JPS63215928A - Shape detector - Google Patents

Shape detector

Info

Publication number
JPS63215928A
JPS63215928A JP4967387A JP4967387A JPS63215928A JP S63215928 A JPS63215928 A JP S63215928A JP 4967387 A JP4967387 A JP 4967387A JP 4967387 A JP4967387 A JP 4967387A JP S63215928 A JPS63215928 A JP S63215928A
Authority
JP
Japan
Prior art keywords
external force
signal
measured
period
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4967387A
Other languages
Japanese (ja)
Inventor
Katsuya Ueki
勝也 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4967387A priority Critical patent/JPS63215928A/en
Publication of JPS63215928A publication Critical patent/JPS63215928A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Abstract

PURPOSE:To enable quantitative determination of deficiency level of shape with a high response and accuracy, by a method wherein displacement of a body to be measured is integrated by switching the polarity for each of first and second periods depending on the application of an external force to obtain a displacement value and a disturbance signal of the object being measured is passed for each one of the first and second periods to obtain the amount of noise by integration. CONSTITUTION:With the application 4a of a periodical external force to a strip body 1 as object to be measured,a displacement is detected 4b at a point N along the width thereof to generate a signal. Then, displacement detection signals with the polarity thereof inverted for each first period during which an external force is applied 4a to the strip body 1 and for each second period during which no external force is applied are integrated 6 or a signal with the polarity inverted for each second period delayed by 1/2 cycle phase and a signal for each next first period are integrated 32 while noise components in signals for each of the first and second periods are integrated 22. An external force is computed 27 to obtain a desired S/N from the integration values while a drive signal is generated 28. In addition, elongation percentage indicating flatness is determined with an elongation percentage signal processing circuit 42.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は薄鋼板の如き帯状体の幅方向における張力分
布を知ることによりその形状(平坦度)を検出する形状
検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a shape detection device that detects the shape (flatness) of a strip-shaped object such as a thin steel plate by knowing the tension distribution in the width direction of the strip.

〔従来の技術〕[Conventional technology]

一般に帯状体の冷間圧延に際し、その板厚精度と共に重
要なことは形状(平坦度ともいう)である、しかしなが
ら冷間圧延では圧延中高い張力をかけて圧延するので、
被圧延材即ち帯状体の弾性伸びの為にこの帯状体に例え
ば中伸び又は耳波等の平坦度不良が発生してもその変位
(凹凸)が減少または消失して検出できないのが普通で
ある。
In general, when cold rolling a strip, the shape (also called flatness) is as important as the thickness accuracy. However, in cold rolling, high tension is applied during rolling, so
Due to the elastic elongation of the rolled material, i.e. the strip, even if a flatness defect such as medium elongation or ear waves occurs in this strip, the displacement (unevenness) is reduced or disappears and is usually undetectable. .

従って、上記の如く高い張力を付加した状態では帯状体
の平坦度不良部を直接検出することはできないが、この
帯状体の幅方向の張力分布を知ることにより間接的に形
状を検出できることは特公昭58−17071号に示さ
れるようによく知られている。
Therefore, while it is not possible to directly detect the flatness defects of the strip under high tension as described above, it is especially possible to indirectly detect the shape by knowing the tension distribution in the width direction of the strip. This is well known as shown in Publication No. 58-17071.

すなわち、平坦度の良くない部分は張力が弱くなるから
、張力分布から形状を知ることができるのである。
In other words, the tension is weak in areas with poor flatness, so the shape can be determined from the tension distribution.

第4図は、この種従来の形状検出装置の一例を示すブロ
ック図である。
FIG. 4 is a block diagram showing an example of a conventional shape detection device of this kind.

1は被測定体即ち帯状体で、2は帯状体1に張力を印加
するための例えばデフレクタ−ロールの如き支持ロール
である。8は駆動信号発生器の1例としての矩形波発信
器、8aは増@器である。4は検出ヘッドで、帯状体1
の幅方向に沿いかつ適宜の係上手段により帯状体1の表
面に適宜間隔をもって離隔して設けられる。この検出ヘ
ッド4は外力印加装置4aと変位検出器4bで構成され
る。外力印加装置4aは、帯状体lの幅方向に沿い断面
コ字状の磁極Aに励磁コイルBを設けた電磁石からなシ
、変位検出器4bは帯状体10幅方向に治った基本部C
に複数個の変位測定用w1極りを帯状体1の表面に臨ま
せて設け、かつ外力印加装置4aと一体的に設けられる
Reference numeral 1 denotes an object to be measured, that is, a strip-shaped body, and 2 denotes a support roll, such as a deflector roll, for applying tension to the strip-shaped body 1. 8 is a rectangular wave oscillator as an example of a drive signal generator, and 8a is an amplifier. 4 is a detection head;
They are provided along the width direction of the band-shaped body 1 at appropriate intervals on the surface of the band-shaped body 1 by appropriate engagement means. This detection head 4 is composed of an external force applying device 4a and a displacement detector 4b. The external force applying device 4a is an electromagnet with an excitation coil B provided on a magnetic pole A having a U-shaped cross section along the width direction of the strip 10, and the displacement detector 4b is a basic portion C extending in the width direction of the strip 10.
A plurality of displacement measuring w1 poles are provided facing the surface of the strip 1, and are also provided integrally with the external force applying device 4a.

なお、変位検出器4bは外力印加装置4aと別体に設け
てもよく、また外力印加装置は上記の如く電磁石に限る
ものではなく、例えば圧縮空気の如き非接触で力の印加
が可能なものであればよく、本願の目的を逸脱しない範
囲において任意の手段を採用することができるものであ
る。 4cは例えば静電容量−電圧変換器の如き変位変
換器である。9は信号処理回路で、極性切替器5.積分
回路6゜サンプルホールド回路7および前記各装置6・
6゜7に連設せしめたタイミング発生回路8で構成され
、タイミング発生回路8は前記各装置5,6.7および
矩形波発信器8にそれぞれ連設されている。
Note that the displacement detector 4b may be provided separately from the external force applying device 4a, and the external force applying device is not limited to an electromagnet as described above, but may be a device capable of applying force without contact, such as compressed air. Any means may be used without departing from the purpose of the present application. 4c is a displacement converter such as a capacitance-to-voltage converter. 9 is a signal processing circuit, and a polarity switch 5. Integrating circuit 6゜sample hold circuit 7 and each of the above-mentioned devices 6.
The timing generating circuit 8 is connected to each of the devices 5, 6.7 and the rectangular wave oscillator 8, respectively.

信号処理回路9は表示装置用制御装置lOを介して、例
えばCRモニターの如き表示装置11に連設される。ま
た、信号処理回路9はロールクラウン制御回路12を介
しロールクラウン調整装置18へ連設することもできる
・ 次に動作について説明する。まず矩形波発信器8で周期
TCの矩形波を駆動信号として発生せしめる1次いでこ
の駆動信号を増@器8aにおいて、増幅し、この増幅信
号を外力印加装置4aを介して帯状体1の表面に外力と
して印加し、帯状体1に変位P(x−t)を発生させる
。帯状体1の表面に発生した変位P(x−t)は、変位
検出器4bに設けた変位検出用電極りでこの変位を静電
容量として検出され、信号変換器即ち静電容量−電圧変
換器である変位変換器4Cで電圧信号に変換させられる
。帯状体1の輻方向に沿って設けた複数個の変位検出用
電極りは、その対応する帯状体1の各部の変位をそれぞ
れ同様に検出し、これら検出値は電圧信号に変換された
のち信号処理回路9に入力される。前記変位検出信号は
極性切替器5で極性切替されたのち、積分回路6に入力
され、この積分回路6で矩形波周期毎に積分される。こ
れによシ、張力信号以外の雑音が除去され、被測定体各
部の張力にかかわる部分のみが算出されて、その積分値
はサンプルホールド回路7に入力され、サンプルホール
ドされる。タイミング発生回路8は矩形波発信器8から
の参照信号に基いて、極性切替8!I5の極性切替タイ
ミング、積分回路6のリセットタイミング、およびサン
プルホールド回路7のサンプルホールドタイミング等の
各タイミングを制御する。サンプルホールド回路7の出
力は、表示装置用制御回路10を介して例えばCRTモ
ニターの如き表示装置11に表示され、オペレーターの
監視に供せられると共に、形状調整のためのデータとし
て用いられる。
The signal processing circuit 9 is connected to a display device 11 such as a CR monitor, for example, via a display device control device IO. Further, the signal processing circuit 9 can also be connected to the roll crown adjustment device 18 via the roll crown control circuit 12. Next, the operation will be explained. First, the rectangular wave oscillator 8 generates a rectangular wave with a period of TC as a drive signal. Next, this drive signal is amplified in the amplifier 8a, and this amplified signal is applied to the surface of the strip body 1 via the external force applying device 4a. It is applied as an external force to generate a displacement P(xt) in the band-shaped body 1. The displacement P(x-t) generated on the surface of the strip 1 is detected as a capacitance by a displacement detection electrode provided in the displacement detector 4b, and the displacement is detected as a capacitance by a signal converter, that is, a capacitance-voltage converter. It is converted into a voltage signal by a displacement converter 4C. The plurality of displacement detection electrodes provided along the radial direction of the strip 1 detect the displacement of each part of the corresponding strip 1 in the same way, and these detected values are converted into voltage signals and then output as signals. The signal is input to the processing circuit 9. After the polarity of the displacement detection signal is switched by a polarity switch 5, the signal is input to an integrating circuit 6, where it is integrated for each rectangular wave period. As a result, noise other than the tension signal is removed, only the portions related to the tension of each part of the object to be measured are calculated, and the integral value thereof is input to the sample and hold circuit 7 and sampled and held. The timing generation circuit 8 performs polarity switching 8! based on the reference signal from the square wave oscillator 8. Each timing such as the polarity switching timing of I5, the reset timing of the integrating circuit 6, and the sample hold timing of the sample hold circuit 7 is controlled. The output of the sample and hold circuit 7 is displayed on a display device 11 such as a CRT monitor via a display control circuit 10, for monitoring by an operator, and used as data for shape adjustment.

また、被測定体即ち帯状体1の自動形状制御を行なう場
合は、サンプルホールド回路7の出力を表示系とは別に
自動制御系即ちロールクラウン制御回路12を介して、
ロールクラウン調整装置18に入力せしめることによっ
て目的を達することができる。
In addition, when performing automatic shape control of the object to be measured, that is, the strip-like object 1, the output of the sample hold circuit 7 is sent via an automatic control system, that is, a roll crown control circuit 12, separately from the display system.
This objective can be achieved by providing input to the roll crown adjustment device 18.

なお、上記説明において駆動信号として矩形波信号を用
いた場合について述べたが、とくに矩形波信号に限るも
のでなく、例えばM系列信号、ランダム信号あるいは正
弦波信号等の信号波形を用いることもでき、かつこれら
の信号波形を採用する場合は、信号処理回路9における
極性切替器5に代えて、乗算回路を設ければよい。
In the above description, a case has been described in which a rectangular wave signal is used as the drive signal, but the drive signal is not limited to a rectangular wave signal, and signal waveforms such as an M-sequence signal, a random signal, or a sine wave signal may also be used. , and when these signal waveforms are employed, a multiplication circuit may be provided in place of the polarity switch 5 in the signal processing circuit 9.

さらに、数式を用いて説明すると、第4図において X  :幅方向座標 f(t)  :単位幅当りの駆動外力 P(x−t)  : xにおける変位 d(t)  :帯状体の不規則振動 T(x):xにおける単位幅当りの張力L  :ロール
間スパーン に1:力の釣合いにおける係数 とし、帯状体幅(以下単に板幅という)ΔXの部分につ
いて力の釣合いを考慮すると、近似的に変位P(x−t
)は で表わされる。iた、(1)式を変位検出信号と仮定し
てサンプルホールド回路7の出力C(x−nTc)はで
表わされる。
Furthermore, to explain using a mathematical formula, in Fig. 4, T(x): Tension L per unit width at x: 1 for the span between rolls: A coefficient in the force balance, and considering the force balance for the strip width (hereinafter simply referred to as plate width) ΔX, approximately Displacement P(x-t
) is represented by . Assuming that equation (1) is the displacement detection signal, the output C(x-nTc) of the sample-and-hold circuit 7 is expressed as follows.

TC:  矩形波の周期 n : 矩形波のサイクル数 さらに単位幅当りの外力f (t)は振IIII!aの
矩形波であって、 と表わすことができる。
TC: Period n of the rectangular wave: Number of cycles of the rectangular wave, and the external force per unit width f (t) is the amplitude III! It is a rectangular wave of a, and can be expressed as.

従って、af:f!!!気量と仮定して、サンプルホー
ルド回路7からの出力値C(x−nTc)は上記(1)
 、 (2)および(3)式から となる。ここで(4)式の第2項は外乱の影響であるが
、矩形波周期TCが大きくなれば、帯状体1の不規則振
動d (t)の定常性より十分小さくなると考えてよい
から、上記(4)式は の如く表わされ、さらにこの(5)式から幅方向座標X
における単位幅当りの張力Tfx)はとして表わすこと
ができ、張力が測定される。
Therefore, af:f! ! ! Assuming that the air volume is the same, the output value C (x-nTc) from the sample and hold circuit 7 is as shown in (1) above.
, from equations (2) and (3). Here, the second term in equation (4) is the effect of disturbance, but it can be considered that if the rectangular wave period TC becomes large, it will be sufficiently smaller than the stationarity of the irregular vibration d (t) of the band-shaped body 1. The above equation (4) is expressed as follows, and further, from this equation (5), the width direction coordinate
The tension per unit width Tfx) can be expressed as, and the tension is measured.

次に上記(4)式の内容を実現している第4図の回路に
おける各信号処理部の信号波形について第5図によシ説
明する。
Next, the signal waveforms of each signal processing section in the circuit of FIG. 4 which realizes the content of the above equation (4) will be explained with reference to FIG.

第5図の(a)は矩形波信号発生器によυ発生される矩
形波信号を示し、上記nを正の整数とし、゛tm −2
+ ・・・+ m + 1 fi nがとる各位である
FIG. 5(a) shows a rectangular wave signal generated by a rectangular wave signal generator, where n is a positive integer and ゛tm −2
+...+m+1 is each position taken by fin.

第5図の(b)は外力印加装置4aによる周期TCのO
N・OFFなる印加外力によシ帯状体1が変位する時の
変位信号の交流波形を示す。
(b) of FIG. 5 shows the period TC of O by the external force applying device 4a.
The alternating current waveform of the displacement signal when the strip 1 is displaced by an applied external force of N.OFF is shown.

第5図の(C)は、帯状体のもつ不規則振動による0点
の外乱信号成分であシ、この振動による雑音信号が前述
の第5図のら)の変位信号に重畳したものが第5図の(
dlの波形の信号であり、変位変換器4Cの出力を示す
0点の信号波形であシ、これが信号処理回路9に入力さ
れる。極性切替器5により、C nTc +−から(n+1)Tcの期間、第5図の(d
lの入力信号の極性を切換えると極性切替器6の出力で
るる第5図の(e)の波形の信号(■点信号)が得られ
る。これを積分回路6により、nTcから(n+1)T
cの期間、積分すると、その出力としての第5図のげ)
の波形の信号(◎点信号)が得られる。(n+1)Tc
の時点でサンプルホールド回路7によシ第5図のげ)の
信号をサンプルホールドするとサンプルホールド回路7
の出力である第5図の(g)の信号(■点信号)が鳥ら
れる。
(C) in Figure 5 is the disturbance signal component at the zero point due to irregular vibrations of the band-shaped body, and the noise signal due to this vibration is superimposed on the displacement signal in Figure 5 (a) above. Figure 5 (
dl, which is a 0-point signal waveform indicating the output of the displacement converter 4C, is input to the signal processing circuit 9. By the polarity switch 5, during the period from C nTc +- to (n+1)Tc, (d
When the polarity of the input signal 1 is switched, a signal having the waveform (e) in FIG. 5 is obtained from the output of the polarity switch 6 (point signal . The integration circuit 6 converts this from nTc to (n+1)T
When integrated over the period c, the output in Figure 5 is
A signal with the waveform (◎ point signal) is obtained. (n+1)Tc
When the sample-and-hold circuit 7 samples and holds the signal shown in FIG.
The signal (g) in FIG. 5 (point ■ signal) which is the output of is detected.

上記(4)式並びに第6図の信号処理波形から明らかな
ように、形状検出装置の出力(g)は矩形波周期’rc
毎に得られる。
As is clear from the above equation (4) and the signal processing waveform in FIG.
obtained every time.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の形状検出装置は以上のように構成されているので
、出力応答が被測定体に外力を周期的に印加するための
矩形波周期Tcにより決定され、矩形波周期TCを短か
くすることによシ応答性を速くしなければならないが、
矩形波周期Tcを長くとることによる被測定体の不規則
振動による雑音を除去できる効果から、周期Tcの下限
も限定され、よシ応答性を速くすることが出来ない問題
点かあシ、さらに、上記(4)式の第1項と第2項の比
率はS/N比(信号対雑音比)として表わすことができ
、この8/N比の大小が検出精度に左右する主要な要素
の1つとなっており、又、一般的に被測定体の不規則振
動d (tlは、被測定体に印加された張力の大きさに
よって、その振幅及び周波数が規定されると考えられる
。従って、被測定体に付加される張力値によって、信号
処理回路の出力のS/N比は変化することになり、被測
定体に印加される張力値によって、S/N比が左右され
、不規則振動による外乱量が変わっても、それに応じた
検出精度を確保することができない問題点があり、さら
に、出力信号は上記(5)式で表わされるように、被測
定体の張力分布T (xlに反比例し、印加外力による
振1嘔aに比例するため、被測定体のもつ平坦度が同じ
であっても被測定体に印加される張力及び外力によシ、
出力が変化するので帯状体の平坦度を管理しようとする
目的の場合において、きわめて不都合となυ、被測定体
の平坦度を管理しようとする目的に対しては、同一の平
坦度でも異った出力となるなどの問題点があった。
Since the conventional shape detection device is configured as described above, the output response is determined by the rectangular wave period Tc for periodically applying an external force to the object to be measured, and it is possible to shorten the rectangular wave period TC. We need to improve responsiveness, but
Due to the effect of eliminating noise caused by irregular vibrations of the object to be measured by increasing the rectangular wave period Tc, the lower limit of the period Tc is also limited, and there is a problem that it is not possible to increase the response speed. , the ratio between the first and second terms in equation (4) above can be expressed as an S/N ratio (signal-to-noise ratio), and the magnitude of this 8/N ratio is a major factor that affects detection accuracy. In general, the irregular vibration d(tl) of the object to be measured is considered to have its amplitude and frequency determined by the magnitude of the tension applied to the object to be measured.Therefore, The S/N ratio of the output of the signal processing circuit changes depending on the tension value applied to the object to be measured, and the S/N ratio is influenced by the tension value applied to the object to be measured, and irregular vibrations Even if the amount of disturbance due to It is inversely proportional to the vibration caused by the applied external force, so even if the flatness of the measured object is the same, the tension and external force applied to the measured object will
Since the output changes, this is extremely inconvenient when the purpose is to control the flatness of a strip-shaped object. There were some problems, such as the output being distorted.

この発明は上記のような問題点を解消する為になされた
もので、周期波の周期毎で1周期より短かい期間毎に被
測定体の不規則振動による雑音を除去した出力が得られ
るので高応答性にでき、被測定体の不規則振動による雑
音レベルを測定し、それに比べ十分高い被測定体の変位
信号を確保できるように印加外力を制御することによシ
、精度を高くすることができるとともに形状検出用の出
力を被測定体の伸び率に変換し、張力や印加外力が変化
しても、被測定体の平坦度が同一なら同じ伸び率を得る
ことのできる形状検出装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and it is possible to obtain an output in which noise caused by irregular vibrations of the object to be measured is removed for each period of the periodic wave that is shorter than one period. High accuracy can be achieved by achieving high responsiveness, measuring the noise level due to irregular vibrations of the measured object, and controlling the applied external force so as to ensure a sufficiently high displacement signal of the measured object compared to the noise level. We developed a shape detection device that can convert the output for shape detection into the elongation rate of the object to be measured, and obtain the same elongation rate even if the tension or applied external force changes as long as the flatness of the object to be measured is the same. The purpose is to obtain.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

この発明に係る形状検出装置は、外力印加手段による被
測定体に対する周期的な外力印加に伴なう被測定体の幅
方向に沿ったN箇所の変位を変位検出手段によシ検出し
てN箇の変位検出信号を発生し、被測定体に外力を印加
する第1の期間毎の変位検出信号および被測定体に外力
を印加しない第2の期間毎の極性反転した変位検出信号
とを第1の積分処理手段により各変位検出信号の各第1
積分量を出し、第2の積分処理手段により第1積分処理
手段より1/2周期位相を、おくらせて、被測定体に外
力を印加しない第2の期間毎の極性反転した変位検出信
号及び、被測定体に外力を印加する次の周期の第1の期
間毎の変位検出信号とを、第2の積分処理手段により各
変位信号の第2積分量を出し、第3の積分処理手段によ
シ第1および第2の期間の少なくとも一方の期間毎に各
変位検出信号内の雑音成分の各第3積分量を出し、印加
外力演算手段によυ第1.第2および第3yt分量から
演算して出したS/N比に基づき所望のS/N比を得る
ための印処外力を演算し、駆動信号発生手段によりこの
演算結果に応じた駆動信号を発生して外力印加手段を駆
動し、N個の第1および第2積分量と予め設定された演
算式とに基づき被測定体の変位検出箇所における被測定
体の平坦度を表わす伸び率を形状信号の値として伸び率
演算手段によシ演算し、タイミング発生手段によシ駆動
信号の参照信号に基づき第1+第2および第3の積分処
理手段の動作上におけるタイミングを制御するようにし
たものである。
The shape detection device according to the present invention uses a displacement detection means to detect displacements at N locations along the width direction of the object to be measured due to periodic external force application to the object by the external force application means. A displacement detection signal for each first period in which an external force is applied to the object to be measured and a displacement detection signal with inverted polarity for each second period in which no external force is applied to the object to be measured are generated. 1 of each displacement detection signal by the integral processing means of 1.
The integral amount is output, and the second integral processing means delays the phase by 1/2 period from the first integral processing means, and the polarity of the displacement detection signal is inverted for each second period in which no external force is applied to the object to be measured. , and the displacement detection signal for each first period of the next cycle of applying an external force to the object to be measured, the second integral processing means outputs the second integral amount of each displacement signal, and the second integral processing means outputs the second integral amount of each displacement signal, and the second integral processing means outputs the second integral amount of each displacement signal. Then, each third integral amount of the noise component in each displacement detection signal is calculated for at least one of the first and second periods, and the applied external force calculating means calculates the third integral amount of the noise component in each displacement detection signal. Based on the S/N ratio calculated from the second and third yt quantities, an external force to obtain the desired S/N ratio is calculated, and the drive signal generating means generates a drive signal according to the calculation result. to drive the external force applying means, and generate a shape signal indicating the elongation rate representing the flatness of the measured object at the displacement detection point of the measured object based on the N first and second integral quantities and a preset calculation formula. The elongation rate calculating means calculates the value of , and the timing generating means controls the operational timing of the first + second and third integral processing means based on the reference signal of the driving signal. be.

〔作用〕[Effect]

この発明による形状検出装置は、被測定体の不規則振動
による、雑音成分の積分量を第1の期間と$2の期間と
で相殺せしめて、周期的な外力印加により発生した変位
信号成分のみを、第1積分魁理手段によシ出し、前記周
期より1/2周期位相をおくらせて、同様にして、変位
信号成分のみを第2積分処理手段によシ出し、第3の積
分処理手段によシ雑音成分の第3積分量を出し、印加外
力演算手段によシ出した第1.第2および第3の積分量
の比を近似的に真の8/N比に等しいものとして出し7
’i−8/N比に基づき所望のS/N比を得る外力を演
算し、この演算結果に応じた外力を駆動信号発生手段を
介して外力印加手段によシ被測定体に印加せしめ、所望
のS/N比で得たN個の第1および第2積分量を1周期
当92回毎出し、伸び率演算手段によシこれらN個の積
分量と予め設定された演算式とに基づき被測定体の変位
検出箇所における被測定体の平坦度を示す伸び率を1/
2周期毎に演算して出力する。
The shape detection device according to the present invention cancels out the integrated amount of noise components due to irregular vibrations of the object to be measured between the first period and the $2 period, and detects only the displacement signal component generated by the periodic application of external force. is outputted by the first integral processing means, the phase is delayed by 1/2 period from the above-mentioned period, and in the same way, only the displacement signal component is outputted to the second integral processing means, and the third integral processing is performed. The third integrated amount of the noise component is calculated by the means, and the first integrated amount is calculated by the applied external force calculation means. Determine the ratio of the second and third integral quantities as approximately equal to the true 8/N ratio7
'Calculate an external force to obtain a desired S/N ratio based on the i-8/N ratio, apply an external force according to the calculation result to the object to be measured by an external force applying means via a drive signal generating means, N first and second integral quantities obtained at a desired S/N ratio are output every 92 times per period, and the elongation rate calculating means calculates these N integral quantities and a preset calculation formula. Based on this, the elongation rate indicating the flatness of the measured object at the displacement detection point of the measured object is 1/
Calculate and output every two cycles.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図において、第3図と同符号のものは従来例と同一
であり、21は変位変換器4cの変位検出信号を入力し
て帯状体1の不規則振動による雑音成分(外乱信号)の
みを通過させるノ・イパスフィルタである。22は積分
回路6と同構成であり、バイバスフィルタ21の後段の
積分回路、幻はサンプルホールド回路7と同構成であシ
、積分回路22の後段のサンプルホールド回路、81は
6と同様の極性切替器、82は6と同様構成であり、極
性切替器81の後段の積分回路、88はサンプルホール
ド回路7と同構成であり、積分回路82の後段のサンプ
ルホールド回路であシ、5,6.7によシ第1積分処理
手段が構成され、81 、82 、88によシ、第2積
分処理手段が構成される。26はタイミング発生回路で
あシ、後述の矩形波発生器28からの参照信号に基づき
極性切替器5.積分回路6.22.サンプルホールド回
路7 、2g 、の各動作上におけるタイミングをとる
九めのタイミング信号を発生する。34も26と同様の
タイミング発生回路であるが、26に対し1/2周期位
相をおくらせて、極性切替器81.積分回路82.サン
プルホールド回路88のタイミングをとるためのタイミ
ング信号を発生する。さらに、27は、サンプルホール
ド回路? 、 28 、88の各出力を入力してSlN
比を演算し、外乱信号の量に応じて必要とされる印加外
力を演算するための印加外力演算器、28は駆動信号発
生器の1例としての矩形波発生器であり、印加外力演算
器27の演算結果に応じて矩形波信号例えばそのレベル
を変化させて増幅器8aに発生する。29は、伸び率演
算において、サンプルホールド回路7及び28の変位積
分量を入力して変位の平均値を演算する変位平均値演算
器、80は変位平均値演算器29から入力した変位の平
均値から予め設定された演算式に従って伸び率を演算す
る伸び率演算器である。41は符号5〜7.21〜27
で及び81〜84示される構成要素からなる信号処理回
路、42は符号29 e 8Qで示される構成要素から
構成される伸び車信号処理回路である。符号4c、5〜
7,21〜25 、81〜84の2重括弧の各部分は各
複数筒(例えば各N箇)から構成され、例えばヘッド4
内にある変位検出用m極りや変位検出器4bの各数分(
例えば各N箇)あるとするとそれらに対応して連設され
ている。
In FIG. 1, the same symbols as those in FIG. It is a no-pass filter that allows the light to pass through. 22 has the same configuration as the integrating circuit 6, and the integrating circuit after the bypass filter 21. The phantom has the same configuration as the sample and hold circuit 7, and the sample and hold circuit after the integrating circuit 22. 81 has the same polarity as 6. The switch 82 has the same configuration as 6, and the integration circuit 88 after the polarity switch 81 has the same configuration as the sample and hold circuit 7, and the sample and hold circuit after the integration circuit 82. .7 constitutes a first integral processing means, and 81, 82, and 88 constitute a second integral processing means. Reference numeral 26 is a timing generation circuit, and a polarity switch 5. Integrating circuit 6.22. A ninth timing signal is generated for timing each operation of the sample and hold circuits 7 and 2g. 34 is also a timing generation circuit similar to 26, but with a 1/2 cycle phase delay compared to 26, and a polarity switch 81. Integrating circuit 82. A timing signal for timing the sample and hold circuit 88 is generated. Furthermore, 27 is a sample hold circuit? , 28 , and 88 are input, and SIN
An applied external force calculator 28 is a rectangular wave generator as an example of a drive signal generator; A rectangular wave signal, for example, the level of which is changed according to the calculation result of step 27, is generated in the amplifier 8a. Reference numeral 29 denotes a displacement average value calculator which inputs the displacement integral amounts of the sample and hold circuits 7 and 28 and calculates the average value of displacement in elongation rate calculation, and 80 denotes a displacement average value inputted from the displacement average value calculator 29. This is an elongation rate calculator that calculates the elongation rate according to a preset arithmetic expression. 41 is code 5-7.21-27
42 is an extension wheel signal processing circuit composed of components indicated by reference numerals 29e and 8Q. Code 4c, 5~
7, 21 to 25, and 81 to 84 are each composed of a plurality of cylinders (for example, each N cylinders), for example, the head 4
For each number of displacement detection m poles and displacement detector 4b inside (
For example, if there are N locations, they are arranged in series in correspondence with each other.

第2図は第1図に示した装置の各部信号波形を示す図で
あシ、縦軸に電圧値をとっておシ、第2図の(a)〜r
e)は第6図の(at〜(e)と同じである。
Fig. 2 is a diagram showing signal waveforms at various parts of the device shown in Fig. 1, with voltage values plotted on the vertical axis.
e) is the same as (at to (e)) in FIG.

MB図は横軸に帯状体1の幅をとシ、縦軸に帯状体1の
単位当りの張力T (x)をとった場合の伸び率β(X
)との関係を示した線図である。
In the MB diagram, the width of the strip 1 is plotted on the horizontal axis, and the elongation rate β (X
) is a diagram showing the relationship between

次に、この実施例の動作について説明する。第2図にお
いて、外力f (t)は第2図の(a)で示すタイC ミングすなわち、nTcznTc + −(但し、nは
正の整数で、m−2,・・・tm+1.・・・の値をと
る)の期間、振幅aの矩形波として、帯状体lに加えら
れる。この外力f (t)により、帯状体1は変位し、
上記(1)式の第1項で示す変位量が生じる。
Next, the operation of this embodiment will be explained. In FIG. 2, the external force f (t) is determined by the timing C shown in (a) of FIG. is applied to the strip l as a rectangular wave of amplitude a during a period of time (takes a value of ). Due to this external force f (t), the strip 1 is displaced,
The amount of displacement shown in the first term of equation (1) above occurs.

一方、帯状体lには、第2図のfc)の如き外乱信号の
もとになる不規則振動が生じておシ、当然印加外力f 
(t)による帯状体lの変位量にこの不規則振動d (
t)が重畳されることになり、この雑音成分は上記(1
)式の第2項として表現されている。
On the other hand, irregular vibrations, which are the source of disturbance signals such as fc) in Fig. 2, occur in the band l, and naturally the applied external force f
This irregular vibration d (
t) will be superimposed, and this noise component will be the above (1
) is expressed as the second term of the equation.

上記(1)式で示される帯状体lの変位MP(X−t)
を変位検出器4bを介して変位変換器4Cで電気信号に
変換した第2図の(d)に示す変位検出信号は第1C 図の積分回路6でnTcからn’I’c +−の期間に
わま たって積分される。
Displacement MP (X-t) of the strip l shown by the above equation (1)
The displacement detection signal shown in FIG. 2(d), which is converted into an electric signal by the displacement converter 4C via the displacement detector 4b, is generated by the integrating circuit 6 of FIG. 1C during the period from nTc to n'I'c +-. integrated over.

TC 次に、nTC+7から(n+1)Tcの期間にわたって
、外力f (t)が0とされる。そのため帯状体IC は前期間nTc+7において変位していた位置から解放
されて、変位前の位置に戻る。すなわち、間にかけて、
帯状体1が変位する。
TC Next, the external force f (t) is set to 0 over a period from nTC+7 to (n+1)Tc. Therefore, the band IC is released from the position where it was displaced in the previous period nTc+7 and returns to the position before displacement. In other words, in between
The strip 1 is displaced.

TC したがってnTc+7の時点で極性切替器5がタイミン
グ発生回路26からのタイミング信号°によシ動作させ
られて、第1図の変位変換器4cの出力側の0点におけ
る変位検出信号の極性を反転させ、Tに の反転信号は積分回路6によりnTc +−から(n+
1 )Tcの期間にわたって積分される。
TC Therefore, at the time of nTc+7, the polarity switch 5 is operated by the timing signal ° from the timing generation circuit 26, and the polarity of the displacement detection signal at the 0 point on the output side of the displacement converter 4c in FIG. 1 is reversed. The inverted signal at T is converted from nTc +- to (n+
1) Integrated over a period of Tc.

極性切替器5により反転した変位検出信号の線形は、極
性切替器5の出力側である0点において第2図の(e)
で示される。又、積分回路6により、積分される値は第
2図の(f)で示される。  (n+1)Tcの時点で
積分回路6の出力はサンプルホールド回路7によりサン
プルホールドされ、 nTCから(n+1)Tcの期間
における変位積分量が保持される。
The linearity of the displacement detection signal inverted by the polarity switch 5 is as shown in (e) in FIG. 2 at the 0 point, which is the output side of the polarity switch 5.
It is indicated by. Further, the value integrated by the integrating circuit 6 is shown by (f) in FIG. At the time point (n+1)Tc, the output of the integrating circuit 6 is sampled and held by the sample-and-hold circuit 7, and the amount of displacement integration during the period from nTC to (n+1)Tc is held.

以上の動作をくり返すと、積分回路6の出力側である0
点の信号は、第2図のげ)に示すように、Tc毎に、上
記(1)式の変位量P(x−t)の積分値が得られ、サ
ンプルホールド回路7には、Tc毎に、5l−82、8
g・・・の変位量P(x−t)の積分値がサンプルホー
ルドされる。
By repeating the above operation, the output side of the integrating circuit 6 is 0.
As shown in FIG. 2, the integral value of the displacement P(x-t) in equation (1) above is obtained for each Tc, and the sample and hold circuit 7 receives the integral value of the displacement P(x-t) for each Tc. 5l-82, 8
The integral value of the displacement amount P(xt) of g... is sampled and held.

他方、帯状体lの不規則振動による0点の外乱信号成分
は第2図の(c)で示されるように矩形波同規則振動に
よる外乱信号の量が、はソ近似的に等しい場合について
説明する。
On the other hand, the disturbance signal component at the 0 point due to the irregular vibration of the strip l is explained for the case where the amount of the disturbance signal due to the regular vibration of the rectangular wave is approximately equal to , as shown in FIG. 2(c). do.

TC 第7の期間であるn’l’cからn’I’c +−の積
分量には、第2図(C)で示す、外乱信号が含まれてい
る。
The integral amount from n'l'c to n'I'c +-, which is the seventh period of TC, includes a disturbance signal shown in FIG. 2(C).

TC 一方、第2の期間、nTc +−から(n+1)Tcに
おいて社、極性切替器6によりA点大力信号が反転され
て積分されるため、この第2の期間における。外乱信号
は、第1の期間の外乱に対し、逆極性で積分される。2
つの期間における外乱量が、はy近似的に”等しい場合
には、第1と第2の外乱量の積分量は、お互いに相殺さ
れ、変位検出信号のn’I’cから(n+1)TCの期
間における積分量のみが、サンプルホールド回路7によ
シホールドされる。
TC On the other hand, in the second period, from nTc +- to (n+1)Tc, the A point high power signal is inverted and integrated by the polarity switch 6, so in this second period. The disturbance signal is integrated with opposite polarity to the disturbance in the first period. 2
When the disturbance amounts in two periods are approximately equal to y, the integral amounts of the first and second disturbance amounts cancel each other out, and from n'I'c of the displacement detection signal to (n+1)TC Only the integral amount during the period is held by the sample and hold circuit 7.

これは(4)式、第2項で示され、従来装置と同じ作用
をする第1積分処理手段の動作である。
This is shown by the second term of equation (4), and is the operation of the first integral processing means which has the same effect as the conventional device.

次に第2積分処理手段の動作について説明する。Next, the operation of the second integral processing means will be explained.

第2積分処理手段は、極性切替器31 、積分回路82
゜サンプルホールド回路88.タイミング発生回路84
により構成される・ タイミング発生回路34は、第1積分処理手段における
、タイミング発生回路26に対し、1!2周期のおくれ
をもって、極性切替器81 、積分回路82゜サンプル
ホールド回路88を動作させるための、タイミング信号
を発生させる・ 第2積分処理手段における、■点大力変位検出信号は、
第2図fh)で示される。又積分回路82は第2図(i
)で示される様に、第1積分処理手段よシ1サンプルホ
ールド回路關で、サンプルホールドされる。
The second integral processing means includes the polarity switch 31 and the integral circuit 82.
゜Sample hold circuit 88. Timing generation circuit 84
The timing generation circuit 34 operates the polarity switch 81, the integration circuit 82 and the sample hold circuit 88 with a delay of 1 or 2 cycles with respect to the timing generation circuit 26 in the first integral processing means. The point large force displacement detection signal in the second integral processing means that generates the timing signal is as follows:
This is shown in Figure 2 fh). Further, the integrating circuit 82 is shown in FIG.
), the sample and hold is performed by the first integration processing means and the first sample and hold circuit.

第1と第2の積分処理手段の結果は、1!2周期毎に、
出力され、第2図fk)となる。
The results of the first and second integral processing means are as follows every 1!2 cycles:
It is output as shown in Fig. 2 fk).

第2図の(C)に示す帯状体1の不規則振動による外乱
信号成分は、矩形波周期TCよシ、十分高い周波数帯域
のみを通過させるバイパスフィルタ21に入力されて抽
出される。バイパスフィルタ21の出力は積分回路22
によフ積分され、第2図の(C)の不規則振動による外
乱信号のみが積分される。
The disturbance signal component due to the irregular vibration of the band-shaped body 1 shown in FIG. 2(C) is input to a bypass filter 21 that passes only a sufficiently high frequency band with a rectangular wave period TC, and is extracted. The output of the bypass filter 21 is sent to the integrating circuit 22.
Only the disturbance signal due to irregular vibration shown in FIG. 2(C) is integrated.

不規則振動による外乱信号の積分期間は外力C f(t)が0の期間、すなわちnTc +−から(n+
1 )TC迄の期間にわたって行われ、積分回路22の
出力側である0点の信号は第2図のillのようになる
The integration period of the disturbance signal due to irregular vibration is the period when the external force C f (t) is 0, that is, from nTc +- to (n+
1) The signal at point 0, which is the output side of the integrating circuit 22, is carried out over the period up to TC, and becomes like ill in FIG.

そして、積分された不規則振動による外乱信号は(n+
x ) Tc0時点でサンプルホールド回路28によシ
サンプルホールドされ、第2図の(m)に示す如く、N
O・N2.N4の不規則振動による外乱信号の積分値が
例えば(m−2)Tc + (m−1) Tc 、 m
Tc +(m+1)Tcの時点のタイミングで得ること
ができる。
Then, the disturbance signal due to the integrated random vibration is (n+
x) At time Tc0, the sample and hold circuit 28 holds the sample, and as shown in (m) in FIG.
O・N2. For example, the integral value of the disturbance signal due to irregular vibration of N4 is (m-2)Tc + (m-1)Tc, m
It can be obtained at the timing of Tc + (m+1)Tc.

また、もう一方、第11図■点における変位検出信号は
上記(1)式を参照すると外力f (t)を大きくする
ことにより、第1項は大きくなシ、8/N比も大きくと
れる。したがって、帯状体1の不規則振動d (t)が
大きければ第2図の(c)の外乱信号も大きくなって第
2図の(11の積分値も大きくなるので、外力f (t
)を大きくして第2図の(b)のレベルを大きくし、第
2図のげ)及び(i)の積分値を大きくして必要なS/
N比を確保することができる。
On the other hand, regarding the displacement detection signal at point 2 in FIG. 11, referring to the above equation (1), by increasing the external force f (t), the first term can be made large and the 8/N ratio can also be made large. Therefore, if the irregular vibration d (t) of the strip 1 is large, the disturbance signal shown in (c) of FIG. 2 also becomes large, and the integral value of (11) in FIG.
) is increased to increase the level of (b) in Figure 2, and the integral values of (i) and (i) of Figure 2 are increased to obtain the required S/
A good N ratio can be ensured.

不規則振動による外乱信号の積分値をホールドした値は
サンプルホールド回路28から出力されており、この積
分値と変位量の積分値出力であるサンプルホールド回路
7及び28の出力との比はS/N比を近似しておυ、こ
の2つの信号をサンプルホールド回路7 、8!3 、
28から入力した印加外力演算器27はここで、両人力
信号の比を演算して現在のS/N比を出して必要な8/
N比を確保するに必要な外力f (t)を算出し、矩形
波発生器28に指示する。
A value obtained by holding the integral value of the disturbance signal due to irregular vibration is output from the sample-hold circuit 28, and the ratio of this integral value to the output of the sample-hold circuits 7 and 28, which is the integral value output of the displacement amount, is S/ By approximating the N ratio υ, these two signals are sampled and held by circuits 7, 8!3,
The applied external force calculation unit 27 inputted from 28 calculates the ratio of the two human force signals, outputs the current S/N ratio, and calculates the required 8/
The external force f (t) necessary to ensure the N ratio is calculated and instructed to the square wave generator 28 .

矩形波発生器28はこの指示を受けて矩形波信号例えば
そのレベルを変化させ、増幅器8aおよび外力印加装置
4aを介して帯状体1に所要の外力f (t)を加える
。なお、外力印加装置4aについての演算は具体的には
変位量から現在の外力を近似的に演算でき、演算したS
/N比と予め設定された所望のS/N比をも用いて関数
計算によシ演算可能であシ、あるいは周知の補間公式等
を用いても簡単に演算可能である。
In response to this instruction, the rectangular wave generator 28 changes the rectangular wave signal, for example its level, and applies a required external force f (t) to the strip 1 via the amplifier 8a and the external force applying device 4a. In addition, the calculation for the external force applying device 4a can specifically calculate the current external force from the amount of displacement, and the calculated S
The calculation can be performed by functional calculation using the /N ratio and a desired S/N ratio set in advance, or it can be easily calculated by using a well-known interpolation formula.

帯状体1の不規則振動は、比較的長い期間において、定
常性を有し、又、帯状体1にかかつている張力T (x
)も急激に変動するものではないことから、外力f (
t)の演算周期は、矩形波周期TC毎の必要はなく、T
Cよシ長いM−TCごとに外力印加装置4aは外力f 
ft)の演算をすればよい、ここで、Mは帯状体1の不
規則振動及び張力の状態に応じて設定されればよい。
The irregular vibrations of the strip 1 have stationarity over a relatively long period, and the tension T (x
) also does not fluctuate rapidly, so the external force f (
The calculation period of t) does not need to be every rectangular wave period TC;
For each M-TC that is longer than C, the external force applying device 4a applies an external force f.
ft), where M may be set according to the irregular vibrations of the band-shaped body 1 and the state of tension.

なお、上記実施例では外力f (t)がOの期間につい
てのみ、帯状体1の不規則振動による外乱信号を積分し
たが、外力f (t)によりaの振幅を出力して帯状体
1を変位させている期間についても同様にして不規則振
動による外乱信号を積分し、同一期間における、変位量
と不規則振動の積分値の差分を求めてよい。
Note that in the above embodiment, the disturbance signal caused by the irregular vibration of the strip 1 is integrated only during the period when the external force f (t) is O, but when the external force f (t) outputs the amplitude of a and Similarly, the disturbance signal due to irregular vibrations may be integrated during the period of displacement, and the difference between the displacement amount and the integral value of the irregular vibrations during the same period may be determined.

また、印加外力演算器27、駆動信号発生器28゜増幅
器8aおよび外力印加装置4aの電磁石を複数筒(例え
ばN箇)設けてよいことは勿論である。
Furthermore, it goes without saying that a plurality of electromagnets (for example, N pieces) of the external force calculator 27, the drive signal generator 28, the amplifier 8a, and the external force applying device 4a may be provided.

次に、帯状体1の形状不良度(平坦度)を表わすのに、
伸び率β(X)を考える。この伸び率β(X)は、形状
不良部の伸び量を形状不良の平均部位の帯状体1の長さ
に対する比率として表わしたものと是義される。形状不
良部の張力分布T (x)と平均張力Tとの間には下記
(8)式の関係が成立し、第3図はそれを図示したもの
である。Eを帯状体lの弾性係数として、 T(x) = ’1’±β(X)・E ・・・・・・・
・・・・・・・・・・・・・・・・・(8)これよシβ
(X)を求めると下記(9)式となる。
Next, to express the degree of shape defect (flatness) of the strip 1,
Consider the elongation rate β(X). This elongation rate β(X) is defined as the amount of elongation of the defective portion expressed as a ratio of the average portion of the defective shape to the length of the strip 1. The following equation (8) holds between the tension distribution T (x) of the defective shape portion and the average tension T, and FIG. 3 illustrates this relationship. Where E is the elastic modulus of the strip l, T(x) = '1'±β(X)・E ・・・・・・・・・
・・・・・・・・・・・・・・・・・・(8) This is β
When (X) is determined, the following equation (9) is obtained.

±β(xl= (T−T(xi )・i・・・・・・・
・・・・・・・・ (9)であり、同様に平均張力Tは
下記(113式で得られる。
±β(xl= (T-T(xi)・i・・・・・・・
・・・・・・・・・ (9) Similarly, the average tension T is obtained by the following formula (113).

の変位量に相当し、帯状体lの幅方向に適宜間隔をもっ
て配置された複数筒(N箇)の変位測定用電極り及びN
箇の変位検出器4bによって検出されるN箇の変位信号
から得られるN箇のサンプルホールド回路26の出力の
平均値を変位平均値演算器29が演算することにより求
めることができる。
A plurality of cylinders (N pieces) of displacement measuring electrodes corresponding to the amount of displacement and arranged at appropriate intervals in the width direction of the strip l, and N
The displacement average value calculator 29 can calculate the average value of the outputs of the N sample and hold circuits 26 obtained from the N displacement signals detected by the displacement detectors 4b.

T (x)及び下を上記(9)式に代入して下記69式
を求める。
By substituting T (x) and below into the above equation (9), the following equation 69 is obtained.

期毎に出力される第1.第2積分量を示す。The first page output every period. The second integral amount is shown.

以上の式から明らかなように帯状体1の伸び率βfX)
は上記αυ式によシ求めることができる。
As is clear from the above formula, the elongation rate βfX) of the strip 1
can be calculated using the above αυ formula.

従って、変位平均値演算器29によって求められた変位
平均値Cを入力した伸び本漬算器80は上記on式の演
算を実行することによシ、伸び率β(X)の出力を得る
ことができる。なお、L、a、Eは伸び本漬算器に予め
設定された値であり、変位測定用電極りの内でXの位置
にあるf!極により検出され、サンプルホールド回路2
5変位平均値演算器29を介してそのまま与えられる差
分信号C(x)及び平均差分信号Cを用いて上記αυ式
を演算することが可能となる。伸び本漬算器80によシ
演算された伸び率β(X)は表示装置用制御回路10を
介して表示装置11に表示され、オペレーターの監視に
供せられると共に、形状調整のためのデータとして用い
られる。
Therefore, the elongation book adder 80 to which the displacement average value C determined by the displacement average value calculator 29 is inputted can obtain an output of the elongation rate β(X) by executing the above-mentioned on-type calculation. Can be done. Note that L, a, and E are values set in advance on the stretchable book meter, and f at position X within the displacement measuring electrode. sample and hold circuit 2
It becomes possible to calculate the above αυ equation using the difference signal C(x) and the average difference signal C which are given as they are through the 5-displacement average value calculator 29. The elongation rate β(X) calculated by the elongation calculator 80 is displayed on the display device 11 via the display device control circuit 10 for monitoring by the operator and also as data for shape adjustment. used as.

また、帯状体lの自動制御を行う場合は、伸び率β(X
)は、ロールクラウン制御回路12を介してロールクラ
ウン調整装置18に入力せしめられて目的が達成され゛
る。
In addition, when automatically controlling the strip l, the elongation rate β(X
) is input to the roll crown adjustment device 18 via the roll crown control circuit 12 to achieve the purpose.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば被測定体の変位を外力
を印加する第1の期間と印加しない第2の期間毎に極性
を切替えて、積分して保持することによシ変位量を得、
又、第1及び第2の期間の少なくとも一方の期間毎に被
測定体の不規則振動による外乱信号を通過させ、積分し
て保持することにより雑音量を得、第1−第2の積分量
を雑音量から8/N比を演算することによシ、常に、期
待されるS/N比を確保すべき、外力f(tlを指示し
て外力f (t)の調整をし、当該変位量を用いて伸び
率の演算を行うように構成したので、被測定体の形状を
第1の期間と第2の期間毎に周期的に得ることができ応
答速度の速い形状検出ができ、また外力の調整によυ高
精度の形状検出ができ、さらに被測定体の伸び率を得て
、被測定体の形状を物理的な形状不良度として定量的に
把握できるものが得られる効果がある。
As described above, according to the present invention, the amount of displacement is calculated by integrating and holding the displacement of the object to be measured by switching the polarity for each of the first period in which an external force is applied and the second period in which no external force is applied. Gain,
Further, a disturbance signal due to irregular vibration of the object to be measured is passed through at least one of the first and second periods, and the noise amount is obtained by integrating and holding the signal, and the first and second integrated amounts are obtained. By calculating the 8/N ratio from the noise amount, the external force f(t) is specified to adjust the external force f (t), which should always ensure the expected S/N ratio, and the corresponding displacement Since the elongation rate is calculated using the amount, the shape of the object to be measured can be periodically obtained in the first period and the second period, and the shape can be detected with a fast response speed. By adjusting the external force, it is possible to detect the shape with high precision.Furthermore, by obtaining the elongation rate of the object to be measured, the shape of the object to be measured can be quantitatively understood as the degree of physical shape defect. .

【図面の簡単な説明】[Brief explanation of the drawing]

Wj1図はこの発明の一実施例による形状検出装置を示
すブロック図、第2図は第1図の装置の各部の信号処理
の信号波形図、第3図は張力分布と伸び率の関係を示す
張力分布図、第4図は従来の形状検出装置を示すブロッ
ク図、第5図は従来装置の信号処理の信号波形図である
。 図において、1は帯状体、4aは外力印加装置、4b#
−を変位検出器、4Cは変位変換器、5.81は極性切
替器、6 、22 、82は積分回路、7 、2i9 
、88はサンプルホールド回路、21はバイパスフィル
タ、26゜34はタイミング発生回路、27は印加外力
演算器、あけ駆動信号発生器、29は変位平均値演算器
、30は伸び本漬算器。 尚、図中、同一符号は同一、又は相当部分を示す。
Figure 1 is a block diagram showing a shape detection device according to an embodiment of the present invention, Figure 2 is a signal waveform diagram of signal processing of each part of the device in Figure 1, and Figure 3 shows the relationship between tension distribution and elongation rate. A tension distribution diagram, FIG. 4 is a block diagram showing a conventional shape detection device, and FIG. 5 is a signal waveform diagram of signal processing of the conventional device. In the figure, 1 is a strip, 4a is an external force applying device, and 4b#
- is a displacement detector, 4C is a displacement converter, 5.81 is a polarity switcher, 6, 22, 82 is an integrating circuit, 7, 2i9
, 88 is a sample and hold circuit, 21 is a bypass filter, 26, 34 is a timing generation circuit, 27 is an applied external force calculator, an opening drive signal generator, 29 is a displacement average value calculator, and 30 is an elongated book adder. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)1周期が第1の期間と第2の期間とから成る駆動
信号を入力し、被測定体面の幅方向と交叉する方向に張
力を印加された被測定体に前記幅方向に沿つて前記第1
の期間毎に外力を印加する外力印加手段と、前記外力印
加に伴なう前記被測定体の幅方向に沿つたN箇所の変位
を検出してN箇の変位検出信号を発生する変位検出手段
とを有し、前記変位検出信号に基づき被測定体の形状を
示す形状信号を出力する形状検出装置において、前記第
1の期間毎の変位検出信号および前記被測定体に前記外
力を印加しない前記第2の期間毎の極性反転した変位検
出信号を積分する第1の積分処理手段と前記の積分処理
手段に対し1/2周期おくれた周期で前記被測定体に前
記外力を印加しない前記第2の期間毎の極性反転した変
位検出信号と、前記外力を印加した次の周期の第1の期
間毎の変位検出信号を積分する第2の積分処理手段と、
前記第1および第2の期間の少くとも一方の期間毎に前
記各変位検出信号に各々含まれる、前記被測定体の不規
則振動による各雑音成分の各第3積分量を出す第3の積
分処理手段と、前記第1、第2および第3積分量からS
/N比を演算し、このS/N比に基づき所望のS/N比
を得るために前記外力印加手段が発生すべき外力を演算
する印加外力演算手段と、この印加外力演算手段の演算
結果に応じた前記駆動信号を発生する駆動信号発生手段
と、前記1/2周期毎に得られるN個の第1および第2
積分量と予め設定された演算式とに基づき前記被測定体
の変位検出箇所における前記被測定体の平坦度を表わす
伸び率を前記形状信号の値として演算する伸び率演算手
段と、前記駆動信号の参照信号に基づき前記第1、第2
および第3の積分処理手段の動作上におけるタイミング
を制御するタイミング発生手段とを備えたことを特徴と
する形状検出装置。
(1) A drive signal whose one period consists of a first period and a second period is input, and tension is applied to the object to be measured in a direction crossing the width direction of the surface of the object to be measured along the width direction. Said first
an external force applying means that applies an external force every period of time; and a displacement detecting means that detects displacements at N locations along the width direction of the object to be measured due to the application of the external force and generates N displacement detection signals. and a shape detection device that outputs a shape signal indicating the shape of the object to be measured based on the displacement detection signal, wherein the displacement detection signal for each first period and the shape signal in which the external force is not applied to the object to be measured are provided. a first integral processing means that integrates a displacement detection signal whose polarity is inverted for each second period; and a second integral processing means that does not apply the external force to the object to be measured at a period that is 1/2 period behind the integral processing means. a second integral processing means that integrates the displacement detection signal whose polarity has been inverted for each period and the displacement detection signal for each first period of the next period in which the external force is applied;
a third integral that calculates a third integral amount of each noise component due to irregular vibrations of the object to be measured, which is included in each of the displacement detection signals for at least one of the first and second periods; a processing means and S from the first, second and third integral quantities;
/N ratio, and an applied external force calculating means for calculating an external force that the external force applying means should generate in order to obtain a desired S/N ratio based on this S/N ratio, and a calculation result of the applied external force calculating means. drive signal generating means for generating the drive signal according to
elongation rate calculating means for calculating an elongation rate representing the flatness of the measured object at a displacement detection location of the measured object as a value of the shape signal based on an integral amount and a preset calculation formula; and the driving signal. The first and second
and timing generating means for controlling the operational timing of the third integral processing means.
(2)前記N箇の差分信号をC(X_1)、C(X_2
)、・・・、C(X_N)とし、前記被測定体の幅方向
の位置座標をxとし、前記x座標のxの位置における前
記N箇の差分信号の内で対応する差分信号をC(x)と
し、前記被測定体に前記張力を印加しているスパーンに
対応する値をLとし、前記被測定体に印加される単位幅
当りの外力に対応する前記被測定体の振幅に対応する値
をaとし、力の釣合いに対する係数に対応する値をKと
し、前記被測定体の弾性係数に対応する値をEとし、前
記伸び率をβ(x)とすると、前記演算式は、 β(x)=(L・a)/(2・K・E)([1/@C@
]−[1/C(x)])但し、@C@=1/N〔C(x
_1)+C(x_2)+・・・・・・+C(X_N)〕
で与えられることを特徴とする特許請求の範囲第1項記
載の形状検出装置。
(2) The above N difference signals are converted to C(X_1), C(X_2
), . x), the value corresponding to the span applying the tension to the object to be measured is L, and the amplitude of the object to be measured corresponds to the external force per unit width applied to the object to be measured. When the value is a, the value corresponding to the coefficient for force balance is K, the value corresponding to the elastic modulus of the object to be measured is E, and the elongation rate is β(x), the calculation formula is β (x)=(L・a)/(2・K・E)([1/@C@
]-[1/C(x)]) However, @C@=1/N[C(x
_1)+C(x_2)+・・・・・・+C(X_N)]
A shape detection device according to claim 1, characterized in that it is given by:
JP4967387A 1987-03-04 1987-03-04 Shape detector Pending JPS63215928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4967387A JPS63215928A (en) 1987-03-04 1987-03-04 Shape detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4967387A JPS63215928A (en) 1987-03-04 1987-03-04 Shape detector

Publications (1)

Publication Number Publication Date
JPS63215928A true JPS63215928A (en) 1988-09-08

Family

ID=12837692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4967387A Pending JPS63215928A (en) 1987-03-04 1987-03-04 Shape detector

Country Status (1)

Country Link
JP (1) JPS63215928A (en)

Similar Documents

Publication Publication Date Title
US6101453A (en) Method and apparatus for analyzing vibration of housing of disk device
JP4001806B2 (en) Identification method and apparatus for non-contact measurement of vibration characteristics of structure
JPS63215928A (en) Shape detector
US3577773A (en) Method and apparatus for measuring the percentage of elongation of metal strips
JPH02129508A (en) Shape detecting device
JPS62276427A (en) Shape detector
JPS59107232A (en) Shape detector
JP3365312B2 (en) Method for detecting paint film damage position on buried steel pipe
Cawley et al. Improved frequency resolution from transient tests with short record lengths
JPS62276428A (en) Shape detector
Ueda et al. Uncertainty evaluation of a primary shock calibration method for accelerometers
JPS62276426A (en) Shape detector
JPS62276425A (en) Shape detector
JP2601799B2 (en) Bearing failure prediction method
JPH01119730A (en) Shape detection apparatus
WO2007119488A1 (en) Frequency measuring apparatus and frequency measuring method
SU554514A1 (en) Method for controlling the uniformity of cylindrical thin magnetic films and apparatus for carrying out the method
Mitchell Optical modal analysis using white-light projected fringes
JPS61233332A (en) Rotation stress measuring method
KR100299445B1 (en) Apparatus and method for measuring transformation amount of high temperature hot-rolled steel plate
JPH01277703A (en) Shape detector
JP2001141594A (en) Dynamic balancing machine and its unbalance caluculation method
JPH02302687A (en) Seismometer and apparatus using the same
Gupta et al. An Analog Interface Circuit for Damage Assessment of Structures using Electro-Mechanical Impedance Method
JPH04194670A (en) Electrostatic voltage measuring instrument