JPS59185857A - Exhaust feedback amount control method for internal- combustion engine - Google Patents

Exhaust feedback amount control method for internal- combustion engine

Info

Publication number
JPS59185857A
JPS59185857A JP58059830A JP5983083A JPS59185857A JP S59185857 A JPS59185857 A JP S59185857A JP 58059830 A JP58059830 A JP 58059830A JP 5983083 A JP5983083 A JP 5983083A JP S59185857 A JPS59185857 A JP S59185857A
Authority
JP
Japan
Prior art keywords
valve
pressure
valve opening
exhaust
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58059830A
Other languages
Japanese (ja)
Inventor
Takashi Koumura
隆 鴻村
Toyohei Nakajima
中島 豊平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP58059830A priority Critical patent/JPS59185857A/en
Publication of JPS59185857A publication Critical patent/JPS59185857A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0077Control of the EGR valve or actuator, e.g. duty cycle, closed loop control of position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/49Detecting, diagnosing or indicating an abnormal function of the EGR system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PURPOSE:To have sure and proper compensative operation at the time of abnormality by sensing any abnormal condition in the valve degree-of-opening control system for the exhaust feedback valve certainly, in controlling the exhaust feedback amount in an internal-combustion engine. CONSTITUTION:In controlling the exhaust feedback amount in an internal-combustion engine, a valve degree-of-opening sensor 24 is installed to sense the degree of opening of an exhaust feedback valve 19 provided on the way of exhaust feedback line 18 which connects the exhaust passage 13 of the engine 1 with its suction passage 2. The deviation of this actually sensed degree of opening of the valve from a valve opening target value for said exhaust feedback valve 19, which is in correspondence to the required amount of exhaust feedback, is determined, and a valve operating means for this valve 19 is controlled so as to set this deviation to zero. If the condition in which the absolute value of this deviation is over a specific level has lasted for a certain specified period of time, it shall be judged that the valve degree-of- opening control system incl. sensor 24 is in abnormal state, and the valve 19 is shut fully at the same time. If the pressure difference or pressure ratio of those applied to the two sides of a pressure response member 19b of the valve 19 lies within a specific range, the abnormality judgement for the valve degree-of-opening control system shall be omitted.

Description

【発明の詳細な説明】 本発明は内燃エンジンの排気還流量制御方法に関し、特
に、捕゛気還流弁の弁開度I11御系の異常を検出する
ことに、好ましくは同時に異常補償動作をさせる排気還
流量制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the amount of exhaust gas recirculation in an internal combustion engine, and in particular, detecting an abnormality in a valve opening I11 control system of a trap air recirculation valve and preferably performing an abnormality compensation operation at the same time. This invention relates to an exhaust gas recirculation amount control method.

内燃エンジンの排気ガスの一部を吸気通路に還流させ、
エンジンから発生する有害ガスの一つである窒素酸化物
を低減する方法は広く行われている。また、この吸気通
路に還流させる排気ガスの排気還流量をエンジン運転状
態に応じた適宜量とするため、排気還流路途中に配設さ
れた排気還流弁の弁開度を検出し、排気還流弁の実弁開
度値が排気還流量が適宜量となる弁開度目標値となるよ
うに排気還流弁を制御する方法が知られている。
A part of the exhaust gas of the internal combustion engine is returned to the intake passage,
Methods of reducing nitrogen oxides, which are one of the harmful gases emitted from engines, are widely used. In addition, in order to adjust the amount of exhaust gas recirculated to this intake passage to an appropriate amount depending on the engine operating condition, the valve opening degree of the exhaust recirculation valve installed in the middle of the exhaust recirculation path is detected, and the exhaust gas recirculation valve is There is a known method for controlling the exhaust gas recirculation valve so that the actual valve opening value of the exhaust gas recirculation valve becomes the valve opening target value at which the exhaust gas recirculation amount becomes an appropriate amount.

かかる排気還流量制御方法において、弁開度を検出する
弁開度センサを含む弁開度制御系が断線等により異常と
なった場合、排気還流量制御が正確に行なえなくなるこ
とは明白であり、エンジン運転状態によっては排気還流
が不要であるのに排気還流されることにより運転性能が
著しく悪化する場合が生じ得る。このため弁開度センサ
からの実弁開度値と弁開度目標値の両者の比又は偏差が
許容範囲を超えたことを検知して、警報を発するように
したものが知られている(特開昭55−423345号
)。
In such an exhaust gas recirculation amount control method, if the valve opening control system including the valve opening sensor that detects the valve opening becomes abnormal due to a disconnection or the like, it is obvious that the exhaust gas recirculation amount cannot be controlled accurately. Depending on the engine operating conditions, exhaust gas recirculation may occur even though exhaust gas recirculation is not necessary, resulting in a significant deterioration of operating performance. For this reason, there is a known device that detects that the ratio or deviation between the actual valve opening value and the valve opening target value from the valve opening sensor exceeds a permissible range, and issues an alarm ( JP-A No. 55-423345).

しかるに排気還流弁を開閉作動させる作動手段に、例え
ば、流体圧を利用した差圧応動型作動手段を使用すると
エンジン運転状態に応じた弁開度目標値が入力しても作
動手段の持つ時定数により実弁開度が目標値となるのに
時間遅れがあり、上述の弁開度制御系の異常判別にはか
かる時間遅れ゛を考慮に入れないと正常な作動をしてい
るのに異常と誤診してしまう場合が生じる。
However, if a differential pressure-responsive operating means that uses fluid pressure is used as the operating means for opening and closing the exhaust gas recirculation valve, the time constant of the operating means is Therefore, there is a time delay for the actual valve opening to reach the target value, and if this time delay is not taken into account when determining an abnormality in the valve opening control system described above, an abnormality may be detected even though the valve opening control system is operating normally. Misdiagnosis may occur.

尚、新たな弁開度目標値に基づいて排気還流制御弁の弁
開度の変化すべき量が非常に小さい場合、すなわち、弁
開度目標値と実弁開度値の偏差が弁開度センサの不感帯
値以下の場合、弁開度目標値と実弁開度値の偏差はいく
ら時間が経過しても零にはならない。
In addition, if the amount by which the valve opening of the exhaust recirculation control valve should change based on the new valve opening target value is very small, that is, the deviation between the valve opening target value and the actual valve opening value is the valve opening. When the value is equal to or less than the dead band value of the sensor, the deviation between the target valve opening value and the actual valve opening value does not become zero no matter how much time passes.

更に1例えば高地では大気圧が低下するので前記差圧応
動型作動手段の差圧応動部材の両面に作用する差圧、す
なわち大気圧と吸気管内のいずれかの位置の圧力とから
得ている場合には、両者の差圧が小さくなり、作動手段
に弁開度目標値に応じた制御信号が入力しても作動手段
は作動できなくなる。かかる場合にも弁開度目標値と実
弁開度値の両者の比又は偏差によって異常の判別を実行
すると弁開度制御系に異常がないのに異常であると誤診
をしてしまう。
Furthermore, 1. For example, since atmospheric pressure decreases at high altitudes, the pressure is obtained from the differential pressure acting on both sides of the differential pressure responsive member of the differential pressure responsive actuating means, that is, the atmospheric pressure and the pressure at any position within the intake pipe. , the differential pressure between the two becomes small, and the actuating means cannot operate even if a control signal corresponding to the valve opening target value is input to the actuating means. Even in such a case, if abnormality is determined based on the ratio or deviation between the target valve opening value and the actual valve opening value, the valve opening control system will be misdiagnosed as abnormal even though there is no abnormality.

本発明はかかる問題点を解決するためになされたもので
、排気還流弁の弁開度目標値と実弁開度値との偏差の絶
対値が所定値以上である状態が所定時間に亘って継続し
たとき、弁開度センサを含む弁開度制御系が異常である
と判別すると共にこの異常検出時に、例えば、排気還流
弁を全閉にするようにして確実に異常時の補償動作を行
なわせるようにした内燃エンジンの排気還流弁開度制御
系の異常検出補償方法を提供するものである。
The present invention has been made to solve this problem, and the present invention has been made in such a way that the absolute value of the deviation between the target valve opening value and the actual valve opening value of the exhaust recirculation valve remains at a predetermined value or more for a predetermined period of time. If this continues, the valve opening control system including the valve opening sensor determines that there is an abnormality, and when this abnormality is detected, the exhaust gas recirculation valve is fully closed, for example, to ensure compensation for the abnormality. The present invention provides a method for detecting and compensating for an abnormality in an exhaust gas recirculation valve opening control system for an internal combustion engine.

又、排気還流弁の圧力応動部材の両面に作用する圧力差
又は圧力比が所定範囲内のとき弁開度制御系の異常判別
を実行しないようにして異常検出の誤診を回避するよう
にした内燃エンジンの排気還流弁開度制御系の異常検出
補償方法を提供するものである。
Furthermore, when the pressure difference or pressure ratio acting on both sides of the pressure-responsive member of the exhaust gas recirculation valve is within a predetermined range, abnormality determination of the valve opening control system is not executed, thereby avoiding misdiagnosis of abnormality detection. The present invention provides a method for detecting and compensating for an abnormality in an engine exhaust recirculation valve opening control system.

以下、本発明の方法を図面を参照して説明する。Hereinafter, the method of the present invention will be explained with reference to the drawings.

第1図は本発明の方法が適用される排気還流量制御装置
の全体の構成図であり、符号1は例えば4気筒の内燃エ
ンジンを示し、エンジン1には吸気管2が接続され、吸
気管2の途中にはスロットル弁3が設けられている。ス
ロットル弁3にはスロットル弁開度センサ4が連結され
てスロットル弁の弁開度を電気的信号に変換し電子コン
トロールユニッート(以下rECUJ と言う)5に送
るようにされている。
FIG. 1 is an overall configuration diagram of an exhaust gas recirculation amount control device to which the method of the present invention is applied. Reference numeral 1 indicates, for example, a four-cylinder internal combustion engine, and an intake pipe 2 is connected to the engine 1. A throttle valve 3 is provided in the middle of the valve 2. A throttle valve opening sensor 4 is connected to the throttle valve 3 to convert the opening of the throttle valve into an electrical signal and send it to an electronic control unit (hereinafter referred to as rECUJ) 5.

一方スロットル弁3の直ぐ下流には管7を介して絶対圧
センサ(Psセセン)8が設けられており、この給圧セ
ンサ8によって電気的信号に変換された絶対圧信号は前
記ECU3に送られる。
On the other hand, an absolute pressure sensor (Ps sensor) 8 is provided immediately downstream of the throttle valve 3 via a pipe 7, and an absolute pressure signal converted into an electrical signal by this supply pressure sensor 8 is sent to the ECU 3. .

エンジン本体1にはエンジン水温センサ1oが設けられ
、このセンサ1oはサーミスタ等から成り冷却水が充満
したエンジン気筒周壁内に挿着されて、その検出水温信
号をECU3に供給する。
The engine body 1 is provided with an engine water temperature sensor 1o, which is made of a thermistor or the like, and is inserted into the circumferential wall of the engine cylinder filled with cooling water, and supplies a detected water temperature signal to the ECU 3.

エンジン回転角度位置センサ11がエンジンの図示しな
いカム軸周囲又はクランク軸周囲に取付けられており、
センサf1はTDC信号即ちエンジンのクランク軸の1
80°回転毎に所定のクランク角度位置で1パルスを出
力するものであり、このパルスはECU3に送られる。
An engine rotation angle position sensor 11 is installed around the camshaft or crankshaft (not shown) of the engine,
Sensor f1 is the TDC signal, i.e. 1 of the engine crankshaft.
One pulse is output at a predetermined crank angle position every 80° rotation, and this pulse is sent to the ECU 3.

エンジン1の排気管13には三元触媒14が配置され排
気ガス中のHC,C○、NOx、成分の浄化作用を行な
う。この三元触媒14の上流側には02センサ15が排
気管13に挿着されこのセンサ15は排気中の酸素濃度
を検出しその検出値信号をECU3に供給する。
A three-way catalyst 14 is disposed in the exhaust pipe 13 of the engine 1, and performs the action of purifying HC, CO, NOx, and other components in the exhaust gas. An 02 sensor 15 is inserted into the exhaust pipe 13 upstream of the three-way catalyst 14, and this sensor 15 detects the oxygen concentration in the exhaust gas and supplies the detected value signal to the ECU 3.

更ニ、ECU3には、大気圧を検出するセンサ16およ
びエンジンのイグニッションスイッチ17が接続されて
おり、ECU3はセンサ16がらの検出値信号およびイ
グニッションスイッチのオン・オフ状態信号を供給され
る。
Furthermore, a sensor 16 for detecting atmospheric pressure and an engine ignition switch 17 are connected to the ECU 3, and the ECU 3 is supplied with a detection value signal from the sensor 16 and an on/off state signal of the ignition switch.

排気管13を吸気管2に接続して、vト気還流通路18
が設けらh、この1lll路18の途11弓こは排気還
流弁19が設けられている。この排気還流弁19は負圧
応動弁であって、主として、通路18を開閉可能に配さ
れた弁体19aと、弁体に連結され、後述する電磁制御
弁21.22により選択され導入される大気圧または負
圧により作動するダイアフラム19bと、ダイアフラム
19bを閉弁方向に付勢するばね19cとよりなる。該
ダイアプラムにより画成される負圧室19clには連通
路2゜が接続され、吸気管2内の絶対圧が該連通路2゜
の途中に設けられた常閉型電磁制御弁22(以下「5O
L−B」と称す、)を介して導入されるようにされ、大
気室19eは大気に連通している。
The exhaust pipe 13 is connected to the intake pipe 2, and the air recirculation passage 18 is opened.
An exhaust recirculation valve 19 is provided at the end of this 1llll passage 18. This exhaust gas recirculation valve 19 is a negative pressure responsive valve, and is mainly connected to a valve body 19a arranged to be able to open and close the passage 18, and to the valve body, and is selected and introduced by electromagnetic control valves 21 and 22, which will be described later. It consists of a diaphragm 19b that is operated by atmospheric pressure or negative pressure, and a spring 19c that biases the diaphragm 19b in the valve closing direction. A communication passage 2° is connected to the negative pressure chamber 19cl defined by the diaphragm, and the absolute pressure inside the intake pipe 2 is controlled by a normally closed electromagnetic control valve 22 (hereinafter referred to as “ 5O
The atmospheric chamber 19e communicates with the atmosphere.

更に、連通路2oにはsoし・B22の下流側にて大気
連通路23が接続され、該連通路23の途中に設けられ
た常閉型電磁制御弁21(以下「sOL・A」と称す)
を介して大気圧が連通路2oに、次いで上記負圧室に導
入されるようにされている。
Furthermore, an atmosphere communication path 23 is connected to the communication path 2o on the downstream side of the solenoid B22, and a normally closed electromagnetic control valve 21 (hereinafter referred to as "sOL-A") is provided in the middle of the communication path 23. )
Atmospheric pressure is introduced into the communication path 2o and then into the negative pressure chamber.

前記5oL−A21,5OL−B22は共にECU3に
接続され、ECU3からの信号によって共働もしくは一
方のみ作動し、排気還流弁】9の弁体のリフト動作およ
びその速度を制御する。
The 5oL-A21 and 5OL-B22 are both connected to the ECU 3, and operate together or only one of them in response to a signal from the ECU 3 to control the lift operation and speed of the valve body of the exhaust recirculation valve 9.

排気還流弁19にはリフトセンサ24が設けられており
、弁19の弁体の作動位置を検出し、その検出値信号を
ECU3に送るようにされている。
The exhaust gas recirculation valve 19 is provided with a lift sensor 24 that detects the operating position of the valve body of the valve 19 and sends a detected value signal to the ECU 3.

ECU3は後述するようにリフトセンサ24からの出力
信号値に異常があるか否かを判別すると共に、前述の各
種センサ、すなわち、スロットル弁開度センサ4、吸気
管内絶対圧センサ8、エンジン水温センサ10、エンジ
ン回転角度位置センサ11.02センサ15、大気圧セ
ンサ16及びイグニッションスイッチ17からのエンジ
ンパラメータ信号に応じてエンジン運転状態を判別し、
判別した運転状態に応じた排気還流#19の弁開度目標
値LCMDを設定する。
As will be described later, the ECU 3 determines whether or not there is an abnormality in the output signal value from the lift sensor 24, and also checks the various sensors mentioned above, namely, the throttle valve opening sensor 4, the intake pipe absolute pressure sensor 8, and the engine water temperature sensor. 10. Engine rotation angle position sensor 11.02 Determine the engine operating state according to the engine parameter signals from the sensor 15, the atmospheric pressure sensor 16, and the ignition switch 17,
A valve opening degree target value LCMD for exhaust gas recirculation #19 is set according to the determined operating state.

この弁開度目標値LCMI)の演算方法には種々の態様
が考えられ、例えばエンジン運転状態に応じて予め記憶
されている複数組の弁開度目標値群からエンジン回転数
及び吸気管内絶対圧に対応する弁開度目標値を演算する
ようにしてもよい。
Various methods can be considered for calculating the valve opening target value LCMI. For example, the engine speed and intake pipe absolute pressure are calculated from multiple groups of valve opening target values stored in advance according to the engine operating state. A valve opening degree target value corresponding to the value may be calculated.

このようにして求められた弁開度目標値LCMDはリフ
トセンサ24により検出された実弁開度値LACTと比
較され、その偏差の絶対値が零になる様にSot、−A
21とSoし・B22を共働、もしくは、一方のみ作動
させて排気還流弁のリフト補正動作を制御し、所定の弁
開度が得られるように制御される。
The valve opening target value LCMD obtained in this way is compared with the actual valve opening value LACT detected by the lift sensor 24, and Sot, -A is set so that the absolute value of the deviation becomes zero.
The lift correction operation of the exhaust gas recirculation valve is controlled by operating both So.21 and So.B22 together, or by operating only one of them to control the lift correction operation of the exhaust recirculation valve, so that a predetermined valve opening degree is obtained.

5QL−B22が付勢されて連通路20が開成されると
スロットル弁3下流の吸気管内負圧PBが排気還流弁1
9の負圧室19dに導入されダイヤフラム19の両面に
作用する差圧は大きくなりダイアフラム19はばね]、
 9 cに抗して上方に変位し、弁体19aの弁開度は
大きくなる。逆にSQL・A21が付勢されると負圧室
19dには大気圧が導入されて弁体19aを閉じ側に変
位させる。
When 5QL-B22 is energized and the communication passage 20 is opened, the negative pressure PB in the intake pipe downstream of the throttle valve 3 is applied to the exhaust recirculation valve 1.
The differential pressure introduced into the negative pressure chamber 19d of No. 9 and acting on both sides of the diaphragm 19 increases, causing the diaphragm 19 to become a spring],
9c, and the valve opening degree of the valve body 19a increases. Conversely, when SQL A21 is energized, atmospheric pressure is introduced into the negative pressure chamber 19d, displacing the valve body 19a toward the closing side.

尚、排気還流弁19の負圧室19dに導入される負圧は
上述のスロットル弁3下流の負圧PBに代えてスロット
ル弁3上流に設けられたベンチュリ部9に開口9aを設
け、ベンチュリ部9に発生する吸気管内圧力Pvを該開
口9aから負圧室19dに導入してもよりし、又、スロ
ットル弁3の全開位置(第1図の破線で示すスロットル
弁位置3′)より僅かに上流側で、且つ、スロットル弁
3が所定開度になるとスロットル弁3の下流側となる吸
気管壁に穿設された開口6から導入される吸気管内圧力
Pcであってもよい。
Note that the negative pressure introduced into the negative pressure chamber 19d of the exhaust recirculation valve 19 is supplied to the venturi section 9 provided with an opening 9a in the venturi section 9 provided upstream of the throttle valve 3, instead of the above-mentioned negative pressure PB downstream of the throttle valve 3. 9 may be introduced into the negative pressure chamber 19d from the opening 9a, and the pressure Pv generated in the intake pipe 9 may be introduced into the negative pressure chamber 19d from the opening 9a. The intake pipe internal pressure Pc may be introduced from an opening 6 formed in the intake pipe wall on the upstream side and downstream of the throttle valve 3 when the throttle valve 3 reaches a predetermined opening degree.

又、排気還流弁19の大気圧室+9eには大気圧に代え
て、前記ベンチュリ9上流の吸気管内圧力P2を導入す
るようにしてもよい。この圧力P2を大気室1.9eに
作用させる場合、特に過給機を備えた内燃エンジンにお
いては、この過給機によって吸入空気が加圧される場合
に有効である。
Further, the intake pipe internal pressure P2 upstream of the venturi 9 may be introduced into the atmospheric pressure chamber +9e of the exhaust gas recirculation valve 19 instead of the atmospheric pressure. Applying this pressure P2 to the atmospheric chamber 1.9e is effective, particularly in an internal combustion engine equipped with a supercharger, when the intake air is pressurized by the supercharger.

第2図はECTJS内で実行されるリフトセンサ24の
出力が異常であるか否かを判別する判別手順を示す。
FIG. 2 shows a determination procedure executed in the ECTJS to determine whether the output of the lift sensor 24 is abnormal.

先ず、リフトセンサ24の出力値LACTを読込む(第
2図のステップ1)。次に、大気圧センサ16からの大
気圧PAと吸気管内絶対圧Psとの差が所定値PFSE
より大きいか否かを判別する(ステップ2)。判別結果
が否定(No、PA−PB<PFSE)の場合ステップ
3以下の判別を実行せずに本プログラムを終了する。こ
れはECU3からの開弁指令によりS o +、・B2
2が付勢されPB圧が負圧室19dに導入されても排気
還流弁19のダイアフラム1.9 bの両面に作用する
圧力の差が所定値PP5E以下である場合ばね19cに
抗してダイアフラム19bを開口方向に変位させること
が出来ないので、後述するステップ3以下の異常判別を
実行すると、リフトセンサ24の出力に異常があると誤
診してしまうのでこれを回避するためにステップ2の判
別が設けられている。
First, the output value LACT of the lift sensor 24 is read (step 1 in FIG. 2). Next, the difference between the atmospheric pressure PA from the atmospheric pressure sensor 16 and the intake pipe absolute pressure Ps is set to a predetermined value PFSE.
It is determined whether the value is larger than that (step 2). If the determination result is negative (No, PA-PB<PFSE), the program is terminated without executing the determinations from step 3 onwards. This is due to the valve opening command from ECU3.
2 is energized and the PB pressure is introduced into the negative pressure chamber 19d, if the difference in pressure acting on both sides of the diaphragm 1.9b of the exhaust gas recirculation valve 19 is less than the predetermined value PP5E, the diaphragm resists the spring 19c. 19b cannot be displaced in the opening direction, if the abnormality determination in steps 3 and below, which will be described later, is performed, it will be misdiagnosed that there is an abnormality in the output of the lift sensor 24. To avoid this, the determination in step 2 is performed. is provided.

ステップ2の判別結果が肯定(Yes)の場合。If the determination result in step 2 is affirmative (Yes).

ステップ3及び5で実弁開度LACTと弁開度目標値L
CMDの偏差の絶対値が所定の不感帯値QFsより大き
いか否かを判別する。この不感帯値QFsは排気還流弁
19の実弁開度の相違がすフトセンサ24の実弁開度値
では判別し得なくなる微少の弁開度制御量の限界値に相
当する値である。ステップ3及び5でいずれも否定(N
o)の場合、すなわち、l  LACT−LCIIII
D I  <QFSの場合弁開度制御系には異常がない
として本プログラムを終了する。ステップ3及び5のい
ずれかの判別結果が肯定(Yes)の場合、ステップ4
又は6で偏差の絶対値が不感帯値QFsより大きい状態
が所定時間、例えば5秒間継続したか否かを判別する。
In steps 3 and 5, the actual valve opening LACT and the valve opening target value L
It is determined whether the absolute value of the CMD deviation is larger than a predetermined dead zone value QFs. This dead band value QFs is a value corresponding to a limit value of a minute valve opening control amount that cannot be determined by the actual valve opening value of the foot sensor 24 due to the difference in the actual valve opening of the exhaust gas recirculation valve 19. Both steps 3 and 5 are negative (N
In case o), i.e. l LACT-LCIII
If D I <QFS, this program is terminated as there is no abnormality in the valve opening control system. If the determination result in either step 3 or 5 is affirmative (Yes), step 4
Or in step 6, it is determined whether the state in which the absolute value of the deviation is greater than the dead zone value QFs continues for a predetermined period of time, for example, 5 seconds.

これは偏差の絶対値が不感帯値QFS以上であり、リフ
トセンサ24を含む弁開度制御系に異常がなければ少な
くとも5秒間経過前に実4(、開度は偏差の絶対値が不
感帯値QFs以下になる方向に変化する筈であり、もし
この変化が5秒以内に生じなければ弁開度制御系か異常
であると診断するのである。
This means that the absolute value of the deviation is greater than or equal to the dead band value QFS, and if there is no abnormality in the valve opening control system including the lift sensor 24, the absolute value of the deviation will be the dead band value QFs. If this change does not occur within 5 seconds, it is diagnosed that there is an abnormality in the valve opening control system.

ステップ4又は6での判断結果が肯定(Yes)、すな
わち、所定時間5秒が経過するとステップ7に進み、弁
開度制御系異常時の故障補償動作を実行する。この故障
補償動作としては好ましくは排気還流弁19を全閉にし
排気還流を停止させる。
If the determination result in step 4 or 6 is affirmative (Yes), that is, the predetermined time of 5 seconds has elapsed, the process proceeds to step 7, and a failure compensation operation in the event of an abnormality in the valve opening control system is executed. As this failure compensation operation, preferably, the exhaust gas recirculation valve 19 is fully closed to stop exhaust gas recirculation.

第3図はECUS内の弁開度制御系の異常判別回路を含
む、排気還流量制御回路の構成を示す。
FIG. 3 shows the configuration of the exhaust gas recirculation amount control circuit including the abnormality determination circuit of the valve opening control system in the ECUS.

先ず、定電圧電源520の入力側は第1図のイグニッシ
ョンスイッチ17を介しバッテリ522に接続され出力
側は抵抗R3とコンデンサC3の直列回路に接続されて
いる。抵抗R3にはダイオードD3が並列に接続され、
抵抗R3とコンデンサC3の結合点J3はインバータ5
21を介してRSフリップフロップ回路512のリセッ
ト端子に接続されている。
First, the input side of the constant voltage power supply 520 is connected to the battery 522 via the ignition switch 17 shown in FIG. 1, and the output side is connected to a series circuit of a resistor R3 and a capacitor C3. A diode D3 is connected in parallel to the resistor R3.
The connection point J3 between the resistor R3 and the capacitor C3 is the inverter 5.
21 to the reset terminal of the RS flip-flop circuit 512.

エンジン始動時にイグニッションスイッチ17を閉成す
るとバッテリ522から定電圧電源520を介して定電
圧VCCが抵抗R3とコンデンサC3の直列回路に与え
られる。結合店J3の電圧は抵抗R3とコンデンサC3
の時定数で決まる所定時間の経過後に閾値電圧に達し、
イグニッションスイッチ17の閉成時から結合点J3の
電圧がこの閾値電圧に達する時点までの間に亘ってイン
バータ521は高レベル信号=1、すなわち初期リセッ
ト信号IRを出力して前記RSフリップフロップ回路5
12をリセットする。このIR倍信号イグニションスイ
ッチ17が閉成される時にだけ発生するのでこの時にの
みRSフリッププロップ回路512はリセットされる。
When the ignition switch 17 is closed when starting the engine, a constant voltage VCC is applied from the battery 522 via the constant voltage power supply 520 to the series circuit of the resistor R3 and the capacitor C3. The voltage at the junction J3 is the voltage across the resistor R3 and the capacitor C3.
The threshold voltage is reached after a predetermined time determined by the time constant of
During the period from when the ignition switch 17 is closed until the voltage at the node J3 reaches this threshold voltage, the inverter 521 outputs a high level signal=1, that is, the initial reset signal IR, and the RS flip-flop circuit 5
Reset 12. Since this IR double signal is generated only when the ignition switch 17 is closed, the RS flip-flop circuit 512 is reset only at this time.

リセットされたRSフリップフロップ回路512はその
6出力端子から高レベル信号=1を出力しAND回路5
13を開成させる。このAND回路513入力端には排
気還流弁制御回路517が接続さ汎ており、制御量WI
I517の入力側にはLACTレジスタ508及びLC
MDレジスタ509が接続されている。LACTレジス
タ508には第1図のリフトセンサ24からの出力信号
LACTが図示しないA/D変換器でデジタル信号に変
換されて記憶されている。LCMDレジスタ509には
前述したエンジン運転状態に応じた所要の排気還流量を
還流させる排気還流弁19の弁開度目標値しCMDが記
憶されている。排気還流弁制御回路517はLACTレ
ジスタ508のLACT値及びLCMDレジスタ509
のLCMD値に基づいてl−A CT値をLCMD値に
近づけるように5oL−A21及び5OL−B22を制
御する制御信号を前記AND回路513を介して駆動回
路514に供給する。
The reset RS flip-flop circuit 512 outputs a high level signal = 1 from its 6 output terminal, and the AND circuit 5
13 is opened. An exhaust recirculation valve control circuit 517 is connected to the input terminal of this AND circuit 513, and the control amount WI
The input side of I517 includes LACT register 508 and LC.
An MD register 509 is connected. The output signal LACT from the lift sensor 24 in FIG. 1 is converted into a digital signal by an A/D converter (not shown) and stored in the LACT register 508. The LCMD register 509 stores the valve opening target value CMD of the exhaust gas recirculation valve 19 that recirculates the required amount of exhaust gas according to the engine operating state described above. The exhaust recirculation valve control circuit 517 controls the LACT value of the LACT register 508 and the LCMD register 509.
A control signal for controlling 5oL-A21 and 5OL-B22 is supplied to the drive circuit 514 via the AND circuit 513 so that the l-A CT value approaches the LCMD value based on the LCMD value.

駆動回路514は該制御信号に基づいてSQL・A21
及び5QL−822を付勢する駆動信号を夫々のソレノ
イドに供給する。
The drive circuit 514 executes SQL/A21 based on the control signal.
and 5QL-822 to each solenoid.

次に、PAレジスタ501には大気圧センサ16からの
大気圧PAがデジタル信号に変換されて記憶されており
、このストア値は減算回路503の入力端子503aに
値M1として供給されている。
Next, the atmospheric pressure PA from the atmospheric pressure sensor 16 is converted into a digital signal and stored in the PA register 501, and this stored value is supplied to the input terminal 503a of the subtraction circuit 503 as the value M1.

PBレジスタ502には吸気管内絶対圧Peが記憶され
ており、このストア値は減算回路503の入力端子50
3bに値N1として供給されている。
The intake pipe absolute pressure Pe is stored in the PB register 502, and this stored value is input to the input terminal 50 of the subtraction circuit 503.
3b as the value N1.

減算回路503は(MI  N1)  を演算し、該演
算値を比較回路504の入力端子504aに値A1とし
て供給する。比較回路504の入力端子504bにはP
FSE値メモリ505に記憶されている所定値PFSE
が値B1として供給され、比較回路504はA1上B1
のとき、すなわち、PA −PB≧PFSEのとき(第
2図のステップ2の判別結果がY e sのとき)、そ
の出力端子504Cから高レベル=1を出力する一方、
A + < B 、のとき、t tわちP 八−P B
 < P F S Eのとき出力端子504Cから低レ
ベル=0を出力してAND回路506を閉成することに
よって後述する弁開度制御系の異常判別の実行を阻止す
る(第2図のステップ2の判別結果がNoの場合)。
The subtraction circuit 503 calculates (MIN1) and supplies the calculated value to the input terminal 504a of the comparison circuit 504 as the value A1. The input terminal 504b of the comparator circuit 504 has P
Predetermined value PFSE stored in FSE value memory 505
is supplied as the value B1, and the comparator circuit 504
, that is, when PA −PB≧PFSE (when the determination result in step 2 in FIG. 2 is Yes), a high level = 1 is output from the output terminal 504C, while
When A + < B, t t that is P 8-P B
< P F S E, a low level = 0 is output from the output terminal 504C and the AND circuit 506 is closed, thereby preventing execution of abnormality determination of the valve opening control system, which will be described later (step 2 in FIG. 2). (if the determination result is No).

減算回路510の入力端子510aには前記LACTレ
ジスタ508からの実弁開度値LACTが値M2として
、入力端子510bには前記LCMDレジスタ509か
らの弁開度目標値LCMDか値N2として夫々供給され
、減算回路510はこの両者の偏差の絶対値ABS(N
2  N2)を演算して、該演算値を比較回路515の
入力端子515aに値A2として供給する。比較回路5
15の入力端子515bにはQFS値メ子メモリ516
憶されている所定の不感帯値Qpsが値B2として供給
されており、比較回路515は値A2と値B2とを比較
してA 2 > B 2のとき、すなわち、実弁開度値
LACTと弁開度目標値LCMIIの偏差の絶対値が所
定不感帯値Qrsより大きい場合、その出力端子515
Cから高レベル=1を出力する。
An input terminal 510a of the subtraction circuit 510 is supplied with the actual valve opening value LACT from the LACT register 508 as the value M2, and an input terminal 510b is supplied with the valve opening target value LCMD from the LCMD register 509 as the value N2. , the subtraction circuit 510 calculates the absolute value ABS(N
2 N2) and supplies the calculated value to the input terminal 515a of the comparison circuit 515 as the value A2. Comparison circuit 5
QFS value memory 516 is connected to input terminal 515b of 15.
The stored predetermined dead zone value Qps is supplied as the value B2, and the comparator circuit 515 compares the value A2 and the value B2, and when A 2 > B 2, that is, the actual valve opening value LACT and the valve When the absolute value of the deviation of the opening target value LCMII is larger than the predetermined dead band value Qrs, the output terminal 515
High level = 1 is output from C.

比較回路504及び515の両者の出力が高レベルにな
るとAND回路506はその出力側に高レベル=1を出
力し、この高レベル信号はAND回路5】1を開成状態
にすると共に、コンデンサCI+抵抗R1及びダイオー
ドD1で構成される微分回路に入力して高レベルパルス
信号を発生させこのパルス信号は単安定マルチバイブレ
ータ507をトリガする。この単安定マルチバイブレー
タ507は低レベル信号=0が与えられたときリセット
するリセット端子Rを有し、このリセソ1へ端子Rは前
記AND回路506の出力側に接続されている。従って
AND回路506の出力が高レベル信号を継続した場合
、単安定マルチバイブレータ507はリセットされず所
定時間、例えば5秒間に亘って高レベル信号を出力する
。単安定マルチバイブレータ507の出力側1電源+V
 c cにコンデンサC2と抵抗R2の直列回路を介し
て接続され、抵抗R2にはダイオードD2が並列に接続
されている。単安定マルチバイブレータ507が前記所
定時間経過後に出力を高レベルから低レベルに反転させ
るとき、抵抗R2とコンデンサC2の結合点は短時間低
レベル=Oになる。この低レベル二〇は前記開成状態に
あるAND回路511の他方の入力端子に高レベルに反
転されて供給され、AND回路511は短時間高レベル
=1を出力する。この高レベル信号はRSフリップフロ
ップ回路512のセット端子Sに入力して、該回路51
2のて出力端子の出力を反転させる。AND回路513
はで出力端子からの反転された低レベル信号によって閉
成され、駆動回路514には排気還流弁制御回路517
からのソレノイド制御信号は供給されなくなり駆動回路
514は駆動信号の出力を停止する。
When the outputs of both comparison circuits 504 and 515 become high level, the AND circuit 506 outputs a high level = 1 to its output side, and this high level signal turns the AND circuit 5]1 into an open state and also connects the capacitor CI + resistor. It is input to a differentiating circuit composed of R1 and diode D1 to generate a high level pulse signal, which triggers monostable multivibrator 507. This monostable multivibrator 507 has a reset terminal R that is reset when a low level signal = 0 is applied, and this terminal R to the resetter 1 is connected to the output side of the AND circuit 506. Therefore, when the output of the AND circuit 506 continues to be a high level signal, the monostable multivibrator 507 is not reset and outputs a high level signal for a predetermined period of time, for example, 5 seconds. Monostable multivibrator 507 output side 1 power supply +V
cc is connected through a series circuit of a capacitor C2 and a resistor R2, and a diode D2 is connected in parallel to the resistor R2. When the monostable multivibrator 507 inverts its output from a high level to a low level after the predetermined time has elapsed, the connection point between the resistor R2 and the capacitor C2 becomes a low level=0 for a short time. This low level 20 is inverted to a high level and supplied to the other input terminal of the AND circuit 511 in the open state, and the AND circuit 511 outputs a high level=1 for a short time. This high level signal is input to the set terminal S of the RS flip-flop circuit 512, and the circuit 51
Step 2: Invert the output of the output terminal. AND circuit 513
The drive circuit 514 is closed by an inverted low level signal from the output terminal, and the exhaust recirculation valve control circuit 517 is connected to the drive circuit 514.
The solenoid control signal from the drive circuit 514 is no longer supplied, and the drive circuit 514 stops outputting the drive signal.

常開型の電磁制御弁5oL−A21が付勢されなくなる
ことにより、第1図の排気還流弁19の負圧室19dに
は大気圧が作用して弁体19aは全開となる。前記比較
回路504及び515のいずれか一方の出力が前記所定
時間経過前に高レベルから低レベルに反転した場合、A
ND回路506の出力は低レベル=Oとなり、この反転
された低レベル信号は単安定マルチバイブレータ507
のリセット端子Rに入力して単安定マルチバイブレータ
507をリセットすると共にA N D回路511にも
入力して該回路511を開成の状態にするのでRSフリ
ッププロップ回路512はセットされることはない。
Since the normally open electromagnetic control valve 5oL-A21 is no longer energized, atmospheric pressure acts on the negative pressure chamber 19d of the exhaust gas recirculation valve 19 in FIG. 1, and the valve body 19a is fully opened. If the output of either one of the comparison circuits 504 and 515 is inverted from high level to low level before the predetermined time elapses, A
The output of the ND circuit 506 becomes low level = O, and this inverted low level signal is sent to the monostable multivibrator 507.
The RS flip-flop circuit 512 is not set because it is inputted to the reset terminal R of , to reset the monostable multivibrator 507, and also inputted to the A N D circuit 511 to open the circuit 511.

尚、弁開度制御系が異常であると判別されて上記RSフ
リップフロップ回路512にセット信号が一旦入力する
と、前述したイグニッションスイッチ17の開成時に発
生するIR倍信号リセット端子Rに入力する迄RSフリ
ップフロップ回路512のQ出力端子の出力は低レベル
二〇に保持され、従って排気還流弁19は全開に保持さ
れる。
Incidentally, once it is determined that the valve opening control system is abnormal and a set signal is input to the RS flip-flop circuit 512, the RS remains unchanged until the IR multiplied signal generated when the ignition switch 17 is opened is input to the reset terminal R. The output of the Q output terminal of the flip-flop circuit 512 is held at a low level of 20, and therefore the exhaust gas recirculation valve 19 is held fully open.

又、上述の実施例では2個の電磁弁21及び22を使用
して排気還流弁19の負圧室19dに作用する負圧の制
御をするものについて説明したが。
Further, in the above embodiment, the two electromagnetic valves 21 and 22 are used to control the negative pressure acting on the negative pressure chamber 19d of the exhaust gas recirculation valve 19.

この電磁制御弁21及び22のいずれか一方を最適な開
口面績を有するオリフィスに置換してもよい。
Either one of the electromagnetic control valves 21 and 22 may be replaced with an orifice having an optimal opening surface.

以上詳述したように本発明の内燃エンジンの排気還流量
制御装置によれば、排気還流弁の弁開度目標値と実弁開
度値との偏差の絶対値が所定値以」二である状態が所定
時間に亘って継続したとき、弁開度センサを含む弁開度
制御系か異常であると判別すると共に、好ましくは、同
時に排気還流弁を全閉にするようにし、又、排気還流弁
の圧力応動部材の両面に作用する圧力差又は圧力比が所
定範囲内のとき弁開度制御系の異常判別を実行しないよ
うにしたので弁開度制御系の異常の検出を誤診すること
なく確実に検出して、異常時の補償動作を行なわせるこ
とが出来る。
As detailed above, according to the exhaust gas recirculation amount control device for an internal combustion engine of the present invention, the absolute value of the deviation between the target valve opening value and the actual valve opening value of the exhaust recirculation valve is less than or equal to a predetermined value. If the condition continues for a predetermined period of time, it is determined that the valve opening control system including the valve opening sensor is abnormal, and preferably the exhaust recirculation valve is fully closed at the same time, and the exhaust recirculation Since the abnormality determination of the valve opening control system is not executed when the pressure difference or pressure ratio acting on both sides of the pressure responsive member of the valve is within a predetermined range, there is no possibility of misdiagnosing the detection of an abnormality in the valve opening control system. It is possible to reliably detect and perform compensation operations in the event of an abnormality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法が適用された排気還流量制御装置
の全体構成を承るブロック図、第2図は第1図の電子コ
ン1−ロールユニット(ECTJ) 内で実行される、
排気還流弁のリフトセンサの出力電圧が異常であるか否
かの判別手順を示すフローチャート、及び第3図はEC
U内の回路構成図である。 1・・内燃エンジン、2・・・吸気通路、3 スロット
ル弁、5・・・電子コントロールユニット(ECU)、
8・・・吸気管内絶対圧センサ、9・・ベンチュリ、1
3・・・排気通路、16・・大気圧センサ、18・・排
気還流路、19・−排気還流弁、]、 9 b・・・圧
力応動部材(ダイアプラム)、2]、22・・電磁制御
弁、24・・・弁訓度センサ(リフトセンサ)、503
・減算回路、504・・比較回路、507・・単安定マ
ルチバイブレーク、510 ・減算回路、512・−・
RSフリップフロップ回路、515・・比較回路。 出願人  本田技研工業株式会社 代理人 弁理士 渡部敏彦
FIG. 1 is a block diagram showing the overall configuration of an exhaust gas recirculation amount control device to which the method of the present invention is applied, and FIG.
A flowchart showing the procedure for determining whether the output voltage of the lift sensor of the exhaust recirculation valve is abnormal or not, and FIG. 3 are EC
It is a circuit block diagram in U. 1... Internal combustion engine, 2... Intake passage, 3 Throttle valve, 5... Electronic control unit (ECU),
8...Intake pipe absolute pressure sensor, 9...Venturi, 1
3... Exhaust passage, 16... Atmospheric pressure sensor, 18... Exhaust recirculation path, 19... Exhaust recirculation valve, ], 9 b... Pressure responsive member (diaphragm), 2], 22... Electromagnetic control Valve, 24...Valve training sensor (lift sensor), 503
・Subtraction circuit, 504... Comparison circuit, 507... Monostable multi-bi break, 510 ・Subtraction circuit, 512...
RS flip-flop circuit, 515...comparison circuit. Applicant Honda Motor Co., Ltd. Agent Patent Attorney Toshihiko Watanabe

Claims (1)

【特許請求の範囲】 1、 内燃エンジンの排気通路と吸気通路とを接続する
排気還流路の途中に配させた排気還流弁の弁開度を弁開
度センサにより検出し、前記弁開度センサにより検出さ
れた実弁開度値と、所要の排気還流量に対応する前記排
気還流弁の弁開度目標値との偏差を求め、この偏差が零
になるように、前記排気還流弁の開閉動作をさせる弁作
動手段制御する排気還流量制御方法において、前記偏差
の絶対値が所定値以上である状態が所定時間に亘って継
続したとき、前記弁開度センサを含む弁開度制御系が異
常であると判別するようにしたことを特徴とする内燃エ
ンジンの排気還流量制御方法。 2、前記所定値は前記排気還流弁の実弁開度の相違が弁
開度センサの実弁開度値では判別し得なくなる微少の弁
開度制御量の限界値に相当する値であることを特徴とす
る特許請求の範囲第1項記載の内燃エンジンの排気還流
量制御方法。 3、前記弁作動手段は前記排気還流弁に連結された圧力
応動部材を有し、この圧力応動部材の両面に作用する圧
力差に応じて前記排気還流弁を作動させる差圧応動型作
動手段であり、前記圧力応動部材の両面に作用する圧力
差又は圧力比が所定範囲内のとき前記弁開度制御系の異
常判別を実行しないことを特徴とする特許請求の範囲第
1項記載の内燃エンジンの排気還流量制御方法。 4、 前記圧力応動部材の一方の面には大気圧を作用さ
せ、他方の面には前記吸気通路内のベンチュリ部、絞り
弁の全閉位置より僅か上流側及び絞り弁の下流側のいず
れか1つにおける圧力を作用させることを特徴とする特
許請求の範囲第3項記載の内燃エンジンの排気還流量制
御方法。 5、 前記内燃エンジンは過給機を備え、前記圧力応動
部材の一方の面には該過給機により加圧された吸気圧を
作用させ、他方の面には前記吸気通路内のベンチュリ部
、絞り弁の全開位置より僅か上流側及び絞り弁の下流側
のいずれか1つにおける圧力を作用させることを特徴と
する特許請求の範囲第3項記載の内燃エンジンの排気還
流量制御方法。 6、 内燃エンジンの排気通路と吸気通路とを接続する
排気還流路の途中に配された排気還流弁の弁開度を弁開
度センサにより検出し、前記弁開度センサにより検出さ
れた実弁開度値と、所要の排気還流量に対応する前記排
気還流弁の弁開度目標値との偏差を求め、この偏差が零
になるように、前記排気還流弁の開閉動作をさせる弁作
動手段を制御する排気還流量制御方法において、前記偏
差の絶対値か所定値以上である状態が所定時間に亘って
継続したとき、前記弁開度センサを含む弁開度制御系が
異常であると判別すると共に、前記排気還流弁を全開に
することを特徴とする内燃エンジンの排気還流量制御方
法。 7、前記所定値は前記排気還流弁の実弁開度の相違が弁
開度センサの実弁開度値では判別し得なくなる微少の弁
開度制御量の限界値に相当する値であることを特徴とす
る特許請求の範囲第6項記載の内燃エンジンの排気還流
量制御方法。 8、前記弁作動手段は前記排気還流弁に連結された圧力
応動部材を有し、この圧力応動部材の両面に作用する圧
力差に応じて前記排気還流弁を作動させる差圧応動型作
動手段であり、前記圧力応動部材の両面に作用する圧力
差又は圧力比が所定範囲内のとき前記弁開度制御系の異
常判別を実行しないことを特徴とする特許請求の範囲第
6項記載の内燃エンジンの排気還流量制御方法。 9、 前記圧力応動部材の一方の面には大気圧を作用さ
せ、他方の面には前記吸気通路内のベンチュリ部、絞り
弁の全開位置より僅か上流側及び絞り弁の下流側のいず
れか1つにおける圧力を作用させることを特徴とする特
許請求の範囲第8項記載の内燃エンジンの排気還流量制
御方法。 10、  前記内燃エンジンは過給機を備え、前記圧力
応動部材の一方の面には該過給機により加圧された吸気
圧を作用させ、他方の面には前記吸気通路内のベンチュ
リ部、絞り弁の全開位置より僅か上流側及び絞り弁の下
流側のいずれか1つにおける圧力を作用させることを特
徴とする特許請求の範囲第8項記載の内燃エンジンの排
気還流量制御方法。
[Claims] 1. The valve opening of an exhaust recirculation valve disposed in the middle of an exhaust recirculation passage connecting an exhaust passage and an intake passage of an internal combustion engine is detected by a valve opening sensor; The deviation between the actual valve opening value detected by and the target valve opening value of the exhaust recirculation valve corresponding to the required exhaust recirculation amount is determined, and the opening and closing of the exhaust recirculation valve is adjusted so that this deviation becomes zero. In an exhaust gas recirculation amount control method that controls a valve operating means for operating, when the absolute value of the deviation continues for a predetermined period of time, the valve opening control system including the valve opening sensor A method for controlling an exhaust gas recirculation amount for an internal combustion engine, characterized in that an abnormality is determined. 2. The predetermined value is a value corresponding to a limit value of the minute valve opening control amount such that the difference in the actual valve opening of the exhaust gas recirculation valve cannot be determined by the actual valve opening value of the valve opening sensor. An exhaust gas recirculation amount control method for an internal combustion engine according to claim 1, characterized in that: 3. The valve operating means has a pressure responsive member connected to the exhaust gas recirculation valve, and is a differential pressure responsive operating means that operates the exhaust gas recirculation valve in response to a pressure difference acting on both sides of the pressure responsive member. The internal combustion engine according to claim 1, wherein abnormality determination of the valve opening control system is not performed when a pressure difference or a pressure ratio acting on both surfaces of the pressure responsive member is within a predetermined range. Exhaust recirculation amount control method. 4. Atmospheric pressure is applied to one surface of the pressure-responsive member, and the other surface is applied to either the venturi portion in the intake passage, slightly upstream from the fully closed position of the throttle valve, or downstream of the throttle valve. 4. A method for controlling the amount of exhaust gas recirculation in an internal combustion engine according to claim 3, characterized in that a pressure in one of the exhaust gases is applied. 5. The internal combustion engine includes a supercharger, the intake pressure pressurized by the supercharger acts on one surface of the pressure-responsive member, and the venturi portion in the intake passage acts on the other surface; 4. The method of controlling the amount of exhaust gas recirculation for an internal combustion engine according to claim 3, characterized in that pressure is applied at either one of a position slightly upstream from a fully open position of the throttle valve and a pressure slightly downstream of the throttle valve. 6. A valve opening sensor detects the valve opening of an exhaust recirculation valve disposed in the middle of an exhaust recirculation passage connecting an exhaust passage and an intake passage of the internal combustion engine, and the actual valve opening detected by the valve opening sensor Valve operation means that calculates a deviation between an opening value and a target valve opening value of the exhaust recirculation valve corresponding to a required amount of exhaust gas recirculation, and opens and closes the exhaust recirculation valve so that this deviation becomes zero. In the exhaust gas recirculation amount control method, when the absolute value of the deviation continues to be equal to or greater than a predetermined value for a predetermined period of time, it is determined that the valve opening control system including the valve opening sensor is abnormal. A method for controlling the amount of exhaust gas recirculation for an internal combustion engine, further comprising fully opening the exhaust gas recirculation valve. 7. The predetermined value is a value corresponding to a limit value of the minute valve opening control amount such that the difference in the actual valve opening of the exhaust gas recirculation valve cannot be determined by the actual valve opening value of the valve opening sensor. An exhaust gas recirculation amount control method for an internal combustion engine according to claim 6, characterized in that: 8. The valve operating means has a pressure responsive member connected to the exhaust gas recirculation valve, and is differential pressure responsive operating means that operates the exhaust gas recirculation valve in response to a pressure difference acting on both sides of the pressure responsive member. 7. The internal combustion engine according to claim 6, wherein abnormality determination of the valve opening control system is not performed when a pressure difference or a pressure ratio acting on both surfaces of the pressure responsive member is within a predetermined range. Exhaust recirculation amount control method. 9. Atmospheric pressure is applied to one surface of the pressure-responsive member, and the other surface is applied to a venturi portion in the intake passage, a portion slightly upstream from a fully open position of the throttle valve, and a portion downstream of the throttle valve. 9. The method for controlling the amount of exhaust gas recirculation in an internal combustion engine according to claim 8, characterized in that pressure is applied at both ends of the exhaust gas recirculation amount. 10. The internal combustion engine includes a supercharger, the intake pressure pressurized by the supercharger acts on one surface of the pressure-responsive member, and the venturi portion in the intake passage acts on the other surface; 9. The method of controlling the amount of exhaust gas recirculation for an internal combustion engine according to claim 8, characterized in that pressure is applied at either one of a position slightly upstream from a fully open position of the throttle valve and a pressure slightly downstream of the throttle valve.
JP58059830A 1983-04-05 1983-04-05 Exhaust feedback amount control method for internal- combustion engine Pending JPS59185857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58059830A JPS59185857A (en) 1983-04-05 1983-04-05 Exhaust feedback amount control method for internal- combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58059830A JPS59185857A (en) 1983-04-05 1983-04-05 Exhaust feedback amount control method for internal- combustion engine

Publications (1)

Publication Number Publication Date
JPS59185857A true JPS59185857A (en) 1984-10-22

Family

ID=13124528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58059830A Pending JPS59185857A (en) 1983-04-05 1983-04-05 Exhaust feedback amount control method for internal- combustion engine

Country Status (1)

Country Link
JP (1) JPS59185857A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4715348A (en) * 1985-08-31 1987-12-29 Nippondenso Co., Ltd. Self-diagnosis system for exhaust gas recirculation system of internal combustion engine
US4823798A (en) * 1986-03-12 1989-04-25 Fuji Jukogyo Kabushiki Kaisha Diagnosing system for an exhaust gas recirculation system of an automotive engine
US4834054A (en) * 1987-04-10 1989-05-30 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Method of detecting a fault of an exhaust gas recirculation system
US4870942A (en) * 1986-10-02 1989-10-03 Toyota Jidosha Kabushiki Kaisha Diagnosis device for exhaust gas recycling device of internal combustion engine
EP0812983A3 (en) * 1996-06-12 1998-07-01 Toyota Jidosha Kabushiki Kaisha A malfunction determining apparatus of an exhaust gas recirculation system
EP0837237A3 (en) * 1996-10-16 1999-04-28 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation system for internal combustion engine and method for detecting an abnormal condition thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4715348A (en) * 1985-08-31 1987-12-29 Nippondenso Co., Ltd. Self-diagnosis system for exhaust gas recirculation system of internal combustion engine
US4823798A (en) * 1986-03-12 1989-04-25 Fuji Jukogyo Kabushiki Kaisha Diagnosing system for an exhaust gas recirculation system of an automotive engine
US4870942A (en) * 1986-10-02 1989-10-03 Toyota Jidosha Kabushiki Kaisha Diagnosis device for exhaust gas recycling device of internal combustion engine
US4834054A (en) * 1987-04-10 1989-05-30 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Method of detecting a fault of an exhaust gas recirculation system
EP0812983A3 (en) * 1996-06-12 1998-07-01 Toyota Jidosha Kabushiki Kaisha A malfunction determining apparatus of an exhaust gas recirculation system
EP0837237A3 (en) * 1996-10-16 1999-04-28 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation system for internal combustion engine and method for detecting an abnormal condition thereof

Similar Documents

Publication Publication Date Title
JP2926917B2 (en) Vehicle abnormality diagnosis device
US6044826A (en) Diagnostic device for monitoring an exhaust gas recirculation system of an internal combustion engine
US5140810A (en) Method of detecting failure in a secondary air supply system for internal combustion engines
US7104259B2 (en) Diagnostic device for exhaust gas recirculation system
US6837226B2 (en) System for diagnosing EGR valve, actuator and sensor related failure conditions
US4583176A (en) Method for detecting abnormality in the functioning of an electronic control system
JPS6011665A (en) Egr valve control method for internal-combustion engine
JPH0525026B2 (en)
CN114207259B (en) Leakage diagnosis method and leakage diagnosis device for leakage treatment device of internal combustion engine
US5542400A (en) Apparatus and method for determining a failure of an EGR apparatus
JPH08226354A (en) Diagnostic device for use in exhaust-gas recirculation device of internal combustion engine
CN114207401B (en) Leakage diagnosis method and leakage diagnosis device for leakage treatment device of internal combustion engine
JPH04175450A (en) Troubleshooting device of exhaust gas recirculation control device
US8024109B2 (en) Abnormality determination apparatus for intake amount control mechanism
US5184594A (en) Failure diagnosis device of an egr control device
JP2004156613A (en) Method and device for controlling drive unit of vehicle having internal combustion engine
JPH08284764A (en) Failure diagnosis device for exhaust gas recirculation system
JPS59185857A (en) Exhaust feedback amount control method for internal- combustion engine
JP3038865B2 (en) Exhaust gas recirculation device failure diagnosis device
JP2855395B2 (en) Self-diagnosis device in exhaust gas recirculation system of internal combustion engine
JPH09144609A (en) Failure diagnostic device for exhaust circulating device of internal combustion engine
JPS6011664A (en) Full-close referential position detecting method of egr valve in internal-combustion engine
JPH09137753A (en) Failure diagnostic device for exhaust circulation device of internal combustion engine
JPS6181568A (en) Method of controlling exhaust gas recirculation of internal-combustion engine
JPH0658211A (en) Failure diagnosis method for exhaust reflux control device