JPS63216328A - Manufacture of electrolytic capacitor anode - Google Patents

Manufacture of electrolytic capacitor anode

Info

Publication number
JPS63216328A
JPS63216328A JP5060987A JP5060987A JPS63216328A JP S63216328 A JPS63216328 A JP S63216328A JP 5060987 A JP5060987 A JP 5060987A JP 5060987 A JP5060987 A JP 5060987A JP S63216328 A JPS63216328 A JP S63216328A
Authority
JP
Japan
Prior art keywords
titanium
aluminum
composition
alloy
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5060987A
Other languages
Japanese (ja)
Inventor
清水 成章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5060987A priority Critical patent/JPS63216328A/en
Publication of JPS63216328A publication Critical patent/JPS63216328A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電解コンデンサ用陽極体の製造方法に関し、
特にアルミニウムーチタン合金の陽極体の製造方法に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing an anode body for an electrolytic capacitor,
In particular, the present invention relates to a method for manufacturing an anode body of an aluminum-titanium alloy.

〔従来の抜術〕[Conventional extraction technique]

アルミニウムーチタン合金電解コンデンサは、M電解コ
ンデンザ並の低価格性とTa電解コンデンサ並の小型性
を同時に有する電解コンデンサとして開発され(特開昭
58−11477.60−48090.60−4482
2あるいは、USP4、331 、477.4,468
,719.4,432,935) 、その混合組成とし
ては、従来チタンに対してアルミニウムが50から80
原子%の範囲のものが使用されてきた。
Aluminum-titanium alloy electrolytic capacitors were developed as electrolytic capacitors that are as low-priced as M electrolytic capacitors and as compact as Ta electrolytic capacitors (Japanese Patent Laid-Open No. 11477.60-48090.60-4482).
2 or USP 4, 331, 477.4, 468
, 719.4, 432, 935), the mixed composition of which is conventionally 50 to 80% aluminum to titanium.
Atom % ranges have been used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

アルミニウムーチク2合金を多孔質陽極体どする電解コ
ンデンサは、その多孔質形成過程固有の特徴から、チタ
ンとアルミニウム粉末の混合組成がチタン含徂の多い組
成側の方が単位体積当たりの静電容量値が大きくなる傾
向がある。したがって、チタン金色の多い混合組成を適
用すればより小型人寄爪の電解コンデンサを製作するの
が可能となる。しかし、従来50原子%チタンの混合組
成では漏れ電流、損失が大ぎく、電気的特性が不良で電
解コンデンサとして実用に供するのは不可能であった。
Electrolytic capacitors that have a porous anode body made of aluminum-chik 2 alloy have a lower electrostatic charge per unit volume when the mixed composition of titanium and aluminum powder contains more titanium due to the inherent characteristics of the porous formation process. The capacitance value tends to increase. Therefore, by applying a mixed composition containing a large amount of titanium and gold, it becomes possible to manufacture a smaller-sized electrolytic capacitor. However, the conventional mixed composition of 50 atomic % titanium had large leakage current and loss, and had poor electrical characteristics, making it impossible to put it to practical use as an electrolytic capacitor.

本発明の目的は、かかる電気的諸特性の不良を改善し、
小型大容量性に優れたチタン含量の多い混合組成による
アルミニウムーチタン合金を多孔質陽極体とする電解コ
ンデンサの製造方法を提供することにある。
The purpose of the present invention is to improve such defects in electrical characteristics,
It is an object of the present invention to provide a method for manufacturing an electrolytic capacitor having a porous anode body made of an aluminum-titanium alloy having a mixed composition with a high titanium content and excellent in small size and large capacity.

c問題点を解決するための手段〕 本発明の電解コンデンザ用陽極体の製造方法は、予め窒
化処理したチタンとアルミニウムの混合粉末をプレス成
形復焼結してアルミニウムーチタン合金の多孔質焼結体
とする。
Means for Solving Problems] The method for manufacturing an anode body for an electrolytic capacitor of the present invention involves press-molding and re-sintering a mixed powder of titanium and aluminum that has been nitrided in advance to form a porous sintered aluminum-titanium alloy. body.

〔作用〕[Effect]

この製造方法により、チタン粉末をそのままアルミニウ
ムと混合したのでは特性が不良であったチタン含量の多
い混合組成によるアルミニウムーチタン合金電解コンデ
ンサの特性を改良し、より小型大容量性電気的特性の安
定した電解コンデンサを得ることができる。
This manufacturing method improves the characteristics of aluminum-titanium alloy electrolytic capacitors, which have a mixed composition with a high titanium content, which had poor characteristics when titanium powder was mixed with aluminum as it is, making it possible to make it smaller, with larger capacitance, and with stable electrical characteristics. It is possible to obtain a high-quality electrolytic capacitor.

本発明において、チタン含量の多い混合組成で電気的特
性を改良できる効果の得られる理由は次の通りである。
In the present invention, the reason why a mixed composition with a high titanium content is effective in improving electrical characteristics is as follows.

まず、従来技術での状況を説明する。First, the situation in the prior art will be explained.

アルミニウムーチタン二元系は、原子%がほぼ体積%に
比例する。従って、アルミニウム粒子とチタン粒子の平
均粒径が同一の場合には、混合組成が50原子%でチタ
ン。アルミニウムの粒子数がほぼ等しくなり、均一な混
合が行い易い状態となる。しかしチタン含量の多い組成
になるとチタン粒子に対するアルミニウム粒子数が急速
に減少し、混合状態の均一性確保が難しくなって(る。
In the aluminum-titanium binary system, atomic % is approximately proportional to volume %. Therefore, if the average particle diameters of aluminum particles and titanium particles are the same, the mixed composition is 50 atomic % titanium. The number of aluminum particles becomes almost equal, making it easy to mix uniformly. However, when the composition has a high titanium content, the number of aluminum particles relative to the titanium particles rapidly decreases, making it difficult to ensure uniformity of the mixed state.

ところでアルミニウムとチタンの混合粉末のプレス成形
体を焼結すると、500〜600℃でアルミニウムがチ
タンに対し一方的に拡散する固相反応による合金化反応
が起こり、この時アルミニウム粒子の存在した所が空孔
となり、チタン粒子の存在した所がアルミニウムーチタ
ン合金粒子となって、多孔質体の骨格溝道を形成すると
いう特異な多孔質体形成過程を辿る。したがって、アル
ミニウムとチタン粒子数のバランスの良い50%程度の
混合組成のものは、最終的な焼結温度(1000〜11
00℃)で均一な組成の合金粒子となり易いが、粒子数
のバランスがくずれ、個々のチタン粒子の周囲にアルミ
ニウム粒子が均一に分布するような混合状態を確保しに
くくなるチタン含0の多い混合組成では、最終焼結温度
でも合金粒子内に組成ムラを生じ易い。チタン含量の多
い混合組成では、焼結後の合金粒子の平均組成もチタン
の多い組成となる。それ故、発生した組成ムラ部分はか
なりチタン成分が多くアルミニウム成分の不足する組成
となる確率が高く、この様な部分は決定的な特性劣化を
招くことになる。この状況を焼結後の多孔質体を形成し
ている合金粒子の断面図として第2図に示したく混合組
成は30原子%アルミニウムとした)。図中、3は空孔
部、4は合金粒子内部で合金組成30原子%アルミニウ
ム程度の部分、5は合金粒子表面部に出た30原子%ア
ルミニウムより遥かにチタンよりの合金組成を有する組
成ムラ部分である。
By the way, when a press molded body of mixed powder of aluminum and titanium is sintered, an alloying reaction occurs at 500 to 600°C due to a solid phase reaction in which aluminum diffuses unilaterally into titanium, and at this time, the places where aluminum particles were present are A unique process of forming a porous body occurs in which pores form, and the places where titanium particles were present become aluminum-titanium alloy particles, forming skeletal channels of the porous body. Therefore, the final sintering temperature (1000 to 11
Although alloy particles with a uniform composition are likely to be formed at temperatures of 00℃), the balance of the number of particles is lost, making it difficult to maintain a mixed state in which aluminum particles are evenly distributed around individual titanium particles. Regarding the composition, even at the final sintering temperature, compositional unevenness tends to occur within the alloy particles. When the mixed composition has a high titanium content, the average composition of the alloy particles after sintering also has a high titanium content. Therefore, there is a high probability that the compositional uneven portion that has occurred will have a composition that is considerably rich in titanium and deficient in aluminum, and such a portion will lead to a decisive deterioration of characteristics. This situation is shown in FIG. 2 as a cross-sectional view of the alloy particles forming the porous body after sintering (the mixed composition was 30 atomic percent aluminum). In the figure, 3 is a void portion, 4 is a portion inside the alloy particle with an alloy composition of approximately 30 atom% aluminum, and 5 is a composition irregularity that appears on the surface of the alloy particle and has an alloy composition far more titanium than 30 atom% aluminum. It is a part.

次に本発明の製造方法による場合を説明する。Next, a case using the manufacturing method of the present invention will be explained.

予め窒化処理したチタン粉末とアルミニウム粉末の混合
粉プレス成形体を焼結すると、チタン中の窒素がアルミ
ニウム成分の拡散に対するパリVとなって拡散を抑制す
る結果、チタン粒子の内部まで合金化は起こらず、チタ
ン粒子の表面のみが合金化し、その組成は混合組成より
もアルミニウム成分の多い合金組成となる。粒子表面部
しか合金化しないため、アルミニウムとチタンの粒子数
バランスが悪くて、均一な混合の難しいチタン含量の多
い混合組成の場合でも表面に形成される合金層が極端な
チタン過剰、アルミニウム不足の組成とはならない。す
なわち、チタン含量の多い混合組成から多孔質焼結体を
製作しても、電解コンデンサの特性を決定づける多孔質
焼結体を構成する粒子の表面合金組成が、チタンが少く
アルミニウム含量の多い混合組成から製作したものと同
じ状態となり、これが本発明の効果を発現する理由であ
る。
When a mixed powder press molded body of titanium powder and aluminum powder that has been nitrided in advance is sintered, the nitrogen in the titanium acts as a barrier against the diffusion of the aluminum component and suppresses the diffusion, so that alloying does not occur to the inside of the titanium particles. First, only the surfaces of the titanium particles are alloyed, and the composition becomes an alloy composition containing more aluminum than the mixed composition. Because only the particle surface is alloyed, the number of aluminum and titanium particles is unbalanced, and even in the case of a mixed composition with a high titanium content, which is difficult to mix uniformly, the alloy layer formed on the surface may be extremely excessive in titanium or insufficient in aluminum. It is not a composition. In other words, even if a porous sintered body is manufactured from a mixed composition with a high titanium content, the surface alloy composition of the particles constituting the porous sintered body, which determines the characteristics of an electrolytic capacitor, is different from a mixed composition with a low titanium content and a high aluminum content. The state is the same as that produced from scratch, and this is the reason why the effects of the present invention are achieved.

〔実施例〕 次に、本発明の実施例について図面を参照して説明する
[Example] Next, an example of the present invention will be described with reference to the drawings.

第1図は本発明の電解コンデンサ用陽(へ体の製造方法
の一実施例を示す焼結後の多孔質体を形成するアルミニ
ウムーチタン含金粒子の断面図である。
FIG. 1 is a sectional view of aluminum-titanium-containing metal particles forming a porous body after sintering, showing an embodiment of the method for manufacturing a positive body for an electrolytic capacitor of the present invention.

この多孔質体の混合組成は、第2図の従来例と同じ30
原子%アルミニウムのものとした。図中、1は50原子
%程度アルミニウム程度の合金組成を有する合金層、2
はアルミニウム成分を殆ど含まない窒化したチタン層、
3は空孔部である。
The mixed composition of this porous body is the same as that of the conventional example shown in Fig. 2.
It was made of atomic percent aluminum. In the figure, 1 is an alloy layer having an alloy composition of about 50 atomic % aluminum, 2
is a nitrided titanium layer containing almost no aluminum component,
3 is a hole.

窒素ガス中800℃で20分間窒化処理したチタン粉末
およびアルミニウム粉末を使用し、表1に示すような5
原子%間隔で20〜55原子%アルミニウム混合組成の
混合粉末8水準を製作した。
Using titanium powder and aluminum powder that had been nitrided at 800°C for 20 minutes in nitrogen gas,
Eight levels of mixed powders with mixed compositions of 20 to 55 atom % aluminum were prepared at atomic % intervals.

次に、全水準共2.5蘭φX2allのプレス成形を行
い、続いて1 X 10−−110の真空中1050℃
で焼結して、アルミニウムーチタン合金の多孔質焼結体
とした。各水準の焼結体200個をリン酸水溶液中80
Vの陽極酸化を行い、120tlzでの静電容fl(C
+2o)(30%H2S Oa中で測定)および16V
印加時の漏れ電流(LC)を測定した。また、単位体積
当たりの静電容@(CVチ/VOI )を計算した。測
定試料数はLCについては全数、C+2o 。
Next, press molding of 2.5 orchid φX2all was performed for all levels, followed by 1050°C in a vacuum of 1 x 10--110
The material was sintered to form a porous sintered body of aluminum-titanium alloy. 200 sintered bodies of each level were placed in a phosphoric acid aqueous solution at 80%
Perform anodization of V, and the capacitance fl(C
+2o) (measured in 30% H2S Oa) and 16V
Leakage current (LC) during application was measured. In addition, the capacitance per unit volume (CV/VOI) was calculated. The number of measurement samples is all for LC, C+2o.

Cvチ/volについては各水準20個づつとした。Regarding Cvchi/vol, there were 20 pieces for each level.

(qられたデータを表1に示す。各項JI、ゞV均値を
示した。
(The calculated data are shown in Table 1. The average values of JI and V for each term are shown.

次に、各水準共Cl2o測定に使用した20個を除く1
80個すべてについて、固体電解コンアン1ノー’El
造に適用される通常の方法、すなわち硝酸マンガンの含
浸、熱分解による二酸化マンガン()In02)陰極付
を行い、さらにグラファイト、銀ペーストイ]、半田デ
ィツプ、樹脂外装を行って固体電解コンデンサとした。
Next, for each level, 1 except for the 20 used for Cl2o measurement.
For all 80 pieces, solid electrolyte con- 1 no'El
A solid electrolytic capacitor was obtained by the usual methods applied to manufacturing, namely, impregnation with manganese nitrate, cathoding of manganese dioxide (In02) by thermal decomposition, followed by coating with graphite, silver paste, solder dipping, and resin sheathing.

固体化後については、Cl2O,tanδ120 、 
d3 cJ:びLCを測定し、陽極酸化後と同様にその
測定データ(平均値)を表1中に示した。
After solidification, Cl2O, tan δ120,
d3 cJ: and LC were measured, and the measured data (average values) are shown in Table 1 in the same manner as after anodization.

なお、比較のため、従来例として窒化処■lI!すしの
チタン粉末を使用した場合についても混合組成8水準の
多孔質焼結体を製作し、全く同じ方法で陽極酸化および
固体化を行い、それらの測定データを併せて表1中く下
段)に示した。
For comparison, nitriding treatment ■lI! is used as a conventional example. In the case of using sushi titanium powder, porous sintered bodies with 8 levels of mixed composition were fabricated, anodized and solidified using exactly the same method, and the measurement data is also shown in Table 1 (lower part of the middle row). Indicated.

表1から次のことがわかる。LCは、陽極酸化後、固体
化後共従来技術の場合が全体に値が太きく 、CVf/
vol値の大きいチタン含最の多い組成となる程値が大
きくなっているのに対し、本実施例の場合は、チタンに
対し50〜25原子%アル゛ミニウムの混合組成の範囲
で小さい値を示し、安定している。固体化後のtar+
6+20も従来技術の場合が50〜25原子%アルミニ
ウムの混合組成範囲で4〜25%と大きい値を示してい
るのに対し、本実施例の場合は3〜5%と安定した小さ
い値を示している。また、固体化後のCmと陽極酸化後
のCI20の比で容最被覆率を定義すると、従来技術の
場合は、50〜25原子の混合組成範囲で92→40%
とチタン金色の多い組成側で大幅に被覆率が低下してい
る。これに対し、本実施例の場合は、同混合組成範囲で
、95〜90%と安定した大きい被覆率を示している。
The following can be seen from Table 1. LC values are generally larger in the case of conventional technology both after anodization and after solidification, and CVf/
The value increases as the vol value increases and the titanium-containing composition increases, but in the case of this example, the value decreases within the range of a mixed composition of 50 to 25 at% aluminum to titanium. and stable. tar+ after solidification
6+20 also shows a large value of 4 to 25% in the mixed composition range of 50 to 25 atom% aluminum in the case of the conventional technology, whereas in the case of this example it shows a stable small value of 3 to 5%. ing. Furthermore, when the maximum coverage is defined as the ratio of Cm after solidification to CI20 after anodization, in the case of the conventional technology, it is 92 → 40% in the mixed composition range of 50 to 25 atoms.
The coverage rate is significantly lower on the side where titanium has more golden color. On the other hand, in the case of this example, a stable high coverage of 95 to 90% is shown within the same mixed composition range.

単位体積当たりの静電容聞Cvヂ/VOIも従来技術に
比べ本実施例の方が全体に大きく、しかもその最大値が
よりチタン自損の多い混合組成側まで伸びている。
The electrostatic capacitance Cv/VOI per unit volume is also larger in this embodiment as a whole than in the prior art, and its maximum value extends to the mixed composition side where titanium self-loss is higher.

以上説明したように本実施例によれば、小型大容量性に
優れた(Cvチ/VOI大〉チタン含taの多い混合組
成(50〜25原子%アルミニウム)を適用して製作し
たアルミニウムーチタン含金 Mコンデンサの電気的諸
特性を大幅に改善することができ、より優れた電解コン
デンサを実用に供し1qることか可能となった。なお、
混合組成が20原子%アルミニウムになると、本実施例
によっても電気特性が不良となり、同55原子%アルミ
ニウムでは従来技術によるものと特性上の差が殆どなく
なるので、窒化処理したチタン粉末とアルミニウム粉末
の混合組成は、25から50原子%アルミニウムの範囲
とするのが好ましい。
As explained above, according to this example, aluminum-titanium was manufactured by applying a mixed composition with a high titanium content (50 to 25 at% aluminum), which was excellent in small size and large capacity (Cv chi/VOI large). The electrical characteristics of the metal-containing M capacitor were significantly improved, and it became possible to put into practical use an even better electrolytic capacitor.
When the mixed composition becomes 20 atomic% aluminum, the electrical properties of this example also become poor, and when the mixture composition is 55 atomic% aluminum, there is almost no difference in characteristics from that of the conventional technology. Preferably, the mixture composition ranges from 25 to 50 atomic percent aluminum.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、予め窒化処理したチタン
粉末もしくは予め窒化処理した水素化チタン粉末とアル
ミニウム粉末との混合粉末をプレス成形、焼結して得ら
れるアルミニウムーチタン合金の多孔質焼結体を利用す
ることにより、従来小型大容量性には優れているが電解
コンデンサとしての電気的緒特性に問題があって利用で
きなかった25〜50原子%アルミニウムの混合組成に
よるチタン−アルミニウム合金多孔質陽極体を小型大容
量でかつ電気的緒特性の優れた電解コンデンサとするこ
とができる効果がある。
As explained above, the present invention is a porous sintered aluminum-titanium alloy obtained by press-molding and sintering pre-nitrided titanium powder or a mixed powder of pre-nitrided titanium hydride powder and aluminum powder. By using a porous titanium-aluminum alloy with a mixed composition of 25 to 50 atomic percent aluminum, which has conventionally been excellent in small size and large capacity, but could not be used due to problems with electrical characteristics as an electrolytic capacitor. This has the effect that the positive electrode body can be made into an electrolytic capacitor that is small in size, has a large capacity, and has excellent electrical characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電解コンデンサ用陽極体の製造方法の
一実施例を示す多孔質焼結体を形成するアルミニウムー
チタン合金粒子の断面図、第2図は従来技術によって得
た多孔質焼結体を形成する同合金粒子の断面図である。 1・・・チタン−50原子%アルミニウム程度の合金組
成を有する合金層、 2・・・アルミニウム成分を殆ど含まないチタン層3・
・・空孔、 4・・・チタン−30原子%アルミニウム程度の合金組
成を有する合金部、 5・・・チタン−30原子%アルミニウム以下の合金組
成を有する合金部(組成ムラ部;アルミニウム不足)。
FIG. 1 is a cross-sectional view of aluminum-titanium alloy particles forming a porous sintered body showing an example of the method of manufacturing an anode body for an electrolytic capacitor of the present invention, and FIG. 2 is a cross-sectional view of the porous sintered body obtained by the conventional technique. FIG. 3 is a cross-sectional view of the same alloy particles forming a compact. 1... Alloy layer having an alloy composition of titanium-50 atomic % aluminum, 2... Titanium layer containing almost no aluminum component 3...
...Vacancy, 4...Alloy part having an alloy composition of approximately titanium-30 atomic% aluminum, 5...Alloy part having an alloy composition of titanium-30 atomic% aluminum or less (composition uneven part; aluminum deficiency) .

Claims (1)

【特許請求の範囲】 1、予め窒化処理されたチタン粉末とアルミニウム粉末
の混合粉末をプレス成形後焼結する電解コンデンサ用陽
極体の製造方法。 2、前記窒化処理したチタン粉末とアルミニウム粉末の
混合組成をチタンに対してアルミニウムが25から50
原子%の範囲とする特許請求の範囲第1項記載の電解コ
ンデンサ用陽極体の製造方法。
[Claims] 1. A method for producing an anode body for an electrolytic capacitor, in which a mixed powder of titanium powder and aluminum powder, which has been nitrided in advance, is press-molded and then sintered. 2. The mixed composition of the nitrided titanium powder and aluminum powder is 25 to 50% aluminum to titanium.
A method for manufacturing an anode body for an electrolytic capacitor according to claim 1, wherein the content is in the atomic % range.
JP5060987A 1987-03-04 1987-03-04 Manufacture of electrolytic capacitor anode Pending JPS63216328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5060987A JPS63216328A (en) 1987-03-04 1987-03-04 Manufacture of electrolytic capacitor anode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5060987A JPS63216328A (en) 1987-03-04 1987-03-04 Manufacture of electrolytic capacitor anode

Publications (1)

Publication Number Publication Date
JPS63216328A true JPS63216328A (en) 1988-09-08

Family

ID=12863710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5060987A Pending JPS63216328A (en) 1987-03-04 1987-03-04 Manufacture of electrolytic capacitor anode

Country Status (1)

Country Link
JP (1) JPS63216328A (en)

Similar Documents

Publication Publication Date Title
US9579725B2 (en) Method for producing metal powders
US8597376B2 (en) Method of producing porous valve metal thin film and thin film produced thereby
US4604260A (en) Method of producing electrolytic capacitor with Al-Ti anode body
US4517727A (en) Method of producing a porous body for electrolytic capacitor having a lead wire
CN100354997C (en) Method for producing an electrode for capacitors and for producing a capacitor
US3325698A (en) Electrical capacitor electrode and method of making the same
US4468719A (en) Porous body for a solid electrolytic capacitor and process for producing the same
JPS63216328A (en) Manufacture of electrolytic capacitor anode
US4214293A (en) Electrolytic capacitors
JP2004508726A (en) Electrode and capacitor with said electrode
US7876548B2 (en) Niobium solid electrolytic capacitor and its production method
JP2885101B2 (en) Manufacturing method of electrolytic capacitor
JP2004018966A (en) Method for forming titanium oxide coating film and titanium electrolytic capacitor
US3217381A (en) Method of capacitor manufacture
JP2008205190A (en) Solid electrolytic capacitor and its manufacturing method
JPH0553053B2 (en)
JPH0553052B2 (en)
JPS6053454B2 (en) Manufacturing method of sintered capacitor element
JPH06267803A (en) Electrode material for capacitor
CN116844869A (en) Heat treatment method for reducing equivalent series resistance of solid electrolyte tantalum capacitor
US20060211193A1 (en) Capacitor element for solid electrolytic capacitor and method of making the same
JPS6257090B2 (en)
JPS6232606B2 (en)
JP2008288561A (en) Niobium solid electrolytic capacitor, and manufacturing method thereof
GB2140031A (en) Anodic oxidation of tantalum