JPS6321562B2 - - Google Patents

Info

Publication number
JPS6321562B2
JPS6321562B2 JP1480082A JP1480082A JPS6321562B2 JP S6321562 B2 JPS6321562 B2 JP S6321562B2 JP 1480082 A JP1480082 A JP 1480082A JP 1480082 A JP1480082 A JP 1480082A JP S6321562 B2 JPS6321562 B2 JP S6321562B2
Authority
JP
Japan
Prior art keywords
rolling
pass
roll
cross
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1480082A
Other languages
Japanese (ja)
Other versions
JPS58132303A (en
Inventor
Koshiro Aoyanagi
Yukio Noguchi
Hideki Sone
Tsuneo Kuwahata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1480082A priority Critical patent/JPS58132303A/en
Publication of JPS58132303A publication Critical patent/JPS58132303A/en
Publication of JPS6321562B2 publication Critical patent/JPS6321562B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
    • B21B1/026Rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ロータリーキヤスターすなわち断面
形状が台形をなす連鋳片を、連続鋳造ラインにお
いて直接にビレツトまで圧延するインライン圧延
法に関する。 従来から連鋳片のインライン圧延法として、ビ
レツトの製造には垂直ロール式と水平ロール式を
交互に組合せたいわゆるVH方式の圧延機が採用
されて、操業が行なわれている。しかしその多く
は、最終製品がコンクリートバー等の比較的低級
品であり、ビレツトの断面形状あるいは表面疵等
においては基準が緩く、半製品のビレツトの段階
でみると、断面形状も極めて悪く、表面疵も多く
見られるのが通常である。 従つて従来の圧延方法による限り、台形断面の
鋳片から高級線材料のビレツトを製造することは
実質的に困難で、仮りに製造したとしても、後工
程で疵除去等の費用が莫大となる。その多にロー
ルの耐用性、圧延動力面においても、極めて損失
が大きく経済的でない。 次に従来の問題点を具体的例に基づいて説明す
る。 第1表は、台形断面の鋳片からビレツトを圧延
する従来法の代表例を示したものであるが、No.
1、No.3パスは孔型ロールを用いNo.2、No.4パス
は水平ロールを用いている。
The present invention relates to an in-line rolling method in which a rotary caster, that is, a continuously cast piece having a trapezoidal cross-sectional shape is rolled directly into a billet in a continuous casting line. Conventionally, a so-called VH type rolling mill, which alternately combines vertical roll type and horizontal roll type, has been adopted and operated for the production of billets as an in-line rolling method for continuous slabs. However, in many cases, the final product is a relatively low-grade product such as a concrete bar, and the standards for the billet's cross-sectional shape and surface flaws are lax, and when we look at the semi-finished billet stage, the cross-sectional shape is extremely poor and the surface is It is normal to see many scratches. Therefore, as long as conventional rolling methods are used, it is practically difficult to produce billets of high-grade wire material from slabs with trapezoidal cross sections, and even if they were produced, the cost of removing defects in subsequent processes would be enormous. . In addition, in terms of roll durability and rolling power, the loss is extremely large and it is not economical. Next, conventional problems will be explained based on a specific example. Table 1 shows typical examples of conventional methods for rolling billets from slabs with trapezoidal cross sections.
The first and No. 3 passes use grooved rolls, and the No. 2 and No. 4 passes use horizontal rolls.

【表】 第2図において、Ld及びHmは次式により与え
られる。 Ld=√・(01) Hm=(H0+H1)/2 すなわち第1の問題点は、台形断面の鋳片はNo.
1のボツクスパスで圧下を受けるが、その際材料
の下半分の断面積が上方よりも大きいため、No.1
パスの出側において上反りの傾向となる。それを
孔型の側壁で妨げるが、その結果材料はボツクス
孔型の側壁を強く擦る。 このため材料の表面には第4図の1部に示す擦
り疵が生じ、またその結果として、孔型の側壁も
摩耗がはげしく、かつ圧延動力的にもこの摩擦に
よるトルク増が動力損となつて現われる。第2の
問題は、No.2、No.4パスがフラツトロールのた
め、鋳片の台形の影響が第4図の2に示したよう
に、4パス後も残るし、ビレツトのコーナーも第
4図の3のように一様なアールにはならず、角張
つたものとなる。図中a:第1パス、b:第2パ
ス、c:第3パス、d:第4パスを示す。 第3の問題点は、圧延動力に対する配慮がない
ことである。すなわちロール径と圧下量の関係が
不適当なため、第1表のLd/Hmが相対的に小さ
く、ロール面に作用する圧延圧力が、ロールバイ
トの入側で高くなり、いわゆるピーニング現象を
生じ、このため圧延荷重、トルク共相対的に大き
くなり、動力的に極めて不利となることである。 本発明はこれらの問題を抜本的に解決し、高級
線材用ビレツトにも適用可能な優れた圧延法を提
供するものである。 第1の問題点すなわちロールバイト中の上反り
現象に対しては、第1パスでの圧下量が極めて大
きな影響をおよぼすことを見出した。第3図にそ
の関係を示した。 同図は材料はプラステイシン、ロールは石膏で
つくつた平ロールを用いて、台形断面をサイド方
向から圧下し、上反りにおよぼす圧下量の影響を
基本的に調べたもので、1パス当りの圧下量が大
なるほど、上反りが減少することを見出した。こ
の傾向はボツクス孔型を用いても同様に現われ
る。 第1パスでの圧下率と第1パス出側での材料の
反りとの間には、第3図に示すように密接な関係
がある。圧下率が17〜18%で反りが最大となり、
圧下率をそれ以上に大きくして行くと反りは次第
に減少する。而して、工業化を可能ならしめる実
用的観点から、本発明においては、第1パスにお
ける圧下率は30%以上に限定される。 従来法では、第3図の点あるいはそれ以下で
圧延は行なわれる。この圧下量で、ボツクス孔型
を用いて圧延した場合のメタルフローを第4図に
示した。圧延後の材料の上面には、ロールフラン
ジとの摩擦によつて受けたラツプ疵が1部に生じ
ている。 第5図に参考として、第3図の点に相当する
圧下量で、ボツクス孔型を用いたときのメタルフ
ローを示した。第5図の1を見てわかるように、
第4図の1に見られたラツプ疵は認められない。
すなわち、圧下率を35%以上にすれば、少くとも
ラツプ疵は防止できることを示している。図中a
は第1パスである。 本発明はこの基本的事実をもとに、第2表に示
す極めて優れた圧延法を提供する。
[Table] In Figure 2, Ld and Hm are given by the following formulas. Ld=√・( 01 ) Hm=(H 0 +H 1 )/2 In other words, the first problem is that the slab with trapezoidal cross section is No.
No. 1 box pass causes the material to be rolled down, but because the cross-sectional area of the lower half of the material is larger than the upper part, no.
The exit side of the pass tends to curve upward. This is blocked by the side walls of the hole mold, and as a result the material rubs strongly against the side walls of the box hole mold. As a result, scratches as shown in part 1 of Figure 4 occur on the surface of the material, and as a result, the side walls of the hole are also severely worn, and in terms of rolling power, the increase in torque due to this friction results in power loss. appears. The second problem is that the No. 2 and No. 4 passes are flat rolls, so the effect of the trapezoidal shape of the billet remains even after 4 passes, as shown in 2 in Figure 4, and the corners of the billet are also flat rolls. It will not be a uniform radius like 3 in Figure 4, but will be angular. In the figure, a: the first pass, b: the second pass, c: the third pass, and d: the fourth pass. The third problem is that there is no consideration given to rolling power. In other words, because the relationship between roll diameter and rolling reduction amount is inappropriate, Ld/Hm in Table 1 is relatively small, and the rolling pressure acting on the roll surface becomes high on the entry side of the roll bite, causing the so-called peening phenomenon. Therefore, the rolling load and torque become relatively large, which is extremely disadvantageous in terms of power. The present invention fundamentally solves these problems and provides an excellent rolling method that can be applied to billets for high-grade wire rods. It has been found that the amount of reduction in the first pass has a very large effect on the first problem, that is, the upward warping phenomenon during roll bite. Figure 3 shows the relationship. In this figure, a flat roll made of plasticine and gypsum is used to roll down a trapezoidal section from the side, and the effect of the amount of roll on upward warpage is basically investigated. It has been found that as the reduction amount increases, the warpage decreases. This tendency also appears when using the box-hole type. As shown in FIG. 3, there is a close relationship between the rolling reduction rate in the first pass and the warpage of the material at the exit side of the first pass. Warpage is maximum when the reduction rate is 17-18%,
As the rolling reduction rate is increased further, the warpage gradually decreases. Therefore, from a practical point of view to enable industrialization, in the present invention, the rolling reduction rate in the first pass is limited to 30% or more. In the conventional method, rolling is performed at or below the point shown in FIG. FIG. 4 shows the metal flow when rolling was performed using a box hole die with this reduction amount. After rolling, the upper surface of the material has some lap flaws caused by friction with the roll flange. For reference, FIG. 5 shows the metal flow when using the box hole type with the reduction amount corresponding to the points in FIG. 3. As you can see from 1 in Figure 5,
The lap flaw seen in 1 in Figure 4 is not observed.
In other words, it is shown that at least lap defects can be prevented if the rolling reduction is 35% or more. a in the diagram
is the first pass. Based on this basic fact, the present invention provides an extremely excellent rolling method shown in Table 2.

【表】 先ず第1パスについては圧下率を40%以上、実
施例では43%とした。また、ロールは第7図に示
す孔型を持たないフラツトロール13を用いた。
さらに前後面の至近距離に、第8図に示すローラ
ーガイド12を設置した。 以上の措置によつてすり疵が全くなく、かつこ
れにつづく第2パスへの接続も全く問題のないよ
うな、上反りの極めて少ない状態の良好な圧延が
可能となつた。すなわち、第1パスの大圧下率
(第3図のc点)の採用は、第3図Bの上反りの
基本特性から、同図のb点より更に改善されるこ
とは明白である。また、孔型を用いないから孔型
壁による拘束はなく、すり疵は全く生じない。さ
らに、上反りが基本的に僅かであるから、前後面
のローラーガイドで、十分に材料の適正な誘導が
可能となる。 前後面にローラーガイドを設置した理由は次の
通りである。 通常は第9図Aに示すように、入側は材料の自
重で拘束されるため、出側が上反りとなる。従つ
て、例えば出側にガイドを設置して上反りをおさ
えると、第9図Bのように入側が上反りとなる。
圧延中は、反りはトラブルとなるため好ましくな
い。従つてロールの前後面にガイドを設置する。 なお、ガイドをローラ式にした理由は、摩擦抵
抗を減じて動力的にも表面疵の点でも、好ましい
ようにしたものである。 次に第2パス、第3パスについて説明する。 前記の従来法の第2の問題である製品形状の確
保は、2パスを連続して孔型を用いて圧延するこ
とによつて良好な形状を得ることができる。ただ
この時の留意点は、第10図に示す孔型の溝底幅
Wと入側材料の幅Bの関係、すなわち余裕率 (W−B/W×100)を適正にすることである。 具体的には、0〜5%の間で、好ましくは2〜
3%にすることによつて、孔型側壁の摩擦抵抗を
大幅に減ずることが可能である。このことは、表
面疵動力面で有利である。 余裕率を5%以上にすると、材料はロールバイ
ト中に孔型内で倒れて、第10図5Bに示すよう
な平行四辺形断面に似た形状となり好ましくな
い。 かくして、第2表の台形断面の鋳片からビレツ
トを実際に圧延した例を第11図に示した。3パ
スで極めて良好な製品を得ることが可能である。 従来法の第3の問題点である圧延動力面で有利
な圧延は次の基本思想で達成される。すなわち、
各パスのロール径を材料の寸法に合せて適正に選
定することであるが、具体的には材料の入側と出
側の高さ寸法の平均値(Hm)と、、ロールと材
料の接触面の圧延方向の長さの投影寸法(Ld)
の比Ld/Hmが、0.5未満とならない様、好まし
くは0.7〜1.0の間に全パスのロール径を選定す
る。 こうすることによつて、ピーニングヒルと云う
異常なロール面圧力の増大を防止でき、圧延荷
重、トルク両面で有利な特性が得られ、より少い
エネルギーで圧延を行うことができる。 本発明の実施例である第2表は、台形の鋳片
(190/230×140)からビレツト(122×122)を圧
延する場合の例であるが、最も好ましい圧下配分
を示した。 No.1パスは大圧下率をとることによつて、材料
の上反りを基本的に減らすことができる。また、
フラツトロールを用いることによつて、孔型ロー
ルにおける側壁との摩擦を基本的になくすことが
出来る。 このことは、材料の表面疵を防止すると同時
に、その当然の結果としてロールの摩耗も減らす
ことができる。また、No.1パスの入側、出側には
第7図に示す水平ローラ式のローラーガイド13
を設置して、若干生ずる材料の反りを修正し、No.
2パスへ順調に接続することが可能となる。この
ローラーガイドは、第8図に示すような入側と出
側が一体となつたユニツト14を用いたが、入側
と出側を分離したものでも可能である。 No.2、No.3パスはボツクス孔型を用いることに
よつて、製品形状は極めて良好に整形できる。ま
た、負荷の大きいNo.1、No.2パスについては、
Ld/Hmを、約0.8にすることによつて、動力面
でも極めて有利となる。また、大圧下率は、相対
的に小径のロールでもLd/Hmを大きくする。 その他に、第1パスでの大圧下率の採用は、パ
ス回数を1回減少させる効果もあり、これはスタ
ンド数の減少すなわち設備費の節約に役立つ。 このように本発明の圧延法は、製品の品質、ロ
ールの耐用、圧延動力、設備コスト等全ての点で
最も合理的な優れた圧延法を提供するものであ
る。
[Table] First, for the first pass, the rolling reduction ratio was set to 40% or more, and in the example, it was set to 43%. Further, the roll used was a flat roll 13 having no hole shape as shown in FIG.
Furthermore, a roller guide 12 shown in FIG. 8 was installed at close range on the front and rear surfaces. By taking the above measures, it has become possible to perform good rolling with extremely little warpage, without any scratches, and with no problem in connection to the subsequent second pass. That is, it is clear that the adoption of a large rolling reduction ratio in the first pass (point c in FIG. 3) will further improve the improvement compared to point b in the same figure, based on the basic characteristics of the upward warpage in FIG. 3B. Furthermore, since no hole mold is used, there is no restriction by the hole wall, and no scratches occur at all. Furthermore, since the upward warpage is basically slight, the material can be sufficiently properly guided by the roller guides on the front and rear surfaces. The reason for installing roller guides on the front and rear surfaces is as follows. Normally, as shown in FIG. 9A, the entry side is restrained by the weight of the material, so the exit side is warped. Therefore, for example, if a guide is installed on the exit side to suppress the upward warpage, the entry side will become upward warped as shown in FIG. 9B.
During rolling, warping is not preferable because it causes trouble. Therefore, guides are installed on the front and rear surfaces of the roll. The reason why the guide is of a roller type is to reduce frictional resistance, which is preferable in terms of power and surface flaws. Next, the second pass and the third pass will be explained. As for ensuring the product shape, which is the second problem with the conventional method, a good shape can be obtained by rolling in two successive passes using a groove die. However, the point to be kept in mind at this time is to make the relationship between the groove bottom width W of the hole mold and the width B of the input material shown in FIG. 10, that is, the margin ratio (W-B/W×100), appropriate. Specifically, between 0 and 5%, preferably between 2 and 5%.
By setting it to 3%, it is possible to significantly reduce the frictional resistance of the sidewalls of the hole. This is advantageous in terms of surface flaw power. If the margin ratio is set to 5% or more, the material collapses within the hole mold during roll bite, resulting in a shape resembling a parallelogram cross section as shown in FIG. 10, 5B, which is undesirable. FIG. 11 shows an example in which a billet was actually rolled from a slab having a trapezoidal cross section shown in Table 2. It is possible to obtain a very good product with three passes. Rolling that is advantageous in terms of rolling power, which is the third problem with the conventional method, is achieved by the following basic idea. That is,
The diameter of the roll for each pass must be appropriately selected according to the dimensions of the material, and specifically, the average value (Hm) of the height dimensions on the input and exit sides of the material, and the contact between the roll and the material Projected length of surface in rolling direction (Ld)
The roll diameter of all passes is preferably selected between 0.7 and 1.0 so that the ratio Ld/Hm does not become less than 0.5. By doing so, it is possible to prevent an abnormal increase in roll surface pressure called peening hill, advantageous characteristics can be obtained in terms of both rolling load and torque, and rolling can be performed with less energy. Table 2, which is an example of the present invention, is an example of rolling a billet (122 x 122) from a trapezoidal slab (190/230 x 140), and shows the most preferable rolling distribution. The No. 1 pass can basically reduce the warping of the material by using a large rolling reduction ratio. Also,
By using a flat roll, it is possible to basically eliminate friction with the side wall of the grooved roll. This can prevent surface flaws in the material and, as a corollary, also reduce wear on the rolls. In addition, horizontal roller type roller guides 13 shown in Fig. 7 are installed on the entry and exit sides of the No. 1 pass.
was installed, corrected the slight warping of the material, and installed No.
It becomes possible to smoothly connect to 2 paths. Although this roller guide uses a unit 14 in which the entrance and exit sides are integrated as shown in FIG. 8, it is also possible to use a unit in which the entrance and exit sides are separated. By using a box hole type for No. 2 and No. 3 passes, the product shape can be shaped extremely well. Also, regarding No. 1 and No. 2 paths with large loads,
By setting Ld/Hm to about 0.8, it becomes extremely advantageous in terms of power. Furthermore, a large rolling reduction increases Ld/Hm even with a relatively small diameter roll. In addition, the adoption of a large rolling reduction ratio in the first pass has the effect of reducing the number of passes by one, which is useful for reducing the number of stands, ie, saving equipment costs. As described above, the rolling method of the present invention provides the most rational and excellent rolling method in terms of product quality, roll durability, rolling power, equipment cost, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は材料断面の模式図、第2図はロール圧
下の模式図、第3図Aは圧下率と反りのグラフ、
第3図Bは上反りの模式図、第4図は圧延パス工
程のプラスチシン写真の説明図、第5図は圧延パ
ス工程の他のプラスチシン写真の説明図、第6図
は材料断面の模式図、第7図は本発明の斜視図、
第8図は本発明の平面図、第9図は反りの説明
図、第10図は孔型と材料の説明図、第11図は
圧延パス工程説明図である。 10:材料、12:圧延ロール、13:水平式
ローラガイド、14:ユニツト。
Figure 1 is a schematic diagram of the cross section of the material, Figure 2 is a schematic diagram of roll reduction, Figure 3A is a graph of reduction rate and warpage,
Figure 3B is a schematic diagram of upward warping, Figure 4 is an explanatory diagram of a photograph of plasticine in the rolling pass process, Figure 5 is an explanatory diagram of another photograph of plasticine in the rolling pass process, and Figure 6 is a schematic diagram of a cross section of the material. , FIG. 7 is a perspective view of the present invention,
FIG. 8 is a plan view of the present invention, FIG. 9 is an explanatory diagram of warping, FIG. 10 is an explanatory diagram of hole shapes and materials, and FIG. 11 is an explanatory diagram of the rolling pass process. 10: Material, 12: Roll, 13: Horizontal roller guide, 14: Unit.

Claims (1)

【特許請求の範囲】[Claims] 1 溶鋼を連続鋳造して得られる台形断面を有す
る鋳片から圧延によつて方形断面を有するビレツ
トを得るに際し、フラツトロール対でかつ鋳片断
面の底(辺長の異なる2平行辺)の長さを縮小す
る如く第1パスを構成して、前記鋳片断面の辺長
の異なる2平行辺のうちの長辺の長さ減少率
(ΔH/H1、但し、ΔH:辺長減少量、H1:第1
パスでの圧延前の鋳片断面の長辺の長さ)が30%
以上となる圧延を行うとともに、第1パスの入、
出側に回転自在なガイドを配設して被圧延材の反
りを抑え、以下順次前段パスと直交する方向に圧
下を加えるパスを後続せしめるとともに、少なく
とも連続する2パスを、孔型を有するロール対で
構成しさらに、孔型余裕率(余裕率=(W−
B)/W×100、但し、W:孔型の溝底幅、B:
入側材料の幅)を5%以下として整形を伴う圧延
を行うとともに、各パスにおける圧延ロール径
を、材料の当該パスにおける入側と出側での高さ
寸法の平均値Hmと、圧延ロールと材料の接触面
の圧延方向長さの投影寸法Ldとの比Lb/Hmが
0.5以上となる径として圧延することを特徴とす
る台形断面形状連続鋳造鋳片の圧延方法。
1. When obtaining a billet with a rectangular cross section by rolling from a billet with a trapezoidal cross section obtained by continuous casting of molten steel, the length of the bottom (two parallel sides with different side lengths) of the cross section of the slab with a pair of flat rolls is The first pass is configured to reduce the length of the long side of the two parallel sides with different side lengths of the slab cross section (ΔH/H1, where ΔH: side length decrease amount, H1 :1st
The length of the long side of the slab cross section before rolling in the pass) is 30%
In addition to performing the above rolling, entering the first pass,
A rotatable guide is provided on the exit side to suppress warping of the rolled material, and subsequent passes are sequentially applied to apply rolling in a direction perpendicular to the previous pass, and at least two successive passes are performed using a roll having a groove shape. Furthermore, the hole type margin rate (margin rate = (W-
B)/W×100, where W: groove bottom width, B:
Rolling with shaping is carried out with the width of the material on the input side being 5% or less, and the diameter of the rolling roll in each pass is determined by the average value Hm of the height dimension on the input side and exit side of the material in the relevant pass, and the rolling roll. The ratio Lb/Hm of the projected dimension Ld of the length of the contact surface of the material in the rolling direction is
A method for rolling continuously cast slabs having a trapezoidal cross-sectional shape, characterized by rolling the slabs to a diameter of 0.5 or more.
JP1480082A 1982-02-03 1982-02-03 Rolling method of continuous casting ingot having trapezoidal sectional shape Granted JPS58132303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1480082A JPS58132303A (en) 1982-02-03 1982-02-03 Rolling method of continuous casting ingot having trapezoidal sectional shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1480082A JPS58132303A (en) 1982-02-03 1982-02-03 Rolling method of continuous casting ingot having trapezoidal sectional shape

Publications (2)

Publication Number Publication Date
JPS58132303A JPS58132303A (en) 1983-08-06
JPS6321562B2 true JPS6321562B2 (en) 1988-05-07

Family

ID=11871116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1480082A Granted JPS58132303A (en) 1982-02-03 1982-02-03 Rolling method of continuous casting ingot having trapezoidal sectional shape

Country Status (1)

Country Link
JP (1) JPS58132303A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0698576B2 (en) * 1990-01-12 1994-12-07 昭和電工研装株式会社 Polisher

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013180302A (en) * 2012-02-29 2013-09-12 Jfe Steel Corp Method for manufacturing steel excellent in inner quality

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0698576B2 (en) * 1990-01-12 1994-12-07 昭和電工研装株式会社 Polisher

Also Published As

Publication number Publication date
JPS58132303A (en) 1983-08-06

Similar Documents

Publication Publication Date Title
US4106318A (en) Method and apparatus for rolling metallic material
US4370910A (en) Method and apparatus for cutting metal pieces into narrower widths
TWM552391U (en) Two-roll continuous casting slab corner rolling
JPS6321562B2 (en)
JPS5939405A (en) Rolling line for thick plate
JPS5937690B2 (en) Rolled material guide device in flat roll rolling mill
JPS5857244B2 (en) Manufacturing method of H-beam steel
JPS6021104A (en) Edger rolling method of plate material
JPH03198964A (en) Method and apparatus for executing rolling reduction to strand in continuous casting
JP2940393B2 (en) Vertical roll with caliber for slab width rolling
JPS58132302A (en) Rolling method of continuous casting ingot having trapezoidal sectional shape
JPH07124602A (en) Rolling method of rough billet for z-shaped steel short pile
JPS5813242B2 (en) Itazaino Atsuenhou
JP3617085B2 (en) Coarse slab rolling method for wide thick H-section steel
JPH0534082B2 (en)
JP2522463B2 (en) Plate rolling method
JPS6076203A (en) Edger rolling method of sheet material
JPS6087903A (en) Installation for producing steel sheet
JPS6157081B2 (en)
JPH0141402B2 (en)
JP2676430B2 (en) Method for hot rolling channel steel and rolling apparatus for the same
RU2012431C1 (en) Method for rolling of square billets
JPS6354444B2 (en)
JP2743821B2 (en) Rolling method of coarse billet for thick flange H-section steel
JPH0824926B2 (en) Rolling method for profile with flange