JPS6232606B2 - - Google Patents

Info

Publication number
JPS6232606B2
JPS6232606B2 JP23157582A JP23157582A JPS6232606B2 JP S6232606 B2 JPS6232606 B2 JP S6232606B2 JP 23157582 A JP23157582 A JP 23157582A JP 23157582 A JP23157582 A JP 23157582A JP S6232606 B2 JPS6232606 B2 JP S6232606B2
Authority
JP
Japan
Prior art keywords
powder
sintered body
heat
porous sintered
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23157582A
Other languages
Japanese (ja)
Other versions
JPS59117212A (en
Inventor
Tetsuo Suzuki
Takashi Kizaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP23157582A priority Critical patent/JPS59117212A/en
Publication of JPS59117212A publication Critical patent/JPS59117212A/en
Publication of JPS6232606B2 publication Critical patent/JPS6232606B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電解コンデンサ用多孔質焼結体の製造
方法に関する。くわしくは、アルミニウムとチタ
ンの合金より成り、ニオブ線を埋込みリード線と
する電解コンデンサ用多孔質焼結体の製造方法に
関する。 従来、アルミニウムとチタンの合金より成る電
解コンデンサ用多孔質焼結体は主に、アルミニウ
ムとチタンの混合粉末を加圧成形して焼結する方
法がとられて来た。この方法は、チタンに対する
アルミニウムの拡散速度が極めて速いことを利用
したものであり、溶融したアルミニウムかつ速や
かに、かつ、チタン濃度の高い部分から選択的に
拡散して行き、表面組成の均一度の高い多孔質焼
結体を容易に得ることができる。しかし、この方
法では加圧成形体の熱処理を行うと、アルミニウ
ムの溶融、合金化初期の見かけのかさの膨張、つ
づいて起きる合金化進行による収縮さらに焼結に
よる収縮の過程を経るが、全過程を通じ加圧成形
体に対し、焼結体は膨張する傾向にある。これ
は、アルミニウムとチタンの合金に独特のきわめ
て特徴的な焼結過程であり、種々の利点を有して
いる。しかし、陽極リード線を埋込んだ焼結体を
作製しようとした場合には、加圧成形体に対し、
焼結体が収縮する傾向にある方が好ましい。 本発明は、かかる性質を得ようとしてなされた
ものである。良好な焼結性を有し、しかも焼結過
程を通じ、焼結体寸法が収縮し、焼結体材料と相
互作用は小さいが比較的安価なニオブ線を埋込み
リード線とすることができる、電解コンデンサ用
多孔質焼結体の製造方法を提供するものである。 本発明によれば、チタン粉末または水素化チタ
ン粉末またはこれらの混合物にアルミニウム粉末
を加えた混合粉末を真空中あるいは不活性ガス中
で、500〜900℃の温度で熱処理したのち粉砕する
工程と、粉砕して得られた粉末をニオブ線を植立
させて加圧成形し、再度真空中あるいは不活性ガ
ス中で熱処理して焼結する工程とを含むことを特
徴とする電解コンデンサ用多孔質焼結体の製造方
法が得られる。 以下に実施例を示し、詳細に説明する。 実施例 1 アルミニウム粉末40wt%、水素化チタン粉末
60wt%の比で混合した混合粉末を真空中、所定
の温度で30分間熱処理したのち35メツシユのふる
いを通るまで粉砕した。第1表に熱処理温度を示
す。
The present invention relates to a method for manufacturing a porous sintered body for an electrolytic capacitor. Specifically, the present invention relates to a method for manufacturing a porous sintered body for an electrolytic capacitor made of an alloy of aluminum and titanium and having a niobium wire embedded as a lead wire. Conventionally, porous sintered bodies for electrolytic capacitors made of an alloy of aluminum and titanium have mainly been produced by pressing and sintering a mixed powder of aluminum and titanium. This method takes advantage of the extremely fast diffusion rate of aluminum relative to titanium, and the molten aluminum quickly and selectively diffuses from areas with high titanium concentration, improving the uniformity of the surface composition. A highly porous sintered body can be easily obtained. However, in this method, when the press-formed body is heat-treated, the aluminum melts, the apparent bulk expands at the initial stage of alloying, then shrinks due to the progress of alloying, and then shrinks due to sintering. The sintered body tends to expand compared to the press-formed body through the process. This is a very specific sintering process unique to aluminum and titanium alloys and has various advantages. However, when trying to produce a sintered body with an anode lead wire embedded in it,
It is preferable that the sintered body tends to shrink. The present invention was made in an attempt to obtain such properties. Electrolytic wire has good sinterability, and the sintered body size shrinks during the sintering process, and relatively inexpensive niobium wire can be used as the embedded lead wire, although it has little interaction with the sintered body material. A method of manufacturing a porous sintered body for a capacitor is provided. According to the present invention, a step of heat-treating a mixed powder obtained by adding aluminum powder to titanium powder, titanium hydride powder, or a mixture thereof at a temperature of 500 to 900° C. in a vacuum or an inert gas, and then pulverizing it; A porous sintered material for an electrolytic capacitor, which comprises the steps of: embedding niobium wire in the powder obtained by pulverization, press-forming the powder, and heat-treating and sintering it again in a vacuum or in an inert gas. A method for producing a body is obtained. Examples will be shown below and explained in detail. Example 1 40wt% aluminum powder, titanium hydride powder
The mixed powder mixed at a ratio of 60 wt% was heat treated in a vacuum at a predetermined temperature for 30 minutes, and then ground until it passed through a 35 mesh sieve. Table 1 shows the heat treatment temperatures.

【表】 粉砕して得られた粉末20mgをニオブ線を植立さ
せて加圧成形し、再度、真空中1100℃で1時間真
空熱処理し多孔質焼結体を得た。得られた多孔質
焼結体の体積Vsと、熱処理前の加圧成形体の体
積Vpの比Vs/Vpを混合粉末の熱処理温度と相
関させて第1図に示した。第1図に見られるよう
に、450℃以下で熱処理した試料および熱処理を
行わなかつた試料は加圧成形後の熱処理で得られ
る多孔質焼結体の体積Vsが加圧成形体の体積Vp
より大きく、熱処理前後で体積が膨張している。
そのため、混合粉末の熱処理をしなかつたか、あ
るいは450℃以下で熱処理した試料はすべてニオ
ブ線と焼結体との接続強度に欠けていた。この方
法は焼結体材料との相互作用の小さいリード線を
埋込んだ多孔質焼結体を得るには不利である。こ
れに対して、混合粉末の熱処理温度が500℃を越
すと、アルミニウムとチタンの合金化が始まり、
合金化初期のみかけのかさの膨張が生じる。この
時点で粉砕し、粉砕粉を加圧成形、真空熱処理す
ると、加圧成形体の膨張する要素はなくなつてい
る。したがつて、加圧成形体の熱処理を行うこと
により、合金化と焼結が進行し、加圧成形体の体
積は一方的に収縮する。混合粉末の熱処理温度を
500℃からさらに上げると、加圧成形前に合金
化、焼結が進行してしまい、加圧成形体作製後の
熱処理での収縮度合いが小さくなり、リード線の
強度が保てなくなる。混合粉末の熱処理温度は、
体積の収縮度合が10%以上である900℃程度まで
が好ましい。この範囲ではニオブ線と焼結体との
接触強度はいずれも2Kg以上ある。 ここで得られたリード強度の充分な試料番号
104から108までに対応する多孔質焼結体を0.005
%リン酸水溶液で100Vで陽極酸化し、静電容量
と漏れ電流を測定した。静電容量は30%リン酸水
溶液中で120Hzの周波数で、漏れ電流は0.005%リ
ン酸水溶液中で20V印加1分後に、それぞれ測定
した。容量は処理方法によらずすべての試料が
3.3±0.2μFに入つており、誤差範囲内で等しい
値であつた。漏れ電流もすべての試料で100nA以
下であり、本実施例の範囲内では処理方法による
陽極酸化特性の優劣はつけられなかつた。 実施例 2 実施例1と全く同様にアルミニウムと水素化チ
タンの混合粉末を熱処理、粉砕、加圧成形した
後、1200℃で1時間真空熱処理し、多孔質焼結体
を得た。得られた多孔質焼結体の体積Vsと熱処
理前の加圧成形体の体積Vpの比Vs/Vpを混合
粉末の熱処理温度と対応させて第2図に示した。
実施例1に比較して、加圧成形体の熱処理温度を
上げたため、焼結が進み、焼結体の大きさは、第
2図に示した様に、第1図に示した実施例1の場
合より収縮度合いが大きくなつている。しかし、
傾向は実施例1と全く同様に、混合粉末を500℃
から900℃で熱処理をすることにより、焼結過程
で体積が収縮し、ニオブのリード線と焼結体との
接続強度の充分な多孔質焼結体が得られた。 実施例 3 アルミニウム粉末50wt%、水素化チタン粉末
50wt%の比で混合した混合粉末を実施例2と同
様に真空中、所定の温度で30分間熱処理したの
ち、35メツシユのふるいを通るまで粉砕した。 実施例2と同様に、粉砕して得られた粉末20mg
をニオブ線を植立させて加圧成形し、再度、真空
中1200℃で1時間真空熱処理し、多孔質焼結体を
得た。得られた多孔質焼結体の体積Vsと熱処理
前の加圧成形体の体積Vpの比Vs/Vpを混合粉
末の熱処理温度と相関させて第3図に示した。混
合粉末におけるアルミニウム粉末の混合比が増す
と、アルミニウムの溶融時における体積膨張が大
きくなる。したがつて、第3図に見られるよう
に、450℃以下での熱処理を行つた試料および熱
処理を行なわなかつた試料のVs/Vpは、アルミ
ニウム組成比の小さい実施例2、第2図の場合よ
りも大きくなる傾向にあるが、本発明の500℃か
ら900℃で熱処理を行つた試料のVs/Vpは0.9以
下であり、ニオブ線と焼結体との接続強度の充分
な多孔質焼結体が得られた。 実施例 4 アルミニウム粉末50wt%、水素化チタン粉末
30wt%、チタン粉末20wt%の比で混合した混合
粉末を、実施例3と同様に真空中、所定の温度で
30分間熱処理したのち、35メツシユのふるいを通
るまで粉砕した。 実施例3と同様に、粉砕して得られた粉末20mg
をニオブ線を植立させて加圧成形し、再度真空中
1200℃で1時間真空熱処理し、多孔質焼結体を得
た。得られた多孔質焼結体の体積Vsと熱処理前
の加圧成形体の体積Vpの比Vs/Vpは、第4図
に示すように実施例3の第3図と、熱処理なしの
試料をのぞき、ほぼ一致しており、チタン粉末を
用いても本発明の効果があることが判明した。 以上のように、本発明により、加圧成形後の熱
処理温度、アルミニウムと水素化チタン粉の混合
比、によらず以下の効果が発現する。 (i) 焼結過程で加圧成形体が縮む傾向にあるた
め、焼結体の埋込リード線として、焼結体材料
との相互作用が小さい安価なニオブ線が利用で
きる。 (ii) 多孔質焼結体を製造するに当り、焼結体に要
求される密度よりも低い密度で粉末の加圧成形
ができる。
[Table] 20 mg of the powder obtained by pulverization was pressure-molded with niobium wire planted thereon, and then vacuum heat treated again at 1100° C. for 1 hour in a vacuum to obtain a porous sintered body. The ratio V s /V p of the volume V s of the obtained porous sintered body and the volume V p of the pressed compact before heat treatment is shown in FIG. 1 in correlation with the heat treatment temperature of the mixed powder. As seen in Figure 1, for samples heat-treated at 450°C or less and samples that were not heat-treated, the volume V s of the porous sintered body obtained by heat treatment after pressure molding is equal to the volume V s of the pressure-formed body. p
It is larger and its volume expands before and after heat treatment.
Therefore, all the samples in which the mixed powder was not heat-treated or were heat-treated at 450°C or lower lacked the connection strength between the niobium wire and the sintered body. This method is disadvantageous in obtaining a porous sintered body embedded with lead wires that have little interaction with the sintered body material. On the other hand, when the heat treatment temperature of the mixed powder exceeds 500℃, alloying of aluminum and titanium begins.
Apparent bulk expansion occurs at the initial stage of alloying. At this point, when the powder is pulverized and the pulverized powder is subjected to pressure molding and vacuum heat treatment, the expansible element of the press-molded product has disappeared. Therefore, by heat-treating the press-formed body, alloying and sintering progress, and the volume of the press-formed body unilaterally shrinks. Heat treatment temperature of mixed powder
If the temperature is increased further from 500°C, alloying and sintering will proceed before pressure forming, and the degree of shrinkage during heat treatment after producing the press-formed body will become smaller, making it impossible to maintain the strength of the lead wire. The heat treatment temperature of mixed powder is
The temperature is preferably up to about 900°C, at which the degree of volumetric shrinkage is 10% or more. In this range, the contact strength between the niobium wire and the sintered body is 2 kg or more. Sample number with sufficient lead strength obtained here
0.005 porous sintered body corresponding to 104 to 108
% phosphoric acid aqueous solution at 100 V, and the capacitance and leakage current were measured. The capacitance was measured in a 30% phosphoric acid aqueous solution at a frequency of 120 Hz, and the leakage current was measured in a 0.005% phosphoric acid aqueous solution after 1 minute of applying 20V. The capacity is the same for all samples regardless of processing method.
The values were within the range of 3.3±0.2μF, which was equal within the error range. The leakage current was also less than 100 nA in all samples, and within the scope of this example, the anodic oxidation characteristics were not superior or inferior depending on the treatment method. Example 2 In exactly the same manner as in Example 1, a mixed powder of aluminum and titanium hydride was heat treated, pulverized and pressure molded, and then vacuum heat treated at 1200° C. for 1 hour to obtain a porous sintered body. The ratio V s /V p of the volume V s of the obtained porous sintered body to the volume V p of the pressed compact before heat treatment is shown in FIG. 2 in correspondence with the heat treatment temperature of the mixed powder.
Compared to Example 1, the heat treatment temperature of the press-formed body was increased, so that sintering progressed, and the size of the sintered body, as shown in Figure 2, was the same as that of Example 1 shown in Figure 1. The degree of contraction is greater than in the case of . but,
The trend is exactly the same as in Example 1, and the mixed powder is heated to 500℃.
By performing heat treatment at 900°C, the volume contracted during the sintering process, and a porous sintered body with sufficient connection strength between the niobium lead wire and the sintered body was obtained. Example 3 50wt% aluminum powder, titanium hydride powder
The mixed powder mixed at a ratio of 50 wt% was heat treated in vacuum at a predetermined temperature for 30 minutes in the same manner as in Example 2, and then ground until it passed through a 35 mesh sieve. 20 mg of powder obtained by crushing in the same manner as in Example 2
was pressure-molded with niobium wire planted thereon, and then vacuum heat treated again at 1200°C for 1 hour in a vacuum to obtain a porous sintered body. The ratio V s /V p of the volume V s of the obtained porous sintered body to the volume V p of the pressed compact before heat treatment is shown in FIG. 3 in correlation with the heat treatment temperature of the mixed powder. As the mixing ratio of aluminum powder in the mixed powder increases, the volumetric expansion of aluminum during melting increases. Therefore, as seen in FIG. 3, the V s /V p of the sample heat-treated at 450°C or less and the sample that was not heat-treated is lower than that of Example 2, which has a small aluminum composition ratio, and the sample that was not heat-treated. However, V s /V p of the samples heat-treated at 500 to 900 °C according to the present invention is 0.9 or less, which indicates that the connection strength between the niobium wire and the sintered body is sufficient. A porous sintered body was obtained. Example 4 50wt% aluminum powder, titanium hydride powder
A mixed powder of 30wt% titanium powder and 20wt% titanium powder was mixed in a vacuum at a predetermined temperature in the same manner as in Example 3.
After heat treatment for 30 minutes, it was ground until it passed through a 35 mesh sieve. 20 mg of powder obtained by crushing in the same manner as in Example 3
embedded with niobium wire, pressure-formed, and then placed in a vacuum again.
Vacuum heat treatment was performed at 1200°C for 1 hour to obtain a porous sintered body. The ratio V s /V p of the volume V s of the obtained porous sintered body to the volume V p of the press-formed body before heat treatment is as shown in FIG. With the exception of the sample without titanium powder, the results were almost identical, indicating that the present invention is effective even when titanium powder is used. As described above, the present invention exhibits the following effects regardless of the heat treatment temperature after pressure molding or the mixing ratio of aluminum and titanium hydride powder. (i) Since the pressed body tends to shrink during the sintering process, an inexpensive niobium wire that has little interaction with the sintered body material can be used as an embedded lead wire in the sintered body. (ii) In producing a porous sintered body, powder can be press-molded at a density lower than that required for the sintered body.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図、第4図は、それぞれ
実施例1、実施例2、実施例3、実施例4に示し
た多孔質焼結体の体積Vsと加圧成形体の体積Vp
の比Vs/Vpを混合粉末の熱処理温度と相関させ
た特性図である。
FIG. 1, FIG. 2, FIG. 3, and FIG. 4 show the volume V s of the porous sintered body and the pressed body shown in Example 1, Example 2, Example 3, and Example 4, respectively. The volume of V p
It is a characteristic diagram which correlates the ratio V s /V p with the heat treatment temperature of the mixed powder.

Claims (1)

【特許請求の範囲】 1 チタン粉末または水素化チタン粉末またはこ
れらの混合物にアルミニウム粉末を加えた混合粉
末を、真空中あるいは不活性ガス中で、500〜900
℃の温度で熱処理したのち粉砕する工程と、粉砕
して得られた粉末を加圧成形し、再度真空中ある
いは不活性ガス中で熱処理して焼結する工程とを
含むことを特徴とする電解コンデンサ用多孔質焼
結体の製造方法。 2 前記粉砕して得られた粉末を、ニオブ線を植
立させて加圧成形することを特徴とする特許請求
の範囲第1項記載の電解コンデンサ用多孔質焼結
体の製造方法。
[Claims] 1. A mixed powder obtained by adding aluminum powder to titanium powder, titanium hydride powder, or a mixture thereof is heated to a temperature of 500 to 900 in vacuum or in an inert gas.
Electrolysis characterized by comprising a step of heat-treating at a temperature of °C and then pulverizing, and a step of press-molding the powder obtained by pulverization, heat-treating it again in vacuum or inert gas, and sintering it. A method for manufacturing a porous sintered body for capacitors. 2. The method of manufacturing a porous sintered body for an electrolytic capacitor according to claim 1, wherein the powder obtained by the pulverization is pressure-molded with niobium wire planted therein.
JP23157582A 1982-12-24 1982-12-24 Method of producing porous sintered material for electrolytic condenser Granted JPS59117212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23157582A JPS59117212A (en) 1982-12-24 1982-12-24 Method of producing porous sintered material for electrolytic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23157582A JPS59117212A (en) 1982-12-24 1982-12-24 Method of producing porous sintered material for electrolytic condenser

Publications (2)

Publication Number Publication Date
JPS59117212A JPS59117212A (en) 1984-07-06
JPS6232606B2 true JPS6232606B2 (en) 1987-07-15

Family

ID=16925662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23157582A Granted JPS59117212A (en) 1982-12-24 1982-12-24 Method of producing porous sintered material for electrolytic condenser

Country Status (1)

Country Link
JP (1) JPS59117212A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS639111A (en) * 1986-06-30 1988-01-14 日本電気株式会社 Electrolytic capacitor
JPH086565B2 (en) * 1991-02-08 1996-01-24 住友軽金属工業株式会社 Intake / exhaust valve and its manufacturing method

Also Published As

Publication number Publication date
JPS59117212A (en) 1984-07-06

Similar Documents

Publication Publication Date Title
JP4261105B2 (en) Nitride valve metal and manufacturing method thereof
US8562765B2 (en) Process for heat treating metal powder and products made from the same
EA002736B1 (en) Low oxygen refractory metal powder for powder metallurgy
JPH0897095A (en) Tantalum powder and electrolytic capacitor employing it
EP1275125B1 (en) Niobium sintered body, production method therefor, and capacitor using the same
US4604260A (en) Method of producing electrolytic capacitor with Al-Ti anode body
US3144328A (en) Method of producing porous sintered tantalum anodes
US3818581A (en) Capacitor electrode
US20040125537A1 (en) Niobium powder for capacitor, sintered body using the powder and capacitor using the same
US3325698A (en) Electrical capacitor electrode and method of making the same
JPS6232606B2 (en)
EP0038149A2 (en) Improvements in porous bodies for solid electrolytic capacitors and processes for producing the same
JPS6053454B2 (en) Manufacturing method of sintered capacitor element
JP2833383B2 (en) Method for manufacturing solid electrolytic capacitor
US3430108A (en) Method for the manufacture of tantalum powder for condenser purposes
US6593532B1 (en) Electrode lead wires
JPH11224833A (en) Manufacture of porous anode of solid electrolytic capacitor
RU2033899C1 (en) Process of fabricating volume-porous anodes for electrolytic and solid-electrolyte capacitors
JP2003147402A (en) Niobium powder
SU1101913A2 (en) Process for manufacturing bulk-porous anodes
JPH05140613A (en) Production of tungsten sintered body
JPH04218608A (en) High volume earth-acid metal powder, preparation thereof and use thereof
JP2001307963A (en) Niobium for capacitor, sintered body, and capacitor
JP2004238670A (en) Electrode material for capacitor, its manufacturing method, and electrolytic capacitor
JPH04237110A (en) Manufacture of anode member for solid electrolytic capacitor