JPS63216308A - Alloy powder for permanent magnet - Google Patents

Alloy powder for permanent magnet

Info

Publication number
JPS63216308A
JPS63216308A JP62050583A JP5058387A JPS63216308A JP S63216308 A JPS63216308 A JP S63216308A JP 62050583 A JP62050583 A JP 62050583A JP 5058387 A JP5058387 A JP 5058387A JP S63216308 A JPS63216308 A JP S63216308A
Authority
JP
Japan
Prior art keywords
powder
alloy powder
particle size
atomic
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62050583A
Other languages
Japanese (ja)
Inventor
Osamu Kobayashi
理 小林
Koji Akioka
宏治 秋岡
Tatsuya Shimoda
達也 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP62050583A priority Critical patent/JPS63216308A/en
Publication of JPS63216308A publication Critical patent/JPS63216308A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/066Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder obtained by liquid dynamic compaction

Abstract

PURPOSE:To offer low-cost and high-performance alloy powder for a magnet, composed of a rare-earth element, iron and boron, which can be used both for sintering and for resin bonding by a method wherein the alloy powder which has been finely pulverized by a gas atomizing method are classified and they are then annealed while their heat-treatment condition is changed according to the range of their particle size. CONSTITUTION:Alloy powder for a permanent magnet by this invention are composed of 8-30 atomic % of R (R contains at least more than one rare-earth element including Y), 2-28 atomic % of B, less than 50 atomic % of Co and less than 15 atomic % of Mo; their remaining part is composed of Fe. Because the alloy powder is produced by using a gas atomizing method, their particle sizes are distributed widely. The powder of a big particle size whose particles are constituted by a crystal phase and where an amorphous phase is hardly detected are annealed at a high temperature and for long hours such as at 1000 deg.C and for 24 hours so that their coercive force can be increased. The powder of a small particle size which contains the amorphous phase are annealed at a low temperature and for short hours such as at 700 deg.C and for 10 minutes so that their high coercive force can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、希土類−鉄一ポロン化合物をペースとした永
久磁石用合金粉末に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an alloy powder for permanent magnets based on a rare earth-iron-poron compound.

〔従来の技術〕[Conventional technology]

従来、希土類−鉄−ボロン系磁石の製造に用いられる合
金粉末としては、l¥i公昭61−54242に示され
る様な焼結用忙合金インゴットを粉砕したもの、ま几は
特開昭59−64759に示される様にメルトスピニン
グ法によって得られた薄帯を粉砕したもの。そして特開
昭60−17905に示される様なガスアトマイズ法に
よって得られる粉末などが知られていた。ま几、上記の
様な粉末に対して磁気性能を高めるため釦、一様な熱処
理を施したものも知られていた。
Conventionally, alloy powders used in the production of rare earth-iron-boron magnets include crushed alloy ingots for sintering as shown in Japanese Patent Application Laid-Open No. 1987-54242. 64759, obtained by pulverizing a ribbon obtained by melt spinning. Powders obtained by a gas atomization method as disclosed in Japanese Patent Application Laid-Open No. 60-17905 were known. It was also known that powders such as those mentioned above were subjected to uniform heat treatment in order to improve their magnetic performance.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上述し次従来の技術による希土類−鉄−
ボロン系磁石用合金粉末は次のような欠点を有している
。まず1合金インゴゲトを粉砕した粉末は、焼結磁石用
としては有効であるが、粉末状類での保磁力はI TK
 Os程度であり樹脂ポンドω石川粉末として使えない
。また、メルトスピニング法を用いる場合には焼結磁石
、樹脂ポンド磁石の双方に有効な粉末が得られるが、こ
の粉末は本質的に等方性でありその景大エネルギー積は
10MGOg穆度(樹脂ボンド磁石)と希土類−鉄一ボ
ロン系磁石の性昨メリットを生かしきっているとけ言い
難いし、アトマイズ法に比べると粉砕という余計な工程
が必要となる。そして、アトマイズ法による粉末である
が、この粉末を単純に熱処理した場合に樹脂ポンド磁石
として得られる性能はメルトスピニング法による場合よ
り悪く、(BH)maw = 5 MGOg稈度であり
、高性なr化のためにはやはり粉砕工程が必要となりコ
スト高及び酸化の危険性といつ九問題を有してhる。
However, as mentioned above, the following prior art rare earth metals - iron -
Boron alloy powder for magnets has the following drawbacks. First, the powder obtained by crushing 1 alloy ingot is effective for use in sintered magnets, but the coercive force in powder form is
Since it is about Os, it cannot be used as resin pond ω Ishikawa powder. In addition, when using the melt spinning method, a powder that is effective for both sintered magnets and resin pound magnets can be obtained, but this powder is essentially isotropic and its gross energy product is 10 MGOg It is difficult to say that the advantages of rare earth-iron-bond magnets are fully utilized, and an extra step of pulverization is required compared to the atomization method. Although the powder is produced by the atomization method, when this powder is simply heat-treated, the performance obtained as a resin pound magnet is worse than that obtained by the melt spinning method, with (BH) maw = 5 MGOg culmability, and it has high properties. For oxidation, a pulverization step is required, which poses problems such as high cost and risk of oxidation.

本発明によ゛る磁石用合金はこのような問題点を解決す
るもので、その目的とするところは、低コストでしかも
高性能かつ焼結用にも樹脂ポンド用にも使用可能な希土
類−鉄一ポロン系磁石用合金粉末を提供するところにあ
る。
The magnet alloy according to the present invention solves these problems, and its purpose is to create a rare earth alloy that is low cost, has high performance, and can be used for both sintering and resin ponds. The purpose of the present invention is to provide an alloy powder for iron-poron magnets.

〔問題点を解決する゛ための手段〕[Means for solving problems]

本発明の永久磁石用合金粉末は、R(R#:tYを含む
希土類元素の少なくとも一種以上)8〜30原子係−B
(ボロン)2〜28N 子To 、 Cjo (:l 
/<ルト)50I子チ以下、Cjr(クロム)あるいは
、Mo (モリブデン)15原子チ以下、及び残部が′
FPe(鉄)及びその他の製造上不可避な不純物からな
る合金を溶解し、ガスアトマイズ法によって微粒子化さ
せた合金粉末を分級し、その粒径範囲により熱処理条件
を変えてアニールを施し比ことを特徴とする。
The alloy powder for permanent magnets of the present invention has R (R#: at least one kind of rare earth element including tY) 8 to 30 atoms -B
(Boron) 2~28N To, Cjo (:l
/<Ruto) 50 atoms or less, Cjr (chromium) or Mo (molybdenum) 15 atoms or less, and the remainder is '
It is characterized by melting an alloy consisting of FPe (iron) and other impurities unavoidable in manufacturing, classifying the alloy powder into fine particles using a gas atomization method, and annealing the alloy powder by changing heat treatment conditions depending on the particle size range. do.

以下、本発明による磁石用合金粉末の組成限定理由を説
明する。希土類元素としては、Y、Lα。
The reasons for limiting the composition of the alloy powder for magnets according to the present invention will be explained below. Rare earth elements include Y and Lα.

Oe 、 Pr 、 Nd 、 13m 、 Ru 、
 Gd 、  Tb 、 Dy 、 Ho 、 Er 
、 Tmxb、LuhZ候補として挙げられ、これらの
うち1種あるいは2種以上を組入合わせて用いる。最も
高い磁気性能はyd、prで得られ、従って実用的には
Nd 、 Pr 、 Nd −P?−合金、Nd−Pr
−Oe合金が用いられる。R−Fe −B系磁石の主相
はRPe Bである。従ってRが8原子チ未満てばもげ
や上記化合物を形成せず、α鉄と同一構造の立方晶組織
となってしまい高磁気特性Fe得られない。一方Rが3
0原子俤を越えると非磁性のRτich相が多くなり磁
気特性は著しく低下する′。
Oe, Pr, Nd, 13m, Ru,
Gd, Tb, Dy, Ho, Er
, Tmxb, and LuhZ candidates, and one or more of these may be used in combination. The highest magnetic performance is obtained with yd, pr, and therefore in practical terms Nd, Pr, Nd-P? -Alloy, Nd-Pr
-Oe alloy is used. The main phase of the R-Fe-B magnet is RPeB. Therefore, if R is less than 8 atoms, no flakes or the above-mentioned compounds are formed, and a cubic crystal structure having the same structure as α iron is formed, making it impossible to obtain Fe with high magnetic properties. On the other hand, R is 3
When the number of atoms exceeds 0, the non-magnetic Rτich phase increases and the magnetic properties are significantly deteriorated.

BけR2Fgl、 B  相を形成するための必須元素
であり、2原子チ未満では菱面体のR−Fs系溝構造な
るため高保磁力は望めない。ま7t28原子チを越える
とB richの非田性相が多くなり、残留磁束密度は
著しく低下するのでそれ以下が望ましboCoは水系磁
石のキーリ一点を上昇させるのに効果があり、それに伴
って磁石の温間特性も改善される。基本的にij Co
 #′iR,F’g、、B相の7gサイトを置換し−(
IPg Co )14 B相となるのだが、添加量が増
すに従ってR(Fg co)、というLav e s相
を形成し、て保磁力の低下をもたらす。そのために添加
量としてViso原子tsまでが適当である。
BkeR2Fgl is an essential element for forming the B phase, and if it is less than two atoms, a rhombohedral R-Fs groove structure is formed, so a high coercive force cannot be expected. If the number of atoms exceeds 7t28 atoms, the non-ferrous phase of B rich will increase and the residual magnetic flux density will drop significantly, so it is desirable that it is lower than that. The warm properties of the magnet are also improved. Basically ij Co
#'iR,F'g,, replacing the 7g site of B phase -(
However, as the amount added increases, a lav e s phase called R(Fg co) is formed, resulting in a decrease in coercive force. For this purpose, it is appropriate to add up to Viso atoms ts.

Or及び勘は枳磁力の向上に大きな効果を持つ元素であ
り、その効果け30原子チぐらいまでの添加に対して観
測される。しかしながら、crあるいはMoの添加量を
増加させることはFgの割合を減らすことを意味し、残
留磁束密Ifけ大きく減少してしまうのでその添加量と
してけ15原子係までh−適当である。
Or and Ni are elements that have a great effect on improving magnetic force, and their effects are observed when added up to about 30 atoms. However, increasing the amount of Cr or Mo added means decreasing the proportion of Fg, which greatly reduces the residual magnetic flux density If, so it is appropriate to add the amount up to 15 atoms.

本発明の永久磁石用合金粉末は、ガスアトマイズ法を用
いて作られるのでその粉末は広い粒度分布を持つている
。そしてその粒径に依存して冷却速度hζ異なりそのた
めに粉末の微細組織も堂化している。本発明の発明者ら
忙よる特願昭61−29501 に示される様にこの合
金組成においては鋳造法においても熱処理によって高保
磁力を得ることができる。そこで1粒子が結晶相で構成
され、アモルファス相がほとんど見られないような大き
な粒径の粉末に対しては、1000℃、24時間という
ような高温で長時間のアニールを施し、その保磁°力を
増加させる。また、アモルファス相を含むような小さな
粒径の粉末に対しては700℃、10分というような低
温で短時間のアニールを施して高保磁力を得る。この場
合、アモルファス相を完全に結晶化させないことが、高
保磁力のポイントになるので注意しなければならない。
Since the alloy powder for permanent magnets of the present invention is produced using a gas atomization method, the powder has a wide particle size distribution. The cooling rate hζ differs depending on the particle size, and therefore the fine structure of the powder is also complicated. As shown in Japanese Patent Application No. 61-29501 filed by the inventors of the present invention, with this alloy composition, a high coercive force can be obtained by heat treatment even in the casting method. Therefore, for powders with a large particle size where each particle is composed of a crystalline phase and almost no amorphous phase is observed, annealing is performed at a high temperature for a long time such as 1000℃ for 24 hours to improve the coercivity. Increase power. In addition, for small particle size powders that contain an amorphous phase, a high coercive force can be obtained by annealing at a low temperature of 700° C. for 10 minutes for a short time. In this case, care must be taken to ensure that the amorphous phase is not completely crystallized, as this is the key to achieving a high coercive force.

なお、上述の様に粒度別に熱処理され高保磁力を有す、
るようになっ几合金粉末はまt混合されて樹脂ボンド磁
石用合金粉末として使用されるわけである/l”−1そ
の磁石成形性の問題から最大粒径としては200μm程
変が要求されるのでガスアトマイズの条件として粒径a
:2ooμmぐらいまでになることが望重しい。焼結磁
石用合金粉末としては、粒径が小さいことh1要求され
るのでアトマイズの条件も粒径が小さい粉末ができるよ
うに調整される。
In addition, as mentioned above, it is heat-treated according to particle size and has a high coercive force.
The alloy powder is now mixed and used as alloy powder for resin-bonded magnets./l''-1 Due to the problem of magnet formability, the maximum particle size is required to vary by about 200 μm. Therefore, the particle size a is a condition for gas atomization.
: It is desirable that the thickness be up to about 20 μm. Since the alloy powder for sintered magnets is required to have a small particle size h1, the atomization conditions are also adjusted to produce powder with a small particle size.

〔実施例〕〔Example〕

以下、本発明について実施例に基づいて詳細に説明する
Hereinafter, the present invention will be described in detail based on examples.

(実施例1.) まず、所望の組成の合金をkr雰囲気中で高周波溶解し
、紗ガスによる超音速ガスアトマイズを行なって、20
0μm以下の球形粉末を作製した。この粉末を気流分級
機を用いて40μmの以上と以下の2種類に分級し、4
0μm以上の粉末に対しては1000℃×24時間の7
二−ル処虚を40μm以下の粉末に対しては700’C
X10分のアニール処理をげ中で行ない、再び混合し、
エポキシ樹脂2.5 wt係と混合し、15KOeのm
場中で成形した後に150℃で焼成して樹脂ボンド1石
と成しその磁気性能を測定した。
(Example 1.) First, an alloy with a desired composition was high-frequency melted in a KR atmosphere, and supersonic gas atomization was performed using gauze gas.
A spherical powder of 0 μm or less was produced. This powder was classified into two types, 40 μm or more and 40 μm or less, using an air classifier.
For powders larger than 0 μm, heat treatment at 1000°C for 24 hours.
70'C for powders with a diameter of 40μm or less
Annealing treatment for 10 minutes was carried out in a heated chamber, and the mixture was mixed again.
Mixed with 2.5 wt epoxy resin, 15 KOe m
After molding in-situ, it was fired at 150°C to form a single resin bond, and its magnetic performance was measured.

第1表に上記の工程によって作製した種々の出方用合金
粉末の組成を示す。この時、FeとCOけ999チ以上
の純度のもの、af−及びMOけフェロ合金(61,6
%C!r及び61.7%MO)、BとしてVi7 zo
 ホロソ合金(16,321B、  o、15% p、
l、  a、68% 5iO112%O1残部Fg)、
希土類金属としては純度95%(不純物は主として他の
希土類金属)のものを使用し之。
Table 1 shows the compositions of various alloy powders for extrusion prepared by the above steps. At this time, Fe and CO with a purity of 999% or higher, af- and MO-based ferro alloys (61,6
%C! r and 61.7% MO), Vi7 zo as B
Holotho alloy (16,321B, o, 15% p,
l, a, 68% 5iO112%O1 balance Fg),
The rare earth metal used is one with a purity of 95% (impurities are mainly other rare earth metals).

第2表には第1表に示した組成粉末を前述の方法で樹脂
ポンド化した時の磁気性能を示す。出場配向の効果がア
モルファス粉末の場合と異なって現われ、明らかに高い
磁気性能が得られた。
Table 2 shows the magnetic performance when the composition powder shown in Table 1 was made into a resin pound by the method described above. The effect of orientation was different from that of amorphous powder, and clearly high magnetic performance was obtained.

第1表 第2表 (試料431.32はそれぞれ試料/1622と肩27
の組成の粉末を粒度の区別をせずに1000’CX24
時間の熱処理を施したもの) (実施例2.) 第1表忙示した組成のうち42.10.24.26の4
種類の粉末をスタンプミルにより80メシシ為アンダー
まで粗粉砕し、次にボールミル粉砕を4時間行ない、平
均粒径4μ偽の微粉末を得た。この微粉末を磁界中で配
向させ、2tΔ1の圧力で成形し、1,1100℃×2
時間の焼結を4’r中で行ない、その後700℃×1時
間の時効処理を施し九〇これによって得られた焼結磁石
の磁気性能を第3表に示す。
Table 1 Table 2 (Sample 431.32 is sample /1622 and shoulder 27 respectively)
powder with the composition of 1000'CX24 without distinguishing the particle size.
(Example 2.) Of the compositions listed in Table 1, 42.10.24.26
Each type of powder was coarsely ground to under 80 mesh using a stamp mill, and then ground in a ball mill for 4 hours to obtain a fake fine powder with an average particle size of 4 μm. This fine powder was oriented in a magnetic field and molded at a pressure of 2tΔ1 at 1,1100°C x 2
Sintering was performed for 4 hours, followed by aging treatment at 700° C. for 1 hour. The magnetic performance of the sintered magnets thus obtained is shown in Table 3.

第3表 〔発明の効果〕− 以上述べてきたように本発明によれば、ガスアトマイズ
粉末の粒変に応じた熱処理を施すことにより粉末の磁気
特性を高めることbt可能となり、特に樹脂結合磁石に
この粉末を用いた場合にその磁気性能が従来の単純熱処
理あるいはアモルファス粉末のものに比べて明らかに増
加するという効果がある。また焼結磁石に用いた場合に
もその磁気性能は十分に高く、低コストで樹脂ポンド用
にも焼結法忙も使用できる缶石合金用粉末として工業的
に有用なものである。
Table 3 [Effects of the Invention] - As described above, according to the present invention, it is possible to improve the magnetic properties of the gas atomized powder by applying heat treatment according to the grain deformation of the powder, especially for resin-bonded magnets. The use of this powder has the effect that its magnetic performance is clearly increased compared to conventional simple heat treatment or amorphous powder. Furthermore, when used in sintered magnets, its magnetic performance is sufficiently high, and it is industrially useful as a powder for canstone alloys, which can be used for both resin ponds and sintering processes at low cost.

以  上that's all

Claims (1)

【特許請求の範囲】[Claims] (1)B(RはYを含む希土類元素の少なくとも一種以
上)8〜30原子%、B(ボロン)2〜28原子%、C
o(コバルト)50原子%以下、Cr(クロム)あるい
はMo(モリブデン)15原子%以下及び残部がFe(
鉄)及びその他の製造上不可避な不純物からなる合金を
溶解し、ガスアトマイズ法によって微粒子化させた合金
粉末を分級し、その粒径範囲により熱処理条件を変えて
アニールを施したことを特徴とする永久磁石用合金粉末
(1) B (R is at least one kind of rare earth element including Y) 8 to 30 atom%, B (boron) 2 to 28 atom%, C
o (cobalt) 50 at % or less, Cr (chromium) or Mo (molybdenum) 15 at % or less, and the balance is Fe (
A permanent product characterized by melting an alloy consisting of iron) and other impurities that are unavoidable during manufacturing, classifying the alloy powder into fine particles using a gas atomization method, and annealing the alloy powder by changing heat treatment conditions depending on the particle size range. Alloy powder for magnets.
JP62050583A 1987-03-05 1987-03-05 Alloy powder for permanent magnet Pending JPS63216308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62050583A JPS63216308A (en) 1987-03-05 1987-03-05 Alloy powder for permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62050583A JPS63216308A (en) 1987-03-05 1987-03-05 Alloy powder for permanent magnet

Publications (1)

Publication Number Publication Date
JPS63216308A true JPS63216308A (en) 1988-09-08

Family

ID=12863000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62050583A Pending JPS63216308A (en) 1987-03-05 1987-03-05 Alloy powder for permanent magnet

Country Status (1)

Country Link
JP (1) JPS63216308A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4994109A (en) * 1989-05-05 1991-02-19 Crucible Materials Corporation Method for producing permanent magnet alloy particles for use in producing bonded permanent magnets

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4994109A (en) * 1989-05-05 1991-02-19 Crucible Materials Corporation Method for producing permanent magnet alloy particles for use in producing bonded permanent magnets

Similar Documents

Publication Publication Date Title
JPH01704A (en) Rare earth-iron permanent magnet
JPH0669003B2 (en) Powder for permanent magnet and method for manufacturing permanent magnet
JPH0447024B2 (en)
JPH06346101A (en) Magnetically anisotropic powder and its production
JP2002038245A (en) Rare earth alloy powder for rermanent magnet and method for manufacturing rare earth permanent magnet
JPH03236202A (en) Sintered permanent magnet
JPS6393841A (en) Rare-earth permanent magnet alloy
JPH07122412A (en) Rare earth quenched magnet, bonded magnet and manufacture thereof
JPS62177101A (en) Production of permanent magnet material
JPH0353505A (en) Bonded magnet and magnetization thereof
JPH0146575B2 (en)
JP2745042B2 (en) Rare earth-iron-boron alloy thin plate, alloy powder and method for producing permanent magnet
JPS63216308A (en) Alloy powder for permanent magnet
JPH0146574B2 (en)
JPS6373502A (en) Manufacture of rare earth magnet
JPH023206A (en) Rare earth-iron system permanent magnet
JPS63216307A (en) Alloy powder for magnet
JPS61207545A (en) Manufacture of permanent magnet material
JPH10135020A (en) Radial anisotropic bond magnet
JPH07211570A (en) Manufacture of rare-earth permanent magnet
JPH0582319A (en) Permanent magnet
JPH0477066B2 (en)
JPS62208609A (en) Resin-bonded permanent magnet and manufacture of its magnetic powder
JPS63115307A (en) Manufacture of rare-earth magnet
JPH0584043B2 (en)