JPS63215863A - Exhaust gas reflux device for engine - Google Patents

Exhaust gas reflux device for engine

Info

Publication number
JPS63215863A
JPS63215863A JP62047919A JP4791987A JPS63215863A JP S63215863 A JPS63215863 A JP S63215863A JP 62047919 A JP62047919 A JP 62047919A JP 4791987 A JP4791987 A JP 4791987A JP S63215863 A JPS63215863 A JP S63215863A
Authority
JP
Japan
Prior art keywords
atmospheric pressure
exhaust gas
trouble
failure
deciding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62047919A
Other languages
Japanese (ja)
Other versions
JP2645274B2 (en
Inventor
Kazutomo Sasaki
佐々木 一智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP62047919A priority Critical patent/JP2645274B2/en
Publication of JPS63215863A publication Critical patent/JPS63215863A/en
Application granted granted Critical
Publication of JP2645274B2 publication Critical patent/JP2645274B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PURPOSE:To prevent the generation of error decision regardless of the variation of the atmospheric pressure by converting the trouble deciding condition responding to the variation of the atmospheric pressure, in the system in which the trouble of the exhaust gas reflux control system is decided by comparing the detected operational amount of an EGR valve and the trouble deciding level. CONSTITUTION:In an EGR valve 5 arranged at an EGR passage 4, its opening is controlled by using the suction negative pressure produced in a suction passage 3 as a valve operating source. And in a trouble deciding device 10 to input the output signals of an operational amount detecting device 8 to detect the actual operational amount of the EGR valve 5 and of a setting device 9 to set the trouble deciding level in a specific operational condition, the detected operational amount and the trouble deciding level are compared, when the operational condition is decided to be in a trouble deciding zone by a zone deciding device 11, to decide the trouble of the EGR control system. In this case, the trouble deciding condition by the trouble deciding device 10 is made to convert by a converting device 13 responding to the variation of the atmospheric pressure detected by an atmospheric pressure deciding device 12.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、故障判定機能を備えたエンジンの排気ガス還
流装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an exhaust gas recirculation device for an engine that is equipped with a failure determination function.

(従来の技術) 従来より、エンジンの排気ガス遠流量を制御するについ
て、排気ガスの還流量を調整する還流制御弁の作動源と
して吸気負圧を使用し、吸気負圧の大きさを調整して排
気ガス還流量を制御することが一般に行われている(例
えば、特公昭61−35372号公報参照)。
(Prior art) Conventionally, to control the exhaust gas distal flow rate of an engine, intake negative pressure is used as the operating source of a recirculation control valve that adjusts the exhaust gas recirculation amount, and the magnitude of the intake negative pressure is adjusted. It is common practice to control the amount of exhaust gas recirculation by using the following methods (see, for example, Japanese Patent Publication No. 35372/1983).

また、上記還流制御弁が正常に作動しているか否かを、
エンジンの特定運転領域で還流制御弁の実測作動Φと正
常状態の設定値と比較し、両者の差から故障判定を行う
考えがある。
Also, check whether the above-mentioned reflux control valve is operating normally.
One idea is to compare the actually measured operation Φ of the recirculation control valve with a set value under normal conditions in a specific operating range of the engine, and to determine a failure based on the difference between the two.

(発明が解決しようとする問題点) 上記のような排気ガスの還流において、還流制御弁の作
動量は大気圧の変動によって変化することから、高地等
の大気圧変化時に故障判定を行うと正常状態であっても
故障状態であると誤判定を行う恐れがある。すなわち、
前記還流制御弁は、吸気負圧と大気圧との差圧に応じて
作動量を調整するものであり、大気圧が低下すると吸気
負圧との差圧が小さくなって実際の還流制御弁の作動量
は低減し、この作動量が故障判定レベルより小さくなる
と還流制御系に故障が発生していなくても故障状態であ
ると判定し、これに伴って排気ガス還流の停止、点火時
期の調整、空燃比の設定等の不必要な変更制御を行う問
題がある。
(Problem to be solved by the invention) In the above-mentioned exhaust gas recirculation, the operation amount of the recirculation control valve changes depending on atmospheric pressure fluctuations, so if a failure is determined when atmospheric pressure changes such as at high altitudes, it may be normal. There is a risk that it may be incorrectly determined that the device is in a faulty state even if it is in a faulty state. That is,
The recirculation control valve adjusts its operating amount according to the differential pressure between the intake negative pressure and the atmospheric pressure, and when the atmospheric pressure decreases, the differential pressure with the intake negative pressure becomes smaller, causing the actual recirculation control valve to become smaller. The operating amount decreases, and when this operating amount becomes less than the failure judgment level, it is determined that the recirculation control system is in a failure state even if there is no failure, and accordingly, exhaust gas recirculation is stopped and the ignition timing is adjusted. , there is a problem of unnecessary change control such as air-fuel ratio setting.

そこで、本発明は上記事情に鑑み、排気ガス還流制御系
の故障判定における大気圧変動時の誤判定の発生を防止
するようにしたエンジンの排気ガス還流装置を提供する
ことを目的とするものである。
SUMMARY OF THE INVENTION In view of the above circumstances, it is an object of the present invention to provide an exhaust gas recirculation device for an engine that prevents the occurrence of erroneous determinations when atmospheric pressure fluctuates in failure determination of an exhaust gas recirculation control system. be.

−(問題点を解決するための手段) 本発明の排気ガス還流装置は、エンジンの吸気負圧を作
動源とする排気ガス還流制御弁を設けるとともに、還流
制御弁の実際の作動量を故障判定レベルと比較して排気
ガス還流制御系の故障を判定する故障判定手段を設け、
さらに、大気圧の変化を検出する大気圧判定手段と、咳
大気圧判定手段の出力を受け、大気圧の変化に応じて前
記故障判定手段の故障判定条件を変更する変更手段を設
けたことを特徴とするものである。
- (Means for solving the problem) The exhaust gas recirculation device of the present invention is provided with an exhaust gas recirculation control valve whose operating source is the intake negative pressure of the engine, and the actual operating amount of the recirculation control valve is used to determine a failure. A failure determination means is provided to determine the failure of the exhaust gas recirculation control system by comparing the level with the
Furthermore, it is provided with an atmospheric pressure determining means for detecting a change in atmospheric pressure, and a changing means for receiving the output of the cough atmospheric pressure determining means and changing the failure determination condition of the failure determining means in accordance with the change in atmospheric pressure. This is a characteristic feature.

第1図は本発明のtf4成を明示するための全体構成図
である。
FIG. 1 is an overall configuration diagram for clearly showing the tf4 configuration of the present invention.

エンジン1の排気通路2と吸気通路3間には、排気通路
2を流れる排気ガスの一部を吸気通路3に還流する排気
ガス還流通路4が接続されている。
An exhaust gas recirculation passage 4 is connected between the exhaust passage 2 and the intake passage 3 of the engine 1 . The exhaust gas recirculation passage 4 recirculates part of the exhaust gas flowing through the exhaust passage 2 to the intake passage 3 .

この排気ガス還流通路4による排気ガス還流量の調整は
、この排気ガス還流通路4に介装した還流制御弁5の作
vJfJ1を調整することによって行う。
The amount of exhaust gas recirculated by the exhaust gas recirculation passage 4 is adjusted by adjusting the operation vJfJ1 of the recirculation control valve 5 interposed in the exhaust gas recirculation passage 4.

該還流制御弁5は吸気負圧を間作動源とし、吸気通路3
に発生する吸気負圧が負圧通路6によって導入され、運
転状態に応じて上記還流制御弁5に対する吸気fA圧が
変化し、その負圧の大きさに応じた吊の排気ガスを3!
流するものである。または、還流制御弁5に対する吸気
負圧を運転状態に応じて調整手段で調整し、排気ガス還
流量を制御するものである。
The recirculation control valve 5 uses the intake negative pressure as an operating source, and the intake passage 3
The intake negative pressure generated in the above is introduced by the negative pressure passage 6, and the intake fA pressure to the recirculation control valve 5 changes depending on the operating condition, and the exhaust gas is reduced according to the magnitude of the negative pressure.
It is something that flows. Alternatively, the intake negative pressure with respect to the recirculation control valve 5 is adjusted by an adjusting means according to the operating state, and the amount of exhaust gas recirculation is controlled.

一方、前記還流制御弁5の実際の作動量を検出する作v
J量検出手段8と、特定の運転状態における故障判定レ
ベルを設定する設定手段9とを設け、両者の信号を受け
た故障判定手段10は、ゾーン判定手段11の判定によ
って運転状態が故障判定ゾーンとなったときに、検出作
!lJmと故障判定レベルとを比較して排気ガス還流制
御系の故障を判定する。
On the other hand, an operation for detecting the actual operating amount of the reflux control valve 5
A J amount detection means 8 and a setting means 9 for setting a failure judgment level in a specific operating state are provided, and the failure judgment means 10 receives signals from both, and determines that the operating state is in the failure judgment zone as determined by the zone judgment means 11. When it becomes, it is a detection work! A failure of the exhaust gas recirculation control system is determined by comparing lJm with a failure determination level.

さらに、大気圧の変化を検出する大気圧判定手段12を
設け、この大気圧判定手段12の出力を受けた変更手段
13は、大気圧の変化に応じて前記故障判定手段10の
故障判定条件を変更するものである。
Further, an atmospheric pressure determining means 12 for detecting changes in atmospheric pressure is provided, and a changing means 13 receiving the output of the atmospheric pressure determining means 12 adjusts the failure determination condition of the failure determining means 10 according to the change in atmospheric pressure. It is subject to change.

そして、上記故障判定手段10の故障判定条件を変更と
しては、大気圧の変化に応じて故障判定を行う故障判定
ゾーンを変更すること、または大気圧の変化に応じて故
障判定レベルを修正すること、大気圧の変化に応じて故
障判定の実行を停止することなどによって行うものであ
る。
The failure determination conditions of the failure determination means 10 may be changed by changing the failure determination zone in which failure determination is made in response to changes in atmospheric pressure, or by modifying the failure determination level in response to changes in atmospheric pressure. This is done by, for example, stopping execution of failure determination in response to changes in atmospheric pressure.

(作用) 上記のような排気ガス還流装置では、大気圧低下時等の
大気圧変化に応じて故障判定の誤判定が生じやすい領域
となると、この状態を大気圧判定手段で判定し、大気圧
の変化に応じて故障判定手段に6ける故障判定条件を変
更手段で変更し、大気圧が変動しても誤判定を生じない
ようにしている。
(Function) In the above-mentioned exhaust gas recirculation system, when a region is likely to cause erroneous failure judgments in response to changes in atmospheric pressure such as when atmospheric pressure drops, this condition is judged by the atmospheric pressure judgment means and the atmospheric pressure is The failure determination conditions in failure determination means 6 are changed by the change means in response to changes in the failure determination means, so that erroneous determination does not occur even if the atmospheric pressure fluctuates.

(実施例) 以下、図面に沿って本発明の詳細な説明する。(Example) The present invention will be described in detail below with reference to the drawings.

第2図は具体例のエンジンの排気ガス還流装置の概・略
構成図である。
FIG. 2 is a schematic configuration diagram of an exhaust gas recirculation device for an engine according to a specific example.

エンジン1は吸気通路3と排気通路2とを備え、排気通
路2から排気ガスの一部を吸気通路3に還流する排気ガ
ス還流通路4は、その上流端が排気通路2の上流側部分
に、下流端がスロットル弁15の下流側部分にそれぞれ
接続されている。この排気ガス還流通路4の途中には排
気ガス還流量を調整する還流制御弁5が介装され、この
還流制御弁5は吸気負圧を間作動源としている。
The engine 1 includes an intake passage 3 and an exhaust passage 2, and an exhaust gas recirculation passage 4 that recirculates a part of exhaust gas from the exhaust passage 2 to the intake passage 3 has an upstream end located at the upstream side of the exhaust passage 2. Their downstream ends are connected to the downstream portion of the throttle valve 15, respectively. A recirculation control valve 5 for adjusting the amount of exhaust gas recirculation is interposed in the middle of the exhaust gas recirculation passage 4, and the recirculation control valve 5 uses the intake negative pressure as its operating source.

前記還流制御弁5は、排気ガス還流通路4を開閉する弁
体5aがダイヤフラム5bに支持され、このダイヤフラ
ム5bによって大気室5Cと負圧室5dに区画され、該
負圧室5dには弁体5aを閉弁方向に付勢するスプリン
′グ5eが縮装されるとともに、吸気通路3に発生する
吸気負圧を導入する負圧通路6が接続されている。上記
負圧通路6の上流端は、吸気通路3のスロットル弁15
の直ぐ上流側に開口し、スロットル弁15が所定開度開
かれたときにスロットル弁15下流側の吸気負圧を負圧
室5dに導入するものである。そして、この負圧通路6
によって導入される吸気負圧が大きいほど還流制御弁5
の開度が大きく、排気ガス還流量が増加する。
In the recirculation control valve 5, a valve element 5a for opening and closing the exhaust gas recirculation passage 4 is supported by a diaphragm 5b, and is divided into an atmospheric chamber 5C and a negative pressure chamber 5d by the diaphragm 5b. A spring 5e that urges the valve 5a in the valve closing direction is compressed, and a negative pressure passage 6 that introduces the negative intake pressure generated in the intake passage 3 is connected. The upstream end of the negative pressure passage 6 is connected to the throttle valve 15 of the intake passage 3.
It opens immediately upstream of the throttle valve 15, and when the throttle valve 15 is opened to a predetermined opening degree, intake negative pressure downstream of the throttle valve 15 is introduced into the negative pressure chamber 5d. And this negative pressure passage 6
The larger the intake negative pressure introduced by the recirculation control valve 5
The opening degree is large, and the amount of exhaust gas recirculation increases.

また、上記負圧通路6には、排気ガス還流通路4の排圧
に応じて前記還流制御弁5に導入する吸気負圧を調整す
るモジュレータバルブ16が設置されている。このモジ
ュレータパルプ16は、負圧通路6のオリフィス6a下
流に連通ずるリーク口16aを備え、該リーク口16a
をダイヤフラム16bの偏位によって開閉するものであ
り、該ダイヤフラム16bの背部の排圧室16cには圧
力通路17が接続されて還流制御弁5より上流でオリフ
ィス4aより下流の排気ガス還流通路4の排圧が導入さ
れ、リーク口16aが開口するリーク至16dは大気に
開放されるとともにスプリング16eが縮装されている
。そして、排気ガス遠流通路4の排圧が大きいほどリー
ク口16aが閉じられて負圧通路6の吸気負圧の大気へ
のリーク吊が少なくなり、排気ガス還流量が増大するも
のである。
Further, a modulator valve 16 is installed in the negative pressure passage 6 to adjust the intake negative pressure introduced into the recirculation control valve 5 according to the exhaust pressure of the exhaust gas recirculation passage 4. This modulator pulp 16 is provided with a leak port 16a communicating downstream of the orifice 6a of the negative pressure passage 6.
A pressure passage 17 is connected to the exhaust pressure chamber 16c at the back of the diaphragm 16b, and a pressure passage 17 is connected to the exhaust gas recirculation passage 4 upstream from the reflux control valve 5 and downstream from the orifice 4a. Exhaust pressure is introduced, and the leak hole 16d where the leak port 16a opens is opened to the atmosphere and the spring 16e is compressed. The larger the exhaust pressure in the exhaust gas remote flow passage 4 is, the more the leak port 16a is closed, the less the intake negative pressure in the negative pressure passage 6 leaks into the atmosphere, and the amount of exhaust gas recirculated increases.

一方、前記還流制御弁5には弁体5aの開度すなわちリ
フト吊を計測するポジションセンサ18が配設され、こ
のポジションセンサ18の検出信号は、コントロールユ
ニット19に出力される。
On the other hand, the recirculation control valve 5 is provided with a position sensor 18 that measures the opening degree of the valve body 5a, that is, the lift suspension, and a detection signal of the position sensor 18 is output to the control unit 19.

該コントロールユニット19は還流制御弁5を含む制御
系の故障判定を行うものであり、ポジションセンサ18
の検出信号の他、大気圧を検出する大気圧センサ20か
らの大気圧信号A、吸気負圧を検出する負圧センサ21
からの負圧信号B1エンジン回転数を検出するために回
転センサ22からの回転数信号Neがそれぞれ入力され
る。
The control unit 19 is for determining failure of the control system including the reflux control valve 5, and the position sensor 18
In addition to the detection signal A from the atmospheric pressure sensor 20 that detects atmospheric pressure, the negative pressure sensor 21 that detects intake negative pressure.
A rotational speed signal Ne from a rotation sensor 22 is input to detect the engine rotational speed.

そして、上記コントロールユニット19は、基本的には
吸気負圧(負荷)とエンジン回転数によって定まる故障
判定ゾーンになると、ポジションセンサ18出力による
還流制御弁5の実測リフト吊と予め設定されている故障
判定レベルとを比較して、実測リフト量が判定レベル以
下の場合に故障判定を行うものであり、大気圧センサ2
0の信号に基づいて大気圧低下時すなわち高地時におい
ては故障判定ゾーンを高負荷側に移行した領域で行うよ
うに制御する。
When the control unit 19 reaches a failure determination zone that is basically determined by the intake negative pressure (load) and the engine rotation speed, the control unit 19 determines the actual lift of the recirculation control valve 5 based on the output of the position sensor 18 and a preset failure. It compares with the judgment level and determines a failure when the measured lift amount is less than the judgment level, and the atmospheric pressure sensor 2
Based on the zero signal, when the atmospheric pressure is low, that is, at high altitudes, the failure determination zone is controlled to be in a region shifted to the high load side.

上記コントロールユニット19の作動を第3図のフロー
チャートに基づいて説明する。スタート後、ステップ8
1〜S3でエンジン回転数Nθ、ポジションセンサ18
からの実測リフト量P1負圧センサ21からの吸気負圧
Bをそれぞれ読み込む。 また、ステップS4で大気圧
センサ20からの大気圧Aを読み込み、ステップS5で
この大気圧へが所定値以下の高地か否かの判定を行う。
The operation of the control unit 19 will be explained based on the flowchart shown in FIG. After the start, step 8
1 to S3, engine rotation speed Nθ, position sensor 18
The measured lift amount P1 from the negative pressure sensor 21 and the intake negative pressure B from the negative pressure sensor 21 are respectively read. Further, in step S4, the atmospheric pressure A from the atmospheric pressure sensor 20 is read, and in step S5, it is determined whether or not this atmospheric pressure is at a high altitude below a predetermined value.

この判定がNOで低地時には、ステップS6で故障判定
ゾーンの吸気負圧Bの上下限値Ss 、 82を低地用
の設定値B ns * B n2に設定する一方、上記
判定がYESで高地時には、ステップS7で故障判定ゾ
ーンの負圧の上下限値B1.B2を高地用の設定値3h
1 # Bhzに設定する。この高地用の設定値B h
l 1 B hzは、低地用の設定値ant 、8nz
よりも吸気負圧が低い大気圧側すなわち高負荷側の値に
設定されている。
If this determination is NO and the system is at a low altitude, in step S6, the upper and lower limit values Ss, 82 of the intake negative pressure B in the failure determination zone are set to the set value Bns*Bn2 for low altitudes, whereas when the above determination is YES and the system is at a high altitude, In step S7, the upper and lower limits of negative pressure in the failure determination zone B1. Set B2 to high altitude setting value 3h.
1 # Set to Bhz. This high altitude setting value B h
l 1 B hz is the setting value ant for lowlands, 8nz
The intake negative pressure is set to a value on the atmospheric pressure side, that is, on the high load side.

ステップS8は負圧センサ21の出力から吸気負圧Bが
上記上下限値Bs 、Bzの範囲内が否かを判定するも
のであり、また、ステップS9はエンジン回転数Neが
故障判定ゾーンの設定回転数Ns〜N2の範囲内か否か
を判定するものであり、両ステップ88.89の判定が
YESの場合が故障判定ゾーン内にある場合であり、こ
のときにはステップ810で故障判定を行う。この故障
判定は、実測リフト吊Pが予め設定されている故障判定
レベルpt未満か否かを判定するものであり、この故障
判定レベルPtは上記故障判定ゾーンでの運転状態にお
ける最低リフト吊に対応した値に設定され、実測リフト
ff1Pがこの故障判定レベルpt以下の通常存在しな
い値となった状態を故障発生時と判定するものである。
In step S8, it is determined from the output of the negative pressure sensor 21 whether the intake negative pressure B is within the range of the upper and lower limit values Bs and Bz, and in step S9, the engine speed Ne is determined to be within the range of the failure determination zone. It is determined whether or not the rotational speed is within the range of Ns to N2. If the determinations in both steps 88 and 89 are YES, this means that it is within the failure determination zone, and in this case, failure determination is performed in step 810. This failure determination is to determine whether or not the measured lift lift P is less than a preset failure determination level pt, and this failure determination level Pt corresponds to the minimum lift lift in the operating state in the failure determination zone. A state in which the actually measured lift ff1P reaches a value below this failure determination level pt, which does not normally exist, is determined to be a failure occurrence.

上記ステップ810の判定がYESとなった故障発生時
には、ステップ811で故障表示の出力を行うとともに
、ステップ812で故障発生に伴う点火時期補正等の各
種バックアップ制御を行う。
When a failure occurs and the determination in step 810 is YES, a failure indication is output in step 811, and various backup controls such as ignition timing correction are performed in step 812.

また、ステップS10の判定がNOで故障が発生してい
ない場合、および前記ステップS8もしくは$9の判定
がNOで故障判定ゾーンにない場合には、ステップS1
に戻ってセンサ入力を行うものである。
Further, if the determination in step S10 is NO and no failure has occurred, and if the determination in step S8 or $9 is NO and it is not in the failure determination zone, step S1
The sensor input is performed by returning to the .

この実施例においては、高地で大気圧が低下し、同じ吸
気負圧での還流制御弁5のリフト量が低減する状態に対
し、同じ故障判定レベルであっても故障判定ゾーンを修
正して相対的に故障判定レベルを小さな値に修正したの
と同様の補正を行い、これにより高地での誤判定の発生
を防止している。
In this embodiment, even if the failure judgment level is the same, the failure judgment zone is corrected and the relative The same correction was made as the failure judgment level was revised to a small value in order to prevent false judgments from occurring at high altitudes.

第4図は他の実施例のフローチャートを示し、鎖線で囲
んだ大気圧に応じて故障判定条件を変更する部分以外は
、第3図のフローチャートと同様であり、同一ステップ
には同じ符号を付している。
FIG. 4 shows a flowchart of another embodiment, which is the same as the flowchart in FIG. 3 except for the part surrounded by a chain line in which the failure judgment conditions are changed according to the atmospheric pressure, and the same steps are given the same reference numerals. are doing.

この例では故障判定レベルそのものを大気圧に応じて修
正するようにしている。
In this example, the failure determination level itself is modified according to the atmospheric pressure.

すなわち、ステップS4で前記と同様に大気圧センサ2
0からの大気圧Aを読み込み、ステップS5でこの大気
圧Aに基づいて高地か否かを判定し、この判定がNOで
低地時にはステップ86’で故障判定レベルptを低地
用の設定値p tn+=設定する一方、上記判定がYE
Sで高地時にはステップ87’で故障判定レベルptを
高地用の設定値pthに設定する。この高地用の設定値
ptnは、低地用の設定値ptnより小さな値に設定さ
れている。上記のように故障判定レベルptを設定した
後、ステップ88.89で故障判定ゾーンの判定を行い
、ステップ810で前記大気圧に応じて設定された故障
判定レベルPtに基づいて故障判定を行うものである。
That is, in step S4, the atmospheric pressure sensor 2
Atmospheric pressure A from 0 is read, and in step S5 it is determined whether or not it is a highland based on this atmospheric pressure A. If this determination is NO and lowland, then in step 86' the failure determination level pt is set to a set value for lowland p tn+ = setting, but the above judgment is YE
When S is a high altitude, the failure determination level pt is set to a high altitude setting value pth in step 87'. This setting value ptn for highlands is set to a smaller value than the setting value ptn for lowlands. After setting the failure determination level pt as described above, the failure determination zone is determined in steps 88 and 89, and the failure determination is performed in step 810 based on the failure determination level Pt set according to the atmospheric pressure. It is.

この例においても、大気圧に応じた故障判定レベルの修
正により大気圧低下時すなわち高地でのリフト量低減に
伴う誤判定の発生を防止している。
In this example as well, the failure determination level is corrected according to the atmospheric pressure to prevent the occurrence of erroneous determinations due to a reduction in lift amount when atmospheric pressure drops, that is, at high altitudes.

なお、第3図および第4図の各側では、大気圧の大きさ
に応じて2段階に故障判定ゾーンおよび故障判定レベル
を修正設定するようにしているが、この設定値は大気圧
の大きさに応じてさらに多段階もしくは連続的に設定す
るようにしてもよい。
Note that on each side of Figures 3 and 4, the failure judgment zone and failure judgment level are modified and set in two stages according to the magnitude of atmospheric pressure; Depending on the situation, the settings may be made in more steps or continuously.

その際大気圧センサ20としては大気圧を連続的に検出
するセンサが必要であるが、前記のような2段階修正の
ものでは、大気圧変化に応じてオン・オフ作動する大気
圧スイッチが使用可能である。
At this time, a sensor that continuously detects atmospheric pressure is required as the atmospheric pressure sensor 20, but the two-stage modification described above uses an atmospheric pressure switch that turns on and off according to changes in atmospheric pressure. It is possible.

次に、第5図はさらに他の実施例のフローチャートを示
し、鎖線で囲んだ大気圧に応じて故障判定条件を変更す
る部分以外は、第3図のフローチャートと同様であり、
同一ステップには同じ符号を付している。この例では大
気圧が低下した高地においては故障判定は行わないよう
にしている。
Next, FIG. 5 shows a flowchart of still another embodiment, which is the same as the flowchart of FIG. 3 except for the part surrounded by a chain line in which the failure judgment conditions are changed according to the atmospheric pressure.
Identical steps are given the same reference numerals. In this example, failure determination is not performed at high altitudes where atmospheric pressure has decreased.

すなわち、ステップS4で前記と同様に大気圧センサ2
0からの大気圧Aを読み込み、ステップS5でこの大気
圧Aに基づいて高地か否かを判定し、この判定がNOで
低地時にはそのままステップS8の故障判定ゾーンの判
定に進む一方、上記判定がYESで高地時にはステップ
S1に戻って、故障判定を行わないものである。
That is, in step S4, the atmospheric pressure sensor 2
The atmospheric pressure A from 0 is read, and in step S5 it is determined whether or not the area is at a high altitude based on this atmospheric pressure A. If this determination is NO and the area is at a low altitude, the process directly proceeds to step S8 to determine the failure determination zone. If YES is determined at high altitude, the process returns to step S1 and no failure determination is performed.

この例においても°、高地では故障判定条件すなわち故
障判定を行うか否かを変更して誤判定の発生を防止する
ものである。
In this example as well, at high altitudes, the failure determination conditions, that is, whether or not to perform a failure determination are changed to prevent the occurrence of erroneous determination.

(発明の効果) 上記のような本発明によれば、大気圧の変化を検出する
大気圧判定手段と、該大気圧判定手段の出力を受け、大
気圧の変化に応じて前記故障判定手段の故障判定条件を
変更する変更手段を備えたことにより、大気圧が変動し
ても誤判定の発生を防止することができ、精度のよい故
障判定と、最適な排気ガス還流を確保することができる
ものである。
(Effects of the Invention) According to the present invention as described above, there is provided an atmospheric pressure determining means for detecting a change in atmospheric pressure, and an output of the atmospheric pressure determining means is received, and the failure determining means is determined according to the change in atmospheric pressure. By providing a means to change the failure judgment conditions, it is possible to prevent false judgments from occurring even when atmospheric pressure fluctuates, ensuring accurate failure judgment and optimal exhaust gas recirculation. It is something.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を明示するためのエンジンの排気
ガス還流装置の全体構成図、 第2図は具体例のエンジンの概略栴成図、第3図はコン
トロールユニットの作動を説明するだめのフローチャー
ト図、 第4図は他の例におけるコントロールユニットの作動を
説明するためのフローチャート図、第5図はさらに他の
例におけるコントロールユニットの作動を説明するため
のフローチャート図である。 1・・・・・・エンジン、2・・・・・・排気通路、3
・・・・・・吸気通路、4・・・・・・排気ガス遠流通
路、5・・・・・・速流制御弁、6・・・・・・負圧通
路、8・・・・・・作IIJ吊検出手段、9・・・・・
・設定手段、10・・・・・・故障判定手段、11・・
・・・・ゾーン判定手段、12・・・・・・大気圧判定
手段、13・・・・・へ変更手段、18・・・・・・ポ
ジションセンサ、19・・・・・・コントロールユニッ
ト、20・・・・・・大気圧センサ。 第1図 第2図 第3図 第4図 第5図
Fig. 1 is an overall configuration diagram of an engine exhaust gas recirculation device to clearly demonstrate the configuration of the present invention, Fig. 2 is a schematic diagram of a concrete example engine, and Fig. 3 is a diagram illustrating the operation of the control unit. FIG. 4 is a flowchart for explaining the operation of the control unit in another example, and FIG. 5 is a flowchart for explaining the operation of the control unit in still another example. 1...Engine, 2...Exhaust passage, 3
...Intake passage, 4...Exhaust gas remote flow passage, 5...Fast flow control valve, 6...Negative pressure passage, 8... ...Saku IIJ hanging detection means, 9...
・Setting means, 10... Failure determination means, 11...
... Zone determination means, 12 ... Atmospheric pressure judgment means, 13 ... Change means, 18 ... Position sensor, 19 ... Control unit, 20...Atmospheric pressure sensor. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1) エンジンの吸気負圧を作動源とする排気ガス還
流制御弁を設けるとともに、上記還流制御弁の実際の作
動量を検出する作動量検出手段と、故障判定レベルを設
定する設定手段と、上記作動量検出手段と設定手段との
信号を受け、検出作動量と故障判定レベルとを比較して
排気ガス還流制御系の故障を判定する故障判定手段とを
備えたエンジンの排気ガス還流装置において、大気圧の
変化を検出する大気圧判定手段と、該大気圧判定手段の
出力を受け、大気圧の変化に応じて前記故障判定手段の
故障判定条件を変更する変更手段を備えたことを特徴と
するエンジン排気ガス還流装置。
(1) An exhaust gas recirculation control valve whose operation source is the intake negative pressure of the engine is provided, an operation amount detection means for detecting the actual operation amount of the recirculation control valve, and a setting means for setting a failure determination level; In an exhaust gas recirculation system for an engine, the engine exhaust gas recirculation device includes a failure determination means that receives signals from the operation amount detection means and the setting means and compares the detected operation amount with a failure determination level to determine a failure of the exhaust gas recirculation control system. , comprising an atmospheric pressure determining means for detecting a change in atmospheric pressure, and a changing means for receiving the output of the atmospheric pressure determining means and changing the failure determination condition of the failure determining means in accordance with the change in atmospheric pressure. Engine exhaust gas recirculation device.
JP62047919A 1987-03-03 1987-03-03 Engine exhaust gas recirculation system Expired - Fee Related JP2645274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62047919A JP2645274B2 (en) 1987-03-03 1987-03-03 Engine exhaust gas recirculation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62047919A JP2645274B2 (en) 1987-03-03 1987-03-03 Engine exhaust gas recirculation system

Publications (2)

Publication Number Publication Date
JPS63215863A true JPS63215863A (en) 1988-09-08
JP2645274B2 JP2645274B2 (en) 1997-08-25

Family

ID=12788773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62047919A Expired - Fee Related JP2645274B2 (en) 1987-03-03 1987-03-03 Engine exhaust gas recirculation system

Country Status (1)

Country Link
JP (1) JP2645274B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63263254A (en) * 1987-04-20 1988-10-31 Toyota Motor Corp Diagnosis device for exhaust gas recirculation apparatus of internal combustion engine
JPH01166752U (en) * 1988-05-17 1989-11-22

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55123345A (en) * 1979-03-12 1980-09-22 Toyota Motor Corp Exhaust gas reflux apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55123345A (en) * 1979-03-12 1980-09-22 Toyota Motor Corp Exhaust gas reflux apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63263254A (en) * 1987-04-20 1988-10-31 Toyota Motor Corp Diagnosis device for exhaust gas recirculation apparatus of internal combustion engine
JPH01166752U (en) * 1988-05-17 1989-11-22

Also Published As

Publication number Publication date
JP2645274B2 (en) 1997-08-25

Similar Documents

Publication Publication Date Title
JP2926917B2 (en) Vehicle abnormality diagnosis device
US4748567A (en) Method of performing a fail safe control for an engine and a fail safe control unit thereof
US6305361B1 (en) Evaporative system and method of diagnosing same
US5954034A (en) Malfunction diagnosis apparatus for evaporated fuel purge system
US5154156A (en) Failure diagnosis device of an exhaust gas recirculation control device
JPH04103865A (en) Exhaust air circulation control method for internal combustion engine
KR100854182B1 (en) Method for diagnosing the actuation of a regulating device for a swirl control valve
JPS63215863A (en) Exhaust gas reflux device for engine
JPH05187240A (en) Air intake control device for internal combustion engine
US4723528A (en) Diagnosing system for an exhaust gas recirculation system of an automotive engine
JPH06159157A (en) Fault diagnostic device of evaporation-purge system
JPH094507A (en) Diagnosis device of supercharging pressure sensor
JPS59185857A (en) Exhaust feedback amount control method for internal- combustion engine
JP2582973B2 (en) Exhaust gas recirculation device failure diagnosis device
JPH0763122A (en) Abnormality deciding device for exhaust gas reflux pipe
JP2973849B2 (en) Method for determining air volume switching in combustion device
JPH06229246A (en) Controller of engine provided with supercharger
JPS5996451A (en) Air-fuel ratio control device for engine
JPH06264828A (en) Failure diagnostic device for exhaust gas recirculation device
JP2591293B2 (en) Exhaust gas recirculation device failure diagnosis device
JPH01220788A (en) Device and method for leak sensing for shutoff valve
KR19990034711A (en) Leak Detection Apparatus and Method for Effervescent System
JPH07332163A (en) Exhaust gas reflux control device of internal combustion engine
JPH03237252A (en) Engine control device
JPH01216051A (en) Fail safe device for internal combustion engine for vehicle

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees