JPS63215592A - Production of compound semiconductor - Google Patents

Production of compound semiconductor

Info

Publication number
JPS63215592A
JPS63215592A JP4497987A JP4497987A JPS63215592A JP S63215592 A JPS63215592 A JP S63215592A JP 4497987 A JP4497987 A JP 4497987A JP 4497987 A JP4497987 A JP 4497987A JP S63215592 A JPS63215592 A JP S63215592A
Authority
JP
Japan
Prior art keywords
compound semiconductor
gas
carbon
reducing gas
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4497987A
Other languages
Japanese (ja)
Inventor
Junjiro Shirokawa
潤二郎 城川
Kenichi Yoshida
謙一 吉田
Yoshimasa Masukata
舛方 義政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP4497987A priority Critical patent/JPS63215592A/en
Publication of JPS63215592A publication Critical patent/JPS63215592A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a compound semiconductor having reduced carbon concentration, by growing crystal in an inert gas blended with a reducing gas. CONSTITUTION:An inert gas such as Ar or N2 blended with a reducing gas such as H2, NH4 or arsine in a ratio of <= explosion limit (<=5%) is introduced into a production device and a compound semiconductor is pulled up by liquid- encapsulated Czochralski method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は化合物半導体の液体封止回転引上げ法における
改良された化合物半導体の製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an improved method for manufacturing compound semiconductors in a liquid-filled rotary pulling method for compound semiconductors.

〔従来の技術とその問題点〕[Conventional technology and its problems]

化合物半導体例えばGaAs、Inpなどの製造方法と
してBオO1などの液体を封止して回転しながら単結晶
を引上げるいわゆる液体封止回転引上げ法(LEC法)
がある、この装置は原料とるつぼ原料を溶融するヒータ
ー、適正な温度環境を作る断熱材、雰囲気ガス、全体を
包むチャンバー、シードおよびるつぼの回転、移動装置
などから構成されている。このうちヒーター、断熱材は
加工性、耐熱性、コストなどの点からグラファイトカー
ボンが用いられている。結晶成長は、N2、Arなどの
不活性ガス圧下で行なわれるがチャンバー内にはガス置
換した後にも残留酸素が99111以上の濃度で存在し
、高温下でカーボンと反応してCo、Co、が発生し、
Go、Co、がGaAsのメルトと反応して炭素がメル
ト中にとり込まれる。
As a manufacturing method for compound semiconductors such as GaAs and InP, the so-called liquid-sealed rotational pulling method (LEC method) involves sealing a liquid such as BO1 and pulling a single crystal while rotating.
This equipment consists of a heater that melts the raw materials and the crucible raw materials, a heat insulator that creates an appropriate temperature environment, an atmospheric gas, a chamber that envelops the whole, and equipment that rotates and moves the seeds and crucible. Among these, graphite carbon is used for heaters and heat insulators due to its workability, heat resistance, and cost. Crystal growth is performed under the pressure of an inert gas such as N2 or Ar, but residual oxygen exists in the chamber at a concentration of 99111 or higher even after gas replacement, and it reacts with carbon at high temperatures, resulting in Co, Co, etc. occurs,
Go, Co, and react with the GaAs melt to incorporate carbon into the melt.

この炭素はGaAs中ではアクセプタとして作用し、p
pmの濃度になると熱変性や、イオン注入後の活性化率
の悪化などの悪影響をおよぼす問題があった。
This carbon acts as an acceptor in GaAs, p
When the concentration reaches pm, there are problems such as thermal denaturation and deterioration of the activation rate after ion implantation.

そこで装置に使用されるカーボンを凍らすこと、残留酸
素を減少させるなどの観点から■カーボン材を減らすこ
と、■カーボン材料をウールなどからソリッド材に変更
すること、■カーボン材表面をBN、A/!Nなどでコ
ーティングすること、■チャンバー機密性を高めること
などの対策が講じられている。
Therefore, from the viewpoints of freezing the carbon used in the device and reducing residual oxygen, it is necessary to reduce the amount of carbon material, change the carbon material from wool etc. to solid material, and change the surface of the carbon material to BN, A, etc. /! Countermeasures have been taken, such as coating with N, etc., and increasing chamber confidentiality.

しかしながら上記の■カーボン材を凍らすことは結晶成
長上の適正な温度環境を得るためには限界があり大巾に
減らすことができない。■のカーボン材料の変更も上記
の理由により限界がある。
However, freezing the carbon material described above has a limit in obtaining an appropriate temperature environment for crystal growth, and cannot be reduced significantly. There is also a limit to the change in the carbon material (2) due to the above reasons.

■のカーボン表面のコーティングは、ヒーター電極など
不可能な部分があり、またBN、AINなどのコーティ
ングは高価であるため大きな部品には特に困難である。
Coating the surface of carbon (2) is impossible in some parts, such as heater electrodes, and coating with BN, AIN, etc. is expensive, so it is particularly difficult to coat large parts.

■チャンバーは高圧容器であるため超高真空装置程度の
高機密性を得ることは無理であるなど、いずれにおいて
も困難であることが判った。
(2) Since the chamber is a high-pressure container, it was found to be difficult in both cases, such as it being impossible to achieve the same level of confidentiality as an ultra-high vacuum device.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者は、酸素と炭素を減少させることが困難である
以上、これが存在してもCo、Coz、の濃度を減少さ
せるべく検討した結果、還元性の気体を不活性ガスに混
合させることにより、Co。
Since it is difficult to reduce oxygen and carbon, the inventor investigated how to reduce the concentration of Co and Coz even if they exist, and found that by mixing a reducing gas with an inert gas, , Co.

Cox、f4度を減少させ、インゴットの炭素濃度を著
しく低減できる化合物半導体の製造方法を開発したもの
である。
We have developed a method for manufacturing compound semiconductors that can significantly reduce the carbon concentration of ingots by reducing Cox and f4 degrees.

〔問題点を解決するための手段および作用〕本発明は上
記に鑑みなされたもので化合物半導体の液体封止回転引
上げ法において製造装置内に導入する不活性ガスに還元
性の気体を混合して結晶成長を行なうことを特徴とする
化合物半導体の製造方法である。
[Means and effects for solving the problems] The present invention has been made in view of the above, and is a method for mixing a reducing gas with an inert gas introduced into a manufacturing apparatus in a liquid-sealed rotational pulling method for compound semiconductors. This is a compound semiconductor manufacturing method characterized by performing crystal growth.

また本発明は上記の還元性気体として、水素、アンモニ
アの他、アルシンなどが一使用できるものであり、還元
性気体の混合比は爆発限界以下とするものである。すな
わち本発明は、製造装置内に導入するA「、N2などの
不活性ガスに水素、アンモニアなどの気体を混合するこ
とによりC01Cot、の濃度を減少せしめて結晶成長
中のインゴットに混入する炭素量を低減するものである
Further, in the present invention, hydrogen, ammonia, arsine, etc. can be used as the above-mentioned reducing gas, and the mixing ratio of the reducing gases is set to be below the explosion limit. That is, the present invention reduces the concentration of COt by mixing a gas such as hydrogen or ammonia with an inert gas such as N2 introduced into the manufacturing equipment, thereby reducing the amount of carbon mixed into the ingot during crystal growth. This is to reduce the

しかして本発明において還元性気体とは水素、アンモニ
アの他、アルシンなどが使用できる。また還元性気体の
混合比は水素は5%以下とすることが好ましく5%を越
えると爆発のおそれがある。
In the present invention, the reducing gas includes hydrogen, ammonia, arsine, and the like. Further, the mixing ratio of the reducing gas is preferably 5% or less for hydrogen, and if it exceeds 5%, there is a risk of explosion.

アンモニアの場合は16%以下が好ましい。In the case of ammonia, it is preferably 16% or less.

〔実施例〕〔Example〕

以下に本発明の一実施例について説明する。 An embodiment of the present invention will be described below.

液体封止回転引上げ装置によりGaAsのチャージ量を
1.4kgとし、不活性ガスのArに予めN2ガスを0
.3%、0.5%の体積比で混合したウォーミンガスを
上記装置内に導入し、圧力10気圧とし、成長速度7m
/hとして、外径55mφ、長さ85−1引上げ方向<
100>のGaAsのインゴットを製造した。また比較
のためN2ガスを混合しない従来の方法により上記条件
で2本のインゴットを製造し、これらのインゴットの炭
素量を赤外吸光法により測定した。なお濃度換算はBr
ozelらのαΔ= 1 cra−”−2,4XIO”
cm−’(at77” K)を用いた。この結果を第1
表に示す。
The amount of GaAs charged was set to 1.4 kg using a liquid sealed rotary pulling device, and N2 gas was added to the inert gas Ar in advance.
.. Warming gas mixed at a volume ratio of 3% and 0.5% was introduced into the above apparatus, the pressure was 10 atm, and the growth rate was 7 m.
/h, outer diameter 55 mφ, length 85-1 pulling direction <
100> GaAs ingots were produced. For comparison, two ingots were manufactured under the above conditions using a conventional method without mixing N2 gas, and the carbon content of these ingots was measured by infrared absorption spectroscopy. The concentration conversion is Br
αΔ= 1 cra−”−2,4XIO” of ozel et al.
cm-'(at77"K). This result was used as the first
Shown in the table.

第  1  表 第1表から明らかなように本発明方法によれば従来の方
法によるものよりインゴットの炭素濃度が115〜1/
9に減少することが確認された。
Table 1 As is clear from Table 1, according to the method of the present invention, the carbon concentration of the ingot is 115 to 1/2% lower than that of the conventional method.
It was confirmed that the number decreased to 9.

なお本実施例ではN2の濃度を高いもので0.5%とし
たものでチャンバー材質は5US316を用いたがN2
濃度がより高い場合は水素脆性を考慮した材料を用いる
必要がある。
Note that in this example, the concentration of N2 was high, 0.5%, and the chamber material was 5US316, but N2
If the concentration is higher, it is necessary to use materials that take hydrogen embrittlement into consideration.

〔効果〕〔effect〕

以上に説明したように本発明は成長装置内の雰囲気ガス
に水素などの還元性気体を混合するだけの簡単な方法に
より半導体インゴットの炭素濃度を著しく低減させるこ
とができたものでこれに要する費用も安価であり、工業
上顕著な効果を奏するものである。
As explained above, the present invention makes it possible to significantly reduce the carbon concentration of a semiconductor ingot by a simple method of mixing a reducing gas such as hydrogen into the atmospheric gas in the growth apparatus, and the cost required for this. It is also inexpensive and has significant industrial effects.

Claims (3)

【特許請求の範囲】[Claims] (1)化合物半導体の液体封止回転引上げ法において製
造装置内に導入する不活性ガスに還元性の気体を混合し
て結晶成長を行なうことを特徴とする化合物半導体の製
造方法。
(1) A method for manufacturing a compound semiconductor, which is characterized in that crystal growth is performed by mixing a reducing gas with an inert gas introduced into a manufacturing apparatus in a liquid-sealed rotational pulling method for compound semiconductors.
(2)還元性の気体が、水素、アンモニア、アルシンな
どであることを特徴とする特許請求の範囲第1項記載の
化合物半導体の製造方法。
(2) The method for manufacturing a compound semiconductor according to claim 1, wherein the reducing gas is hydrogen, ammonia, arsine, or the like.
(3)還元性気体の混合率が爆発限界以下であることを
特徴とする特許請求の範囲第1項または第2項記載の化
合物半導体の製造方法。
(3) The method for manufacturing a compound semiconductor according to claim 1 or 2, wherein the mixing ratio of the reducing gas is below the explosive limit.
JP4497987A 1987-02-27 1987-02-27 Production of compound semiconductor Pending JPS63215592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4497987A JPS63215592A (en) 1987-02-27 1987-02-27 Production of compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4497987A JPS63215592A (en) 1987-02-27 1987-02-27 Production of compound semiconductor

Publications (1)

Publication Number Publication Date
JPS63215592A true JPS63215592A (en) 1988-09-08

Family

ID=12706586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4497987A Pending JPS63215592A (en) 1987-02-27 1987-02-27 Production of compound semiconductor

Country Status (1)

Country Link
JP (1) JPS63215592A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5041186A (en) * 1987-11-30 1991-08-20 Kabushiki Kaisha Toshiba Method for manufacturing compound semiconductor single crystals using a hydrogen monitor gas
JP2008077625A (en) * 2006-09-18 2008-04-03 Samsung Electronics Co Ltd System and method for processing user defined extended operation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5041186A (en) * 1987-11-30 1991-08-20 Kabushiki Kaisha Toshiba Method for manufacturing compound semiconductor single crystals using a hydrogen monitor gas
JP2008077625A (en) * 2006-09-18 2008-04-03 Samsung Electronics Co Ltd System and method for processing user defined extended operation

Similar Documents

Publication Publication Date Title
JP4135239B2 (en) Semiconductor crystal, manufacturing method thereof and manufacturing apparatus
JP4416040B2 (en) Compound semiconductor crystal
US3582271A (en) Method for manufacturing alumina whiskers
JP3596337B2 (en) Method for manufacturing compound semiconductor crystal
JPS63215592A (en) Production of compound semiconductor
Bliss et al. Synthesis and growth processes for zinc germanium diphosphide
US3290181A (en) Method of producing pure semiconductor material by chemical transport reaction using h2s/h2 system
JPH0688866B2 (en) Boron nitride coated crucible and method of manufacturing the same
Ntep et al. ZnO growth by chemically assisted sublimation
CN113788480A (en) Preparation method of high-purity silicon carbide and corresponding high-purity silicon carbide
JPS6375000A (en) Production of aluminum nitride whisker
Nassau et al. Modified technique for the growth of boracite crystals
Horakh et al. Phase relationships in the N2O3/N2O4 system and crystal structures of N2O3
JPS6111885B2 (en)
JP2913931B2 (en) Method and apparatus for producing carbon-added III-V compound semiconductor crystal (GaAs crystal)
JPS59162199A (en) Crystal growth using silicon nitride and manufacture of parts therefor
JPH01126292A (en) Production of single crystal
JPS62230694A (en) Production of gaas single crystal
JP2002160911A (en) METHOD FOR MANUFACTURING InP POLYCRYSTAL
Kwan et al. Halogen vapor deposition of chalcogenide crystals: Lead sulfide
Talyzin et al. The Preparation and Properties of Indium Phosphide
US3600143A (en) Growth of crystalline chalcogenide spinels
CN116463719A (en) Preparation method and application of high-dielectric-constant cadmium phosphorus sulfur crystal and electronic device
JPH08151300A (en) Production of gallium arsenide single crystal
JPS63248797A (en) Device for vapor phase epitaxy