハーが
よく用いられるが、これ以外にも、GaAs基板やガラ
ス基板、又はSiウエハー上に金属、セラミックス、酸
化物等が付着及び加工されたものも使用出来る。又、2
4はX線レジストであり、ここでは化学増幅型レジスト
RAY−PN(商品名:ヘキスト社製)を用いた。但し
、導電部22のある最外周部はエッジリンスを行いレジ
スト24を取り除いておく。その上に積層する導電膜2
3は、アルカリ可溶型の導電性高分子を用いて形成する
。ここではテトラシアノキジメタン(TCNQ)錯体と
メタクリレート樹脂からなるポリマーを用いた。25は
基板チャックであり、Alからなるが、この他、ステン
レス等の金属やアルミナ等のセラミックスも使用出来る
。この基板チャック25上にはアースバネ26があり、
図2に示す様に導電部22に接して形成する。アースバ
ネ26の形成材質としては、リン青銅、ステンレス等で
よい。又、その形状は、図2に示す様に導電部22と接
触する部分は導電部22を傷付けない様に接触端が曲面
になっている。しかし、これに限らずアースバネ26の
材質及び形状としては、導電性があり、且つ導電部22
及びレジストを傷付けなければこれらの限りではない。 又、26をアースバネと呼んだがバネ性のないピン等で
あってもかまわない。しかし、X線露光はプロキシミテ
ィー露光の為、X線マスク5と被露光基板2との間隔は
、10〜50μm程度の定まった値に固定されなければ
ならない。この為アースバネ26の大きさは、基板21
の厚みよりも小さいものでなければならない。従って、
X線被露光基板21の形成に規格通りのSiウエハーを
用いればその厚さは通常、4inch  ウエハーであ
れば525μm、6inch  ウエハーであれば67
5μm、8inch  ウエハーであれば725μmで
あるから、アースバネ26の大きさは、ピンの先の球の
直径が0.5mm以下であればよい。又、用いる基板2
1の厚さによりピンを交換することも出来る。
FIG. 2 is a partially enlarged view of the substrate to be exposed 2 shown in FIG. 1 and the substrate chuck 3 which is a means for fixing it. The substrate to be exposed 21 is a Si wafer having a conductive portion 22 on the outermost periphery. The conductive portion 22 is formed by partially depositing copper to a thickness of 10 μm. Exposure substrate 21
The Si wafer used in this example is often used as the forming material, but other materials include GaAs substrates, glass substrates, or Si wafers on which metals, ceramics, oxides, etc. are attached and processed. Can be used. Also, 2
4 is an X-ray resist, and here a chemically amplified resist RAY-PN (trade name: manufactured by Hoechst) was used. However, the resist 24 is removed by edge rinsing at the outermost periphery where the conductive portion 22 is located. Conductive film 2 laminated thereon
3 is formed using an alkali-soluble conductive polymer. Here, a polymer consisting of a tetracyanoquidimethane (TCNQ) complex and a methacrylate resin was used. Reference numeral 25 denotes a substrate chuck, which is made of Al, but metals such as stainless steel and ceramics such as alumina can also be used. There is an earth spring 26 on this substrate chuck 25,
As shown in FIG. 2, it is formed in contact with the conductive portion 22. The material for forming the earth spring 26 may be phosphor bronze, stainless steel, or the like. Further, as shown in FIG. 2, the contact end of the contact portion is curved so as not to damage the conductive portion 22. However, the material and shape of the earth spring 26 are not limited to this, and the material and shape of the earth spring 26 are conductive and the conductive part 22
This does not apply unless the resist is damaged. Further, although 26 is referred to as an earth spring, it may be a pin or the like without spring properties. However, since the X-ray exposure is a proximity exposure, the distance between the X-ray mask 5 and the exposed substrate 2 must be fixed at a fixed value of about 10 to 50 μm. For this reason, the size of the earth spring 26 is
It must be smaller than the thickness of Therefore,
If a standard Si wafer is used to form the X-ray exposure substrate 21, the thickness is usually 525 μm for a 4-inch wafer and 67 μm for a 6-inch wafer.
Since it is 725 μm for a 5 μm, 8 inch wafer, the size of the earth spring 26 may be as long as the diameter of the ball at the tip of the pin is 0.5 mm or less. Also, the substrate 2 to be used
The pins can also be replaced depending on the thickness of 1.

【0009】本発明のX線露光方法においては、上記の
X線露光装置を使用し、図1に示した様に、マスク5の
裏面からX線が照射され、マスク上のパターンが被露光
基板2、即ち図2のレジスト膜24に転写される。本発
明のX線露光装置においては被露光基板2が図2に示す
構成を有する為、X線露光の際に被露光基板2から発生
する光電子及びオージェ電子等は、導電膜23に吸収さ
れた後、導電部22、アースバネ26、基板チャック2
5を通って、チャンバー1へと流れていく。又、X線マ
スク5から発生する電子も同様に、マスク導電膜、ブロ
ック7、マスクチャック6を通って、チャンバー1へと
流れていく。この様に本発明のX線露光装置は、前記し
た様に基板21の厚さよりもピン先が小さいアースバネ
26を用いている為、マスク面と被露光基板との間のプ
ロキシミティギャップを一定値に保ちつつX線を露光す
ることが出来、且つ、X線露光時に発生するレジスト膜
面の帯電が防止され、その結果X線マスクと基板とが接
触し放電することがなくなり、X線マスクや基板の破損
を防止出来る。更に、レジストの過剰露光も防ぐことが
出来る為、寸法精度よくレジストパターンを形成するこ
とが出来た。尚、レジスト膜24の現像にはアルカリの
液を用いる為、導電膜23は同時に剥離される。
In the X-ray exposure method of the present invention, the above-mentioned X-ray exposure apparatus is used, and as shown in FIG. 2, that is, transferred to the resist film 24 in FIG. In the X-ray exposure apparatus of the present invention, since the exposed substrate 2 has the configuration shown in FIG. 2, photoelectrons, Auger electrons, etc. generated from the exposed substrate 2 during X-ray exposure are absorbed by the conductive film 23 Rear, conductive part 22, earth spring 26, substrate chuck 2
5 and flows into chamber 1. Further, electrons generated from the X-ray mask 5 similarly flow into the chamber 1 through the mask conductive film, the block 7, and the mask chuck 6. In this way, the X-ray exposure apparatus of the present invention uses the ground spring 26 whose pin tip is smaller than the thickness of the substrate 21 as described above, so that the proximity gap between the mask surface and the exposed substrate can be maintained at a constant value. It is possible to expose X-rays while maintaining the temperature, and prevents the resist film surface from being charged during X-ray exposure.As a result, the X-ray mask and the substrate do not come into contact with each other and discharge occurs, and the X-ray mask and It can prevent damage to the board. Furthermore, since overexposure of the resist can be prevented, a resist pattern can be formed with high dimensional accuracy. Note that since an alkaline solution is used to develop the resist film 24, the conductive film 23 is peeled off at the same time.

【0010】実施例2 図3は、本発明の別の実施例であるX線露光装置内の被
露光基板2とそれを固定する手段である基板チャック3
の部分拡大図である。被露光基板31は実施例1と同様
の最外周に導電部32を持つSiウエハーである。導電
部32は、100keVのAu+ 集束イオンビームを
用い、イオン注入することにより形成される。この際に
使用するイオンとしては、この他ベリリウムイオン、ガ
リリウムイオン、ゲルマニウムイオン、すずイオン、ア
ルミニウムイオン、銅イオン、パラジウムイオン、砒素
イオン、硼素イオン等、集束イオンビームとして利用出
来るものならどの様なものを用いてもよい。X線露光装
置、X線レジスト34、導電膜33、基板チャック35
、アースバネ36等は実施例1と同様のものを用いる。
Embodiment 2 FIG. 3 shows a substrate 2 to be exposed and a substrate chuck 3 which is a means for fixing it in an X-ray exposure apparatus which is another embodiment of the present invention.
FIG. The substrate 31 to be exposed is a Si wafer having a conductive portion 32 on the outermost periphery, similar to the first embodiment. The conductive portion 32 is formed by ion implantation using a 100 keV Au+ focused ion beam. Ions used at this time include beryllium ions, galylium ions, germanium ions, tin ions, aluminum ions, copper ions, palladium ions, arsenic ions, boron ions, and any other ion that can be used as a focused ion beam. You may also use something. X-ray exposure device, X-ray resist 34, conductive film 33, substrate chuck 35
, the earth spring 36, etc., are the same as those in the first embodiment.

【0011】又、実施例1と同様に図1に示す様にマス
ク5の裏面からX線が照射され、マスク上のパターンが
被露光基板2、即ち図3のレジスト膜34に転写される
。本発明のX線露光装置においては被露光基板2が図3
に示す構成を有する為、X線露光の際に被露光基板2か
ら発生する光電子及びオージェ電子等は、導電膜33に
吸収された後、導電部32、アースバネ36、基板チャ
ック35を通って、チャンバー1へと流れていく。 又、X線マスク5から発生する電子も同様に、マスク導
電膜、ブロック7、マスクチャック6を通って、チャン
バー1へと流れていく。この様に本発明のX線露光装置
は、前記した様に被露光基板31の厚さよりもピン先が
小さいアースバネ36を用いている為、X線マスク面と
被露光基板との間のプロキシミティギャップを一定値に
保ちつつX線を露光することが出来、且つ、X線露光時
に発生するレジスト膜面の帯電が防止され、その結果X
線マスクと基板とが接触し放電することがなくなり、X
線マスクや基板の破損を防止出来る。更に、レジストの
過剰露光も防ぐことが出来る為、寸法精度よくレジスト
パターンを形成することが出来た。尚、レジスト膜34
の現像にはアルカリの液を用いる為、導電膜33は同時
に剥離される。
Similarly to the first embodiment, X-rays are irradiated from the back side of the mask 5 as shown in FIG. 1, and the pattern on the mask is transferred to the exposed substrate 2, ie, the resist film 34 of FIG. 3. In the X-ray exposure apparatus of the present invention, the substrate 2 to be exposed is shown in FIG.
Since it has the configuration shown in FIG. 2, photoelectrons, Auger electrons, etc. generated from the exposed substrate 2 during X-ray exposure are absorbed by the conductive film 33, and then pass through the conductive part 32, the earth spring 36, and the substrate chuck 35, and It flows into chamber 1. Further, electrons generated from the X-ray mask 5 similarly flow into the chamber 1 through the mask conductive film, the block 7, and the mask chuck 6. As described above, the X-ray exposure apparatus of the present invention uses the earth spring 36 whose pin tip is smaller than the thickness of the substrate 31 to be exposed, so that the proximity between the X-ray mask surface and the substrate to be exposed is reduced. X-ray exposure can be performed while keeping the gap at a constant value, and charging on the resist film surface that occurs during X-ray exposure is prevented, resulting in
The line mask and the board will not come into contact and cause discharge, and
This can prevent damage to the line mask and board. Furthermore, since overexposure of the resist can be prevented, a resist pattern can be formed with high dimensional accuracy. Note that the resist film 34
Since an alkaline solution is used for development, the conductive film 33 is peeled off at the same time.

【0012】実施例3 図4は、本発明の別の実施例であるX線露光装置内の被
露光基板2とそれを固定する手段である基板チャック3
の部分断面図である。被露光基板41は最外周に導電部
42をもつSiウエハーである。又、この導電部42は
、ニッケルを100μmの厚さに部分めっきして形成さ
れる。43は導電膜であり、カーボンにより形成する。 導電膜43の形成にはこの様な無機物が主に使われるが
、塗布型の導電性ポリマー(例えばポリ塩化ビニルベン
ジルトリメチルアンモニウム塩)等、有機物を用いるこ
とも出来る。44はX線に感光するレジスト膜であり、
本実施例ではSi含有レジストSNR(商品名:東洋曹
達社製)を用いる。X線露光装置、基板チャック45、
アースバネ46等は実施例1と同様のものを用いる。
Embodiment 3 FIG. 4 shows a substrate 2 to be exposed and a substrate chuck 3 which is a means for fixing it in an X-ray exposure apparatus which is another embodiment of the present invention.
FIG. The substrate to be exposed 41 is a Si wafer having a conductive portion 42 on the outermost periphery. Further, the conductive portion 42 is formed by partially plating nickel to a thickness of 100 μm. 43 is a conductive film made of carbon. Although such inorganic materials are mainly used to form the conductive film 43, organic materials such as a coated conductive polymer (for example, polyvinylbenzyltrimethylammonium chloride salt) can also be used. 44 is a resist film sensitive to X-rays;
In this example, a Si-containing resist SNR (trade name: manufactured by Toyo Soda Co., Ltd.) is used. X-ray exposure device, substrate chuck 45,
The earth spring 46 and the like are the same as those in the first embodiment.

【0013】又、実施例1と同様に図1に示す様にマス
ク5の裏面からX線が照射され、マスク上のパターンが
被露光基板2、即ち図4のレジスト膜44に転写される
。本発明のX線露光装置においては被露光基板2が図4
に示す構成を有する為、X線露光の際に被露光基板2か
ら発生する光電子及びオージェ電子等は、導電膜43に
吸収された後、導電部42、アースバネ46、基板チャ
ック45を通って、チャンバー1へと流れていく。 又、X線マスク5から発生する電子も同様に、マスク導
電膜、ブロック7、マスクチャック6を通って、チャン
バー1へと流れていく。この様に本発明のX線露光装置
は、前記した様に基板41の厚さよりもピン先が小さい
アースバネ46を用いている為、マスク面と被露光基板
との間のプロキシミティギャップを一定値に保ちつつX
線を露光することが出来、且つ、X線露光時に発生する
レジスト膜面の帯電が防止され、その結果X線マスクと
基板とが接触し放電することがなくなり、X線マスクや
基板の破損を防止出来る。更に、レジストの過剰露光も
防ぐことが出来る為、寸法精度よくレジストパターンを
形成することが出来た。尚、導電膜42はその材料に最
適な方法によりその後エッチングする。この実施例で用
いたカーボンの場合には、酸素プラズマを用いてエッチ
ングする。この場合、導電膜42はレジストパターンの
形状に沿ってエッチングされ、レジスト膜の一部として
次のプロセスに利用される。
Further, as in the first embodiment, as shown in FIG. 1, X-rays are irradiated from the back side of the mask 5, and the pattern on the mask is transferred to the exposed substrate 2, ie, the resist film 44 in FIG. 4. In the X-ray exposure apparatus of the present invention, the substrate 2 to be exposed is shown in FIG.
Since it has the configuration shown in FIG. 2, photoelectrons, Auger electrons, etc. generated from the exposed substrate 2 during X-ray exposure are absorbed by the conductive film 43 and then passed through the conductive part 42, the earth spring 46, and the substrate chuck 45. It flows into chamber 1. Further, electrons generated from the X-ray mask 5 similarly flow into the chamber 1 through the mask conductive film, the block 7, and the mask chuck 6. In this way, since the X-ray exposure apparatus of the present invention uses the ground spring 46 whose pin tip is smaller than the thickness of the substrate 41 as described above, the proximity gap between the mask surface and the exposed substrate can be kept at a constant value. while keeping
It is possible to expose X-rays, and prevents charging of the resist film surface that occurs during X-ray exposure.As a result, the X-ray mask and the substrate do not come into contact with each other and discharge occurs, which prevents damage to the X-ray mask and the substrate. It can be prevented. Furthermore, since overexposure of the resist can be prevented, a resist pattern can be formed with high dimensional accuracy. Note that the conductive film 42 is then etched using a method most suitable for the material. In the case of carbon used in this example, oxygen plasma is used for etching. In this case, the conductive film 42 is etched along the shape of the resist pattern and is used as part of the resist film in the next process.

【0014】実施例4 図5は、本発明の別の実施例であるX線露光装置内の被
露光基板の部分断面図である。基板51は実施例1と同
様の最外周に導電部52をもつSiウエハーである。 又、この導電部52は200keVのBe2+集束イオ
ンビームを注入することにより形成される。基板51上
には多層レジストの下層となる57がある。本実施例で
は57はポリイミドから形成したが、ノボラック樹脂等
のポリマーを用いることも出来る。但し、塗布の際に導
電部52のある最外周は、エッジリンスにより取り除く
。 この57の上には多層レジストの中間層にあたる導電膜
53が形成される。この導電膜53の形成にはTi等の
金属が主に使用される。更にその上に、X線レジスト5
4が例えばPMMA(ポリメチルメタクリレート)が塗
布される。基板チャック55、アースバネ56は実施例
1と同様のものが用いられる。
Embodiment 4 FIG. 5 is a partial sectional view of a substrate to be exposed in an X-ray exposure apparatus which is another embodiment of the present invention. The substrate 51 is a Si wafer having a conductive portion 52 on the outermost periphery, similar to the first embodiment. Further, this conductive portion 52 is formed by implanting a 200 keV Be2+ focused ion beam. On the substrate 51 is a layer 57 that is the lower layer of the multilayer resist. In this embodiment, 57 is made of polyimide, but polymers such as novolak resin can also be used. However, during coating, the outermost periphery where the conductive portion 52 is located is removed by edge rinsing. A conductive film 53 serving as an intermediate layer of the multilayer resist is formed on this 57. Metal such as Ti is mainly used to form the conductive film 53. Furthermore, on top of that, X-ray resist 5
4 is coated with PMMA (polymethyl methacrylate), for example. The same substrate chuck 55 and earth spring 56 as in the first embodiment are used.

【0015】又、実施例1と同様に図1に示す様にマス
ク5の裏面からX線が照射され、マスク上のパターンが
被露光基板2、即ち図5のレジスト膜54に転写される
。本発明のX線露光装置においては被露光基板2が図5
に示す構成を有する為、X線露光の際に被露光基板2か
ら発生する光電子及びオージェ電子等は、導電膜53に
吸収された後、導電部52、アースバネ56、基板チャ
ック55を通って、チャンバー1へと流れていく。 又、X線マスク5から発生する電子も同様に、マスク導
電膜、ブロック7、マスクチャック6を通って、チャン
バー1へと流れていく。この様に本発明のX線露光装置
は、前記した様に基板51の厚さよりもピン先が小さい
アースバネ56を用いている為、マスク面と被露光基板
との間のプロキシミティギャップを一定値に保ちつつX
線を露光することが出来、且つ、X線露光時に発生する
レジスト膜面の帯電が防止され、その結果X線マスクと
基板とが接触し放電することがなくなり、X線マスクや
基板の破損を防止出来る。更に、レジストの過剰露光も
防ぐことが出来る為、寸法精度よくレジストパターンを
形成することが出来た。尚、導電膜53はその材料に最
適な方法によりその後エッチングする。この実施例で用
いたTiの場合には、CF4 ガスを用いたプラズマを
用いてエッチングする。更に、酸素プラズマによりポリ
マー57もエッチングする。本実施例の場合、ポリマー
57が次のプロセスでレジストとしての作用を果たす為
、ポリマー57のパターン形成後は導電膜52はその後
のプロセスにより除去されたりされなかったりする。
Further, as in the first embodiment, as shown in FIG. 1, X-rays are irradiated from the back side of the mask 5, and the pattern on the mask is transferred to the exposed substrate 2, ie, the resist film 54 of FIG. 5. In the X-ray exposure apparatus of the present invention, the substrate 2 to be exposed is shown in FIG.
Since it has the configuration shown in FIG. 2, photoelectrons, Auger electrons, etc. generated from the exposed substrate 2 during X-ray exposure are absorbed by the conductive film 53, and then pass through the conductive part 52, the earth spring 56, and the substrate chuck 55. It flows into chamber 1. Further, electrons generated from the X-ray mask 5 similarly flow into the chamber 1 through the mask conductive film, the block 7, and the mask chuck 6. In this way, the X-ray exposure apparatus of the present invention uses the earth spring 56 whose pin tip is smaller than the thickness of the substrate 51 as described above, so that the proximity gap between the mask surface and the exposed substrate can be maintained at a constant value. while keeping
It is possible to expose X-rays, and prevents charging of the resist film surface that occurs during X-ray exposure.As a result, the X-ray mask and the substrate do not come into contact with each other and discharge occurs, which prevents damage to the X-ray mask and the substrate. It can be prevented. Furthermore, since overexposure of the resist can be prevented, a resist pattern can be formed with high dimensional accuracy. Note that the conductive film 53 is then etched using a method most suitable for the material. In the case of Ti used in this example, etching is performed using plasma using CF4 gas. Furthermore, the polymer 57 is also etched by oxygen plasma. In this embodiment, since the polymer 57 acts as a resist in the next process, the conductive film 52 may or may not be removed in the subsequent process after the polymer 57 is patterned.

【0016】実施例5 図6は、本発明の別の実施例であるX線露光装置内の被
露光基板の部分断面図である。基板61、導電部62、
基板チャック65、アースバネ66は実施例1と同様の
ものを用いた。63はX線レジストであり、且つ導電膜
である導電性レジストである。ここでは4級アンモニウ
ム塩をもったポリスチレンを用いた。又、実施例1と同
様に図1に示す様にマスク5の裏面からX線が照射され
、マスク上のパターンが被露光基板2、即ち図6のレジ
スト膜63に転写される。本発明のX線露光装置におい
ては被露光基板2が図6に示す構成を有する為、X線露
光の際に被露光基板2から発生する光電子及びオージェ
電子等は、導電性レジスト膜63に吸収された後、導電
部62、アースバネ66、基板チャック65を通って、
チャンバー1へと流れていく。又、X線マスク5から発
生する電子も同様にマスク導電膜、ブロック7、マスク
チャック6を通って、チャンバー1へと流れていく。こ
の様に本発明のX線露光装置は、前記した様に基板61
の厚さよりもピン先が小さいアースバネ66を用いてい
る為、マスク面と被露光基板との間のプロキシミティギ
ャップを一定値に保ちつつX線を露光することが出来、
X線露光時に発生するレジスト膜面の帯電が防止され、
その結果X線マスクと基板とが接触し放電することがな
くなり、マスクや基板の破損を防止出来る。更に、レジ
ストの過剰露光も防ぐことが出来る為、寸法精度よくレ
ジストパターンを形成することが出来た。
Embodiment 5 FIG. 6 is a partial sectional view of a substrate to be exposed in an X-ray exposure apparatus which is another embodiment of the present invention. substrate 61, conductive part 62,
The substrate chuck 65 and the earth spring 66 were the same as in Example 1. 63 is an X-ray resist and a conductive resist which is a conductive film. Here, polystyrene with quaternary ammonium salt was used. Further, as in Example 1, as shown in FIG. 1, X-rays are irradiated from the back surface of the mask 5, and the pattern on the mask is transferred to the exposed substrate 2, that is, the resist film 63 in FIG. In the X-ray exposure apparatus of the present invention, since the exposed substrate 2 has the configuration shown in FIG. 6, photoelectrons, Auger electrons, etc. generated from the exposed substrate 2 during X-ray exposure are absorbed by the conductive resist film 63 After passing through the conductive part 62, the earth spring 66, and the substrate chuck 65,
It flows into chamber 1. Further, electrons generated from the X-ray mask 5 similarly flow into the chamber 1 through the mask conductive film, the block 7, and the mask chuck 6. In this way, the X-ray exposure apparatus of the present invention has the substrate 61 as described above.
Since the earth spring 66 whose pin tip is smaller than the thickness of the ground spring 66 is used, X-ray exposure can be performed while keeping the proximity gap between the mask surface and the exposed substrate at a constant value.
Prevents charging of the resist film surface that occurs during X-ray exposure,
As a result, the X-ray mask and the substrate will not come into contact with each other to cause discharge, and damage to the mask and the substrate can be prevented. Furthermore, since overexposure of the resist can be prevented, a resist pattern can be formed with high dimensional accuracy.

【0017】[0017]

【効果】以上の様に本発明のX線露光装置は、露光時の
静電気や高エネルギーのX線により被露光基板から発生
する光電子及びオージェ電子が、X線被露光基板上の電
気導電性膜に吸収された後、該基板の最外周に設けられ
た導電部、基板の固定手段に設けられた導電部を通って
外部へ流れる構成となっており、且つ、被露光基板の厚
さよりも基板の固定手段に設けられた導電部が小さい為
、X線マスク面と被露光基板との間のプロキシミティギ
ャップを一定値に保ちつつX線を露光することが出来、
且つ、X線露光時に発生するレジスト膜面の帯電が防止
され、その結果X線マスクと基板とが接触し放電するこ
とがなくなり、X線マスクや基板の破損を防止出来る。 又、放出される光電子及びオージェ電子の影響でレジス
トが過剰露光されることも防止出来る為、寸法精度よく
レジストパターンを形成することが出来る。
[Effects] As described above, in the X-ray exposure apparatus of the present invention, photoelectrons and Auger electrons generated from the exposed substrate due to static electricity and high-energy X-rays during exposure are removed from the electrically conductive film on the X-ray exposed substrate. After being absorbed in Because the conductive part provided in the fixing means is small, it is possible to expose X-rays while keeping the proximity gap between the X-ray mask surface and the exposed substrate at a constant value.
In addition, charging of the resist film surface that occurs during X-ray exposure is prevented, and as a result, the X-ray mask and the substrate do not come into contact and discharge occurs, and damage to the X-ray mask and the substrate can be prevented. Furthermore, it is possible to prevent the resist from being overexposed due to the influence of emitted photoelectrons and Auger electrons, so that a resist pattern can be formed with high dimensional accuracy.

【0015】[0015]

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明のX線露光装置の断面図である。FIG. 1 is a sectional view of an X-ray exposure apparatus of the present invention.

【図2】本発明の実施例のX線露光装置のX線被露光基
板及び該基板を固定する手段の部分断面図である。
FIG. 2 is a partial sectional view of a substrate to be exposed to X-rays and means for fixing the substrate in the X-ray exposure apparatus according to the embodiment of the present invention.

【図3】本発明の別の実施例のX線露光装置のX線被露
光基板及び該基板を固定する手段の部分断面図である。
FIG. 3 is a partial cross-sectional view of a substrate to be exposed to X-rays and means for fixing the substrate in an X-ray exposure apparatus according to another embodiment of the present invention.

【図4】本発明の別の実施例のX線露光装置のX線被露
光基板及び該基板を固定する手段の部分断面図である。
FIG. 4 is a partial cross-sectional view of a substrate to be exposed to X-rays and means for fixing the substrate in an X-ray exposure apparatus according to another embodiment of the present invention.

【図5】本発明の別の実施例のX線露光装置のX線被露
光基板及び該基板を固定する手段の部分断面図である。
FIG. 5 is a partial cross-sectional view of a substrate to be exposed to X-rays and means for fixing the substrate in an X-ray exposure apparatus according to another embodiment of the present invention.

【図6】本発明の別の実施例のX線露光装置のX線被露
光基板及び該基板を固定する手段の部分断面図である。
FIG. 6 is a partial cross-sectional view of a substrate to be exposed to X-rays and means for fixing the substrate in an X-ray exposure apparatus according to another embodiment of the present invention.

【符号の説明】 1:チャンバー 2、21、31、41、51、61:X線被露光基板3
、25、35、45、55、65:基板チャック4、2
6、36、46、56、66:アースバネ又はピン 22、32、42、52、62:導電部23、33、4
3、53、63:導電性膜24、34、44、54、6
3:レジスト5:X線マスク 6:マスクチャック 7:ブロック
[Explanation of symbols] 1: Chamber 2, 21, 31, 41, 51, 61: X-ray exposed substrate 3
, 25, 35, 45, 55, 65: substrate chucks 4, 2
6, 36, 46, 56, 66: Earth spring or pin 22, 32, 42, 52, 62: Conductive part 23, 33, 4
3, 53, 63: Conductive film 24, 34, 44, 54, 6
3: Resist 5: X-ray mask 6: Mask chuck 7: Block

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  X線光源部、X線マスク部、X線被露
光基板及び該基板を固定する手段とからなるX線露光装
置において、上記X線被露光基板の最外周が導電部であ
り且つ該基板上に少なくとも一層の電気導電性の高い膜
を有し、且つ上記基板を所定位置に固定する手段の少な
くとも1部に基板の厚さよりも小さい導電部を有し、こ
れらの導電部が夫々電気的に接触する様に形成されてい
ることを特徴とするX線露光装置。
1. An X-ray exposure apparatus comprising an X-ray light source section, an X-ray mask section, a substrate to be exposed to X-rays, and means for fixing the substrate, wherein the outermost periphery of the substrate to be exposed to X-rays is a conductive section. and has at least one layer of highly electrically conductive film on the substrate, and at least a portion of the means for fixing the substrate in a predetermined position has a conductive part smaller than the thickness of the substrate, and these conductive parts are An X-ray exposure apparatus characterized by being formed so that they are in electrical contact with each other.
【請求項2】  X線被露光基板の表面にX線マスクを
重ね、該マスクを通してX線を露光するX線露光方法に
おいて、上記X線被露光基板の最外周が導電部であり且
つ該基板上に少なくとも一層の電気導電性の高い膜を有
し、且つ上記基板を所定位置に固定する手段の少なくと
も1部に基板の厚さよりも小さい導電部を有し、これら
の導電部を必要に応じて電気的に接触させることを特徴
とするX線露光方法。
2. An X-ray exposure method in which an X-ray mask is stacked on the surface of a substrate to be exposed to X-rays and X-rays are exposed through the mask, wherein the outermost periphery of the substrate to be exposed to X-rays is a conductive portion, and the substrate at least one layer of highly electrically conductive film thereon, and at least a portion of the means for fixing the substrate in a predetermined position has a conductive part smaller than the thickness of the substrate, and these conductive parts can be attached as necessary. An X-ray exposure method characterized by electrically contacting the
JP3039030A 1991-02-12 1991-02-12 Device and method for x-ray exposure Pending JPH04258109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3039030A JPH04258109A (en) 1991-02-12 1991-02-12 Device and method for x-ray exposure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3039030A JPH04258109A (en) 1991-02-12 1991-02-12 Device and method for x-ray exposure

Publications (1)

Publication Number Publication Date
JPH04258109A true JPH04258109A (en) 1992-09-14

Family

ID=12541715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3039030A Pending JPH04258109A (en) 1991-02-12 1991-02-12 Device and method for x-ray exposure

Country Status (1)

Country Link
JP (1) JPH04258109A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100244913B1 (en) * 1996-09-17 2000-03-02 윤종용 An analysis method for an insulating sample by Auger Electron Spectroscopy
JP2003124111A (en) * 2001-08-07 2003-04-25 Nikon Corp Soft x-ray exposure system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100244913B1 (en) * 1996-09-17 2000-03-02 윤종용 An analysis method for an insulating sample by Auger Electron Spectroscopy
JP2003124111A (en) * 2001-08-07 2003-04-25 Nikon Corp Soft x-ray exposure system

Similar Documents

Publication Publication Date Title
US4936951A (en) Method of reducing proximity effect in electron beam resists
JPS596506B2 (en) Electrophotographic engraving method
US20070248916A1 (en) Resist pattern forming method, thin-film pattern forming method, and microdevice manufacturing method
Utsumi Low energy electron-beam proximity projection lithography: Discovery of a missing link
US6017658A (en) Lithographic mask and method for fabrication thereof
US6541182B1 (en) Method for forming fine exposure patterns using dual exposure
JP2883798B2 (en) Semiconductor device patterning method
Utsumi Low-energy e-beam proximity lithography (LEEPL): is the simplest the best?
US6482558B1 (en) Conducting electron beam resist thin film layer for patterning of mask plates
JPH04258109A (en) Device and method for x-ray exposure
JP2875193B2 (en) Method of forming resist pattern
KR100754369B1 (en) Method for forming predetermined patterns on a wafer by direct etching with neutral particle beams
JPH04258110A (en) Device and method for x-ray exposure
JPH02192714A (en) Formation of resist pattern
EP0104235A4 (en) Electron beam-optical hybrid lithographic resist process.
JPH02174216A (en) Manufacture of semiconductor device
JPH0226016A (en) Lithography of circuit pattern
JPS62241338A (en) Pattern formation
JP3222531B2 (en) Method for manufacturing photomask having phase shift layer
US20220244646A1 (en) Methods and apparatus for forming resist pattern using euv light with electric field
US20050019697A1 (en) Method of treating wafers with photoresist to perform metrology analysis using large current e-beam systems
EP0268595B1 (en) Pattern transfer process for fabricating integrated-circuit devices
JPH11149152A (en) Grounding method and photomask blanks
JP2001135563A (en) Lithography process and method of fabrication for device
JP2002217094A (en) Mask for electron beam exposure and its manufacturing method