JP2002160911A - METHOD FOR MANUFACTURING InP POLYCRYSTAL - Google Patents

METHOD FOR MANUFACTURING InP POLYCRYSTAL

Info

Publication number
JP2002160911A
JP2002160911A JP2000352184A JP2000352184A JP2002160911A JP 2002160911 A JP2002160911 A JP 2002160911A JP 2000352184 A JP2000352184 A JP 2000352184A JP 2000352184 A JP2000352184 A JP 2000352184A JP 2002160911 A JP2002160911 A JP 2002160911A
Authority
JP
Japan
Prior art keywords
inp
quartz
graphite container
polycrystal
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000352184A
Other languages
Japanese (ja)
Inventor
Koji Sato
浩二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2000352184A priority Critical patent/JP2002160911A/en
Publication of JP2002160911A publication Critical patent/JP2002160911A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an InP polycrystal with high productivity and high purity. SOLUTION: In the method for manufacturing the InP polycrystal by a horizontal boat method, a graphite vessel with an impurity concentration of 400 ppm or less is used as a vessel where In is accommodated, a transfer speed of the graphite vessel is set on the range of 20 to 50 mm/h and a high-frequency induction heating is used for heating the graphite vessel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、InP単結晶等を
製造する際の原料として用いられるInP多結晶の製造
方法に関する。
The present invention relates to a method for producing an InP polycrystal used as a raw material for producing an InP single crystal or the like.

【0002】[0002]

【従来の技術】InP結晶の製造に用いられる赤リンは
蒸気圧が高いため、赤リンを用いて直接、InP単結晶
を育成することは難しい。その為、赤リンを用いて先ず
InP多結晶を製造し、そのInP多結晶を原料として
InP単結晶を製造することが一般的に行われている。
InP多結晶の合成には横型ボート法が主に用いられて
いる。ボートに入れたインジウムと赤リンとを石英アン
プル内に真空封入し、高圧横型ボート炉内に設置する。
石英アンプル内の赤リン部分を加熱して、石英アンプル
内のリン蒸気圧を高める。この際、石英アンプルの破裂
を防ぐために横型ボート炉内の石英アンプルの外部を、
不活性ガスなどで加圧し、石英アンプル内の赤リンの蒸
気圧とアンプルの外気圧とがバランスするようにする。
インジウムの入ったボートの一部をInPの融点付近ま
で加熱し、インジウムとリン蒸気とを反応させてInP
多結晶を製造する。この際、石英アンプルを移動させ、
インジウムの入ったボートの端から高温部分を通過させ
ることでInP多結晶を製造するのが一般的である。
2. Description of the Related Art Since red phosphorus used for producing InP crystals has a high vapor pressure, it is difficult to directly grow InP single crystals using red phosphorus. For this reason, it is common practice to first produce an InP polycrystal using red phosphorus and produce an InP single crystal using the InP polycrystal as a raw material.
The horizontal boat method is mainly used for the synthesis of InP polycrystal. The indium and red phosphorus put in the boat are vacuum-sealed in a quartz ampule and placed in a high-pressure horizontal boat furnace.
The red phosphorus portion in the quartz ampule is heated to increase the phosphorus vapor pressure in the quartz ampule. At this time, the outside of the quartz ampule inside the horizontal boat furnace was
It is pressurized with an inert gas or the like so that the vapor pressure of red phosphorus in the quartz ampule and the external pressure of the ampule are balanced.
A part of the boat containing indium is heated to near the melting point of InP, and the indium reacts with the phosphorus vapor to form InP.
Produce polycrystals. At this time, move the quartz ampoule,
It is common to produce InP polycrystals by passing a high temperature portion from the end of the boat containing indium.

【0003】[0003]

【発明が解決しようする課題】高純度のInP単結晶を
製造するためには、原料として高純度InP多結晶を用
いる必要がある。しかし、従来より横型ボート法による
InP多結晶の製造ではボートとして石英を用いている
が、石英に含まれるSiがInP結晶中に不純物として
混入しやすく、製造されるInP多結晶の純度を下げて
いた。またInP多結晶中へのSiの混入を防ぐため、
h−BN製のボートを用いることが行われているが、こ
れによりSiの混入は防げるがh−BN中に含まれる他
の不純物が混入したり、またh−BN製ボートは絶縁性
であるため高周波等の誘導加熱を用いることができず、
ボートの加熱温度分布が不均一になるため、InとPの
組成比率が悪くなるという問題点があった。またh−B
N製のボートは石英等に比べ高価であるため、InP多
結晶の生産コストを高めていた。
In order to produce a high-purity InP single crystal, it is necessary to use a high-purity InP polycrystal as a raw material. However, conventionally, quartz has been used as a boat in the production of InP polycrystals by the horizontal boat method. However, Si contained in quartz tends to be mixed as impurities into the InP crystals, and the purity of the produced InP polycrystals is reduced. Was. Also, in order to prevent Si from being mixed into the InP polycrystal,
Although the use of an h-BN boat has been used, this can prevent the incorporation of Si, but may introduce other impurities contained in the h-BN, and the h-BN boat is insulative. Therefore, induction heating such as high frequency cannot be used,
Since the heating temperature distribution of the boat becomes non-uniform, there is a problem that the composition ratio of In and P deteriorates. Also h-B
Since the boat made of N is more expensive than quartz or the like, the production cost of the InP polycrystal has been increased.

【0004】本発明は上記の問題点を解決し、純度が高
く、生産コストの低いInP多結晶の製造方法を提供す
ることを目的としている。
An object of the present invention is to solve the above problems and to provide a method for producing an InP polycrystal having high purity and low production cost.

【問題を解決するための手段】本発明者らは上記課題を
解決すべく鋭意努力検討した結果、Inを入れるボート
に黒鉛製の容器を用いることによりInP多結晶中への
不純物の混入が防げ、高純度のInP多結晶が製造でき
ること、また黒鉛は誘導加熱が可能なため原料を均一に
加熱ができ、良質で低コストのInP多結晶を生産する
ことが可能となることを見出し本発明を完成させた。即
ち本発明は、[1]黒鉛からなる容器(以後、黒鉛容器
とする。)に入れたInをリン含有物質と共に1つのア
ンプル内に封入し、該アンプルを内部に温度分布を有す
る合成炉内に入れて加熱するとともに、アンプル内の黒
鉛容器部分を合成炉内の高温領域を移動させながらIn
P多結晶を製造するInP多結晶の製造方法、[2]黒
鉛容器の不純物濃度を400ppm以下とすることを特
徴とする[1]に記載のInP多結晶の製造方法、
[3]黒鉛容器の不純物濃度を20ppm以下とするこ
とを特徴とする[1]または[2]に記載のInP多結
晶の製造方法、[4]黒鉛容器の不純物濃度を5ppm
以下とすることを特徴とする[1]〜[3]の何れか1
項に記載のInP多結晶の製造方法、[5]黒鉛容器の
合成炉内の高温領域での移動速度を、20〜50mm/
時間の範囲内とすることを特徴とする[1]〜[4]の
何れか1項に記載のInP多結晶の製造方法、[6]黒
鉛容器の加熱に、高周波誘導加熱を用いることを特徴と
する[1]〜[5]の何れか1項に記載のInP多結晶
の製造方法に関する。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above-mentioned problems, and as a result, it has been found that the use of a graphite vessel for a boat for containing In prevents the incorporation of impurities into the InP polycrystal. It has been found that high-purity InP polycrystals can be produced, and that graphite can be induction-heated, so that the raw materials can be uniformly heated and high-quality, low-cost InP polycrystals can be produced. Completed. That is, according to the present invention, [1] In contained in a container made of graphite (hereinafter referred to as a graphite container) is enclosed in one ampule together with a phosphorus-containing substance, and the ampule is placed in a synthesis furnace having a temperature distribution inside. While heating the graphite container in the ampoule while moving it through the high temperature area in the synthesis furnace.
A method for producing an InP polycrystal for producing a P polycrystal, [2] a method for producing an InP polycrystal according to [1], wherein the impurity concentration of the graphite container is 400 ppm or less;
[3] The method for producing an InP polycrystal according to [1] or [2], wherein the impurity concentration of the graphite container is 20 ppm or less, [4] The impurity concentration of the graphite container is 5 ppm.
Any one of [1] to [3], characterized in that:
Item 5. The method for producing an InP polycrystal according to item [5], wherein the moving speed of the graphite container in the high temperature region in the synthesis furnace is 20 to 50 mm /
The method for producing an InP polycrystal according to any one of [1] to [4], wherein the high frequency induction heating is used for heating the graphite container. The present invention relates to a method for producing an InP polycrystal according to any one of [1] to [5].

【0005】[0005]

【発明の実施の形態】本発明のInP多結晶は、横型ボ
ート法により製造する。更に詳しくは、リンを含む物質
と黒鉛容器に入れたInとを例えば石英アンプルに入
れ、これを外部から加熱し、InとPとを反応させてI
nP多結晶を製造する。InP多結晶の製造のIn収納
容器に黒鉛を用いた場合、従来用いられていた石英やh
−BNに比べ、InP結晶の高純度化が容易であり、I
nP結晶に混入する不純物濃度を低減することができ
る。本発明に用いる黒鉛容器は、高純度であることが好
ましく、具体的には不純物濃度が400ppm以下の黒
鉛容器、より好ましくは純化処理を施した不純物濃度2
0ppm以下の黒鉛容器、最も好ましくは不純物濃度5
ppm以下の黒鉛容器を用いる。
DETAILED DESCRIPTION OF THE INVENTION The InP polycrystal of the present invention is manufactured by a horizontal boat method. More specifically, a substance containing phosphorus and In contained in a graphite container are placed in, for example, a quartz ampoule, and this is heated from the outside to cause a reaction between In and P to produce I.
Produce nP polycrystal. When graphite is used for the In storage container for the production of InP polycrystal, conventionally used quartz or h
-Pb is easier to purify the InP crystal compared to -BN.
The concentration of impurities mixed in the nP crystal can be reduced. The graphite container used in the present invention is preferably of high purity, specifically, a graphite container having an impurity concentration of 400 ppm or less, more preferably an impurity concentration of 2% after a purification treatment.
0 ppm or less graphite container, most preferably impurity concentration 5
Use a graphite container of less than ppm.

【0006】リンを含む物質には黄リン、金属リン、赤
リン等を用いることが可能であるが、この中で特に赤リ
ンを用いることが好ましい。
As the phosphorus-containing substance, yellow phosphorus, metallic phosphorus, red phosphorus and the like can be used, and among them, red phosphorus is particularly preferable.

【0007】図1は本発明で用いる石英アンプルの一例
を示す概略図である。石英アンプル1の内部には、赤リ
ンインゴット3を入れ、さらに合成反応部でのリン蒸気
圧を維持する拡散障壁の目的のため石英ウール4を入れ
る。石英アンプルの大きさは、好ましくは、直径80〜
120mmの範囲内であり、長さは、700〜1200
mmの範囲内、厚さは、3〜5mmの範囲内、石英アン
プルの中に入れる赤リンの量は、好ましくは、600〜
1200gの範囲内、石英ウールの量は、好ましくは、
5〜20gの範囲内である。
FIG. 1 is a schematic view showing an example of a quartz ampule used in the present invention. Inside the quartz ampule 1, a red phosphorus ingot 3 is placed, and further, quartz wool 4 is placed for the purpose of a diffusion barrier for maintaining a phosphorus vapor pressure in the synthesis reaction section. The size of the quartz ampule is preferably 80 to
120 mm, and the length is 700-1200.
mm, the thickness is in the range of 3 to 5 mm, and the amount of red phosphorus contained in the quartz ampoule is preferably 600 to
Within the range of 1200 g, the amount of quartz wool is preferably
It is in the range of 5 to 20 g.

【0008】次に、Inインゴット5を黒鉛容器6に入
れ、黒鉛蓋7をして石英アンプル1に入れ、石英アンプ
ル1の開放端側に石英キャップ2をはめ、真空ポンプに
接続し、石英アンプル内を真空に引きつつ石英キャップ
2と石英アンプル1をバーナーで溶封し石英アンプルを
作製する。
Next, the In ingot 5 is put into a graphite container 6, covered with a graphite lid 7, put into a quartz ampule 1, a quartz cap 2 is fitted to the open end side of the quartz ampule 1, and connected to a vacuum pump. While the inside is evacuated, the quartz cap 2 and the quartz ampule 1 are sealed with a burner to produce a quartz ampule.

【0009】石英アンプルの中に入れる黒鉛容器は好ま
しくは円筒状であり、大きさは、好ましくは、直径50
〜100mmの範囲内であり、長さは、300〜600
mmの範囲内、厚さは、4〜8mmの範囲内である。ま
た黒鉛容器の内部に入れるInインゴットの量は、好ま
しくは、2000〜4000gの範囲内である。
The graphite container contained in the quartz ampoule is preferably cylindrical and has a size preferably of 50 mm diameter.
100100 mm, and the length is 300〜600.
mm, the thickness is in the range of 4-8 mm. Further, the amount of the In ingot to be put in the graphite container is preferably in the range of 2000 to 4000 g.

【0010】この石英アンプルを、例えば図2に示す炉
内に入れて加熱することにより、InとPとを反応させ
InP多結晶を製造する。図2に示す炉内は、加熱炉
9、加熱炉10、高周波誘導加熱炉11により図3に示
すような温度分布を形成することが好ましい。図3の横
軸は合成炉8内の各部位を示す。即ち図3の横軸のTi
nは加熱炉1(図番号9)の位置を示し、Tmは高周波
誘導加熱炉11の位置を、Tpは加熱炉2(図番号1
0)の位置を示す。また図3の縦軸の温度は任意値であ
り、上になるほど温度が高くなる。即ち、図3縦軸のT
inは加熱炉9による加熱温度を示し、Tmは高周波誘
導加熱炉11による黒鉛容器6の誘導加熱温度、Tpは
加熱炉10による加熱温度を示す。
The quartz ampoule is put into, for example, a furnace shown in FIG. 2 and heated to react In and P to produce an InP polycrystal. In the furnace shown in FIG. 2, it is preferable that the heating furnace 9, the heating furnace 10, and the high-frequency induction heating furnace 11 form a temperature distribution as shown in FIG. The horizontal axis in FIG. 3 indicates each part in the synthesis furnace 8. That is, Ti on the horizontal axis in FIG.
n indicates the position of the heating furnace 1 (FIG. 9), Tm indicates the position of the high-frequency induction heating furnace 11, and Tp indicates the heating furnace 2 (FIG. 1).
0). The temperature on the vertical axis in FIG. 3 is an arbitrary value, and the higher the temperature, the higher the temperature. That is, T on the vertical axis of FIG.
“in” indicates the heating temperature of the heating furnace 9, “Tm” indicates the induction heating temperature of the graphite container 6 by the high-frequency induction heating furnace 11, and “Tp” indicates the heating temperature of the heating furnace 10.

【0011】加熱炉10により赤リンを加熱することで
石英アンプル内を所定のリン蒸気圧で満たし、高周波誘
導加熱炉11でInをInPの融点(約1062℃)前
後の温度に加熱することでInP多結晶が合成される。
またこの時加熱炉9は、リン蒸気が再凝集しないように
加熱炉10よりも高めの温度に設定する必要がある。こ
の場合のTin温度は、好ましくは、600〜800℃
の範囲内、より好ましくは、650〜750℃の範囲
内、Tm温度は、好ましくは、1000〜1300℃の
範囲内、より好ましくは、1050〜1200℃の範囲
内、Tp温度は、好ましくは、550〜590℃の範囲
内、より好ましくは、560〜580℃の範囲内とす
る。Tmの加熱は高周波誘導加熱によらなくとも抵抗加
熱等でも可能であるが、本発明の黒鉛製容器を用いた場
合には、高周波誘導加熱を用いると、より容器内が均一
に加熱され高純度のInP多結晶を高効率で製造するこ
とが可能となり好ましい。
By heating the red phosphorus in the heating furnace 10, the inside of the quartz ampoule is filled with a predetermined phosphorus vapor pressure, and the high-frequency induction heating furnace 11 heats In to a temperature around the melting point of InP (about 1062 ° C.). InP polycrystal is synthesized.
At this time, the temperature of the heating furnace 9 needs to be set higher than that of the heating furnace 10 so that the phosphorus vapor does not re-aggregate. The Tin temperature in this case is preferably 600 to 800 ° C.
, More preferably within the range of 650 to 750 ° C, the Tm temperature is preferably within the range of 1000 to 1300 ° C, more preferably within the range of 1050 to 1200 ° C, and the Tp temperature is preferably It is in the range of 550-590 ° C, more preferably in the range of 560-580 ° C. The Tm can be heated by resistance heating or the like without using high-frequency induction heating. However, when the graphite container of the present invention is used, the high-frequency induction heating allows the inside of the container to be heated more uniformly and high purity. Is preferable because it enables highly efficient production of InP polycrystal.

【0012】また、炉内は、石英アンプルの内外で圧力
差を生じないように圧力制御装置14で圧力差を一定に
保つのが好ましいが、炉内圧力は、好ましくは、15〜
25MPaの範囲内であり、圧力の制御には窒素ガスを
用いるのが好ましい。
In the furnace, it is preferable to keep the pressure difference constant by the pressure controller 14 so as not to generate a pressure difference inside and outside the quartz ampule.
It is within the range of 25 MPa, and it is preferable to use nitrogen gas for controlling the pressure.

【0013】実際の結晶成長は以下の手順で行う。図2
に示す炉内に、図1に示した原料を封入した石英アンプ
ルを設置し、加熱炉9、加熱炉10、高周波誘導加熱炉
11を図3に示すような温度分布を形成させて保持後、
図2内の石英アンプルを図2中に示す矢印の方向に駆動
軸12により移動させ、石英アンプル内の黒鉛容器の右
端から左端までを、高周波炉部分を通過させて加熱す
る。石英アンプルの移動速度は、炉の容量、石英アンプ
ルのサイズ、アンプル内の原料の量にもよるが、好まし
くは、20〜50mm/時間の範囲内、より好ましく
は、20〜30mm/時間の範囲内である。移動速度を
上記の範囲より速くした場合、得られる多結晶の一部に
InとPとの未合成部分が見られ、製品の純度が悪くな
る。一方、移動速度を上記の範囲より遅くした場合、合
成に時間がかかり生産性が低下する。
The actual crystal growth is performed in the following procedure. FIG.
1. A quartz ampoule enclosing the raw material shown in FIG. 1 is installed in the furnace shown in FIG. 1, and the heating furnace 9, the heating furnace 10, and the high-frequency induction heating furnace 11 are formed with the temperature distribution shown in FIG.
The quartz ampoule in FIG. 2 is moved by the drive shaft 12 in the direction of the arrow shown in FIG. 2, and the right to left ends of the graphite container in the quartz ampule are heated by passing through a high-frequency furnace part. The moving speed of the quartz ampule depends on the capacity of the furnace, the size of the quartz ampule, and the amount of the raw material in the ampoule, but is preferably in the range of 20 to 50 mm / hour, more preferably in the range of 20 to 30 mm / hour. Is within. When the moving speed is higher than the above range, an unsynthesized portion of In and P is found in a part of the obtained polycrystal, and the purity of the product is deteriorated. On the other hand, if the moving speed is slower than the above range, it takes a long time to perform synthesis, and the productivity is reduced.

【0014】黒鉛容器の左端までが加熱された後、石英
アンプルの移動を停止し、炉内を徐冷する。その後炉内
圧を大気圧とした後、炉を開放し石英アンプルを取り出
す。石英アンプルの石英キャップ部分を切断し黒鉛容器
を取り出し、さらに黒鉛容器内から合成されたInP多
結晶インゴットを取り出す。
After the graphite container is heated up to the left end, the movement of the quartz ampule is stopped, and the inside of the furnace is gradually cooled. After that, the furnace pressure was set to the atmospheric pressure, the furnace was opened, and the quartz ampule was taken out. The quartz cap portion of the quartz ampule is cut, the graphite container is taken out, and the synthesized InP polycrystalline ingot is taken out of the graphite container.

【0015】[0015]

【実施例】以下、本発明を実施例により詳細に説明する
が、本発明はこれに限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.

【0016】(実施例)図1に示す一端を封じた直径7
8mm、内径72mm、長さ1000mmの石英アンプ
ル1に、重量0.8kg、純度99.999%の赤リン
インゴット3をいれ、さらに石英ウール4を約10gを
入れた。次に、中に重量2.4kgのインジウムインゴ
ット5を入れ両端がキャップ7で封止された円筒黒鉛容
器6を入れた。黒鉛容器の不純物濃度は純化処理により
5ppm以下であり、黒鉛容器の大きさは、直径65m
m、内径75mm、長さ490mmとした。石英アンプ
ルの開放端側に石英キャップ2をはめ、真空ポンプに接
続し石英アンプル内を真空に引きつつ石英キャップと石
英アンプルをバーナーで溶封した。
(Embodiment) FIG.
A red phosphorus ingot 3 having a weight of 0.8 kg and a purity of 99.999% was placed in a quartz ampoule 1 having a size of 8 mm, an inner diameter of 72 mm and a length of 1000 mm, and about 10 g of quartz wool 4 was further added. Next, an indium ingot 5 weighing 2.4 kg was placed therein, and a cylindrical graphite container 6 having both ends sealed with caps 7 was placed therein. The impurity concentration of the graphite container is 5 ppm or less by the purification treatment, and the size of the graphite container is 65 m in diameter.
m, inner diameter 75 mm, and length 490 mm. A quartz cap 2 was fitted to the open end side of the quartz ampule, and the quartz cap and the quartz ampule were sealed with a burner while connected to a vacuum pump and the inside of the quartz ampule was evacuated.

【0017】次に、図2に示す炉内に上記石英アンプル
を設置し、電気炉9、電気炉10、高周波誘導加熱炉1
1を図3に示すような温度分布とした。なお、Tinは
650℃、Tmは1200℃、Tpは570℃とし、炉
内は窒素ガスにより石英アンプルの内外でほぼ一定の圧
力となるように19MPaとした。石英アンプルを図2
中の矢印に示す方向に22mm/時間の速さで移動さ
せ、石英アンプルの右端から左端を、高周波誘導加熱炉
部分を通過させた時点で移動を停止し、炉内を徐冷、減
圧した。炉内圧を大気圧とした後、炉を開放し、石英ア
ンプルを取り出した。石英アンプルの石英キャップ部分
を切断し黒鉛容器を取り出し、さらに黒鉛容器から合成
されたInP多結晶インゴットを取り出した。
Next, the quartz ampoule was placed in the furnace shown in FIG.
1 has a temperature distribution as shown in FIG. In addition, Tin was set to 650 ° C., Tm was set to 1200 ° C., and Tp was set to 570 ° C., and the inside of the furnace was set to 19 MPa so that the pressure inside and outside the quartz ampoule was almost constant by nitrogen gas. Fig. 2 quartz ampule
The quartz ampule was moved at a speed of 22 mm / hour in the direction indicated by the arrow in the middle, the movement was stopped when the quartz ampoule was passed from the right end to the left end through the high-frequency induction heating furnace part, and the inside of the furnace was gradually cooled and depressurized. After the furnace pressure was set to atmospheric pressure, the furnace was opened and the quartz ampule was taken out. The quartz cap portion of the quartz ampule was cut, the graphite container was taken out, and the synthesized InP polycrystalline ingot was taken out of the graphite container.

【0018】得られたInP多結晶インゴットを複数個
に切断し、切断面を目視確認したところ、インゴット端
部数mmを除きほぼ全域でInPが合成されており未合
成部分は認められなかった。本多結晶から採取したサン
プルに関し不純物分析を行った結果を図4に示すが、不
純物濃度の少ないInP多結晶体が得られた。
The obtained InP polycrystalline ingot was cut into a plurality of pieces, and the cut surface was visually checked. As a result, InP was synthesized in almost the entire region except for a few mm of the end of the ingot, and no unsynthesized portion was observed. FIG. 4 shows the result of an impurity analysis performed on a sample collected from the present polycrystal, and an InP polycrystal having a low impurity concentration was obtained.

【0019】(比較例)実施例と同じ装置、原料を用
い、インジウム収容容器のみを黒鉛容器からp−BN製
容器に変更した。実施例と同じ温度分布にて、駆動速度
22mm/時間にて多結晶合成を行った。得られたIn
P多結晶インゴットを、複数個に切断し、切断面を目視
確認したところ、約40%の部分でInPの未合成部分
が認められた。これはp−BN製ボートを用いたためボ
ートの加熱が不十分となりInとPの反応が十分に進行
しなかったためと考えられる。また、本多結晶から採取
したサンプルに関し不純物分析を行った結果を図4に示
すが、実施例と比較してAl、Si、Asの不純物濃度
が高かった。これらはp−BNボートから混入した不純
物と考えられる。
Comparative Example Using the same apparatus and raw materials as in the example, only the indium container was changed from a graphite container to a p-BN container. Polycrystalline synthesis was performed at the same temperature distribution as in the example and at a driving speed of 22 mm / hour. In obtained
The P polycrystalline ingot was cut into a plurality of pieces, and the cut surface was visually checked. As a result, an unsynthesized portion of InP was found in about 40% of the sections. This is presumably because the use of a boat made of p-BN resulted in insufficient heating of the boat and the reaction between In and P did not proceed sufficiently. In addition, FIG. 4 shows the result of an impurity analysis performed on a sample collected from the present polycrystal, and the impurity concentrations of Al, Si, and As were higher than those of the example. These are considered to be impurities mixed from the p-BN boat.

【0020】[0020]

【発明の効果】本発明により、高純度InPの多結晶を
高い生産性で製造することが可能となった。特に、本発
明によりInインゴットの溶解が高周波誘導加熱により
行うことが可能となり、石英アンプルの移動速度を高め
ても均一な加熱が可能となるため、より高い生産性を実
現することが可能となった。
According to the present invention, a high-purity InP polycrystal can be produced with high productivity. In particular, according to the present invention, the melting of the In ingot can be performed by high-frequency induction heating, and uniform heating can be performed even when the moving speed of the quartz ampule is increased, so that higher productivity can be realized. Was.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の石英アンプルの断面図を示す。FIG. 1 shows a cross-sectional view of a quartz ampule of the present invention.

【図2】本発明を実施するための装置断面図の一例を示
す。
FIG. 2 shows an example of a sectional view of an apparatus for carrying out the present invention.

【図3】図2に示した合成炉内の温度分布を示す。FIG. 3 shows a temperature distribution in the synthesis furnace shown in FIG.

【図4】実施例、比較例で得られたInP結晶中の不純
物濃度を示すグラフである。
FIG. 4 is a graph showing impurity concentrations in InP crystals obtained in Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1 石英アンプル 2 石英キャップ 3 赤リンインゴット 4 石英ウール 5 インジウムインゴット 6 黒鉛容器(本体) 7 黒鉛容器(ふた) 8 合成炉 9 加熱炉 10 加熱炉 11 高周波誘導加熱炉 12 駆動軸 13 熱電対 14 圧力制御装置 DESCRIPTION OF SYMBOLS 1 Quartz ampoule 2 Quartz cap 3 Red phosphorus ingot 4 Quartz wool 5 Indium ingot 6 Graphite container (body) 7 Graphite container (lid) 8 Synthesis furnace 9 Heating furnace 10 Heating furnace 11 High frequency induction heating furnace 12 Drive shaft 13 Thermocouple 14 Pressure Control device

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】黒鉛からなる容器(以後、黒鉛容器とす
る。)に入れたInをリン含有物質と共に1つのアンプ
ル内に封入し、該アンプルを内部に温度分布を有する合
成炉内に入れて加熱するとともに、アンプル内の黒鉛容
器部分を合成炉内の高温領域を移動させながらInP多
結晶を製造するInP多結晶の製造方法。
1. In a container containing graphite (hereinafter referred to as a graphite container), In is enclosed in one ampule together with a phosphorus-containing substance, and the ampule is placed in a synthesis furnace having a temperature distribution therein. A method for producing an InP polycrystal, which produces an InP polycrystal while heating and moving a graphite container portion in an ampule through a high-temperature region in a synthesis furnace.
【請求項2】黒鉛容器の不純物濃度を400ppm以下
とすることを特徴とする請求項1に記載のInP多結晶
の製造方法。
2. The method according to claim 1, wherein the impurity concentration of the graphite container is set to 400 ppm or less.
【請求項3】黒鉛容器の不純物濃度を20ppm以下と
することを特徴とする請求項1または2に記載のInP
多結晶の製造方法。
3. The InP according to claim 1, wherein the impurity concentration of the graphite container is 20 ppm or less.
Polycrystalline manufacturing method.
【請求項4】黒鉛容器の不純物濃度を5ppm以下とす
ることを特徴とする請求項1〜3の何れか1項に記載の
InP多結晶の製造方法。
4. The method for producing an InP polycrystal according to claim 1, wherein the impurity concentration of the graphite container is 5 ppm or less.
【請求項5】黒鉛容器の合成炉内の高温領域での移動速
度を、20〜50mm/時間の範囲内とすることを特徴
とする請求項1〜4の何れか1項に記載のInP多結晶
の製造方法。
5. The InP multi-layer according to claim 1, wherein a moving speed of the graphite container in the high temperature region in the synthesis furnace is within a range of 20 to 50 mm / hour. Method for producing crystals.
【請求項6】黒鉛容器の加熱に、高周波誘導加熱を用い
ることを特徴とする請求項1〜5の何れか1項に記載の
InP多結晶の製造方法。
6. The method for producing an InP polycrystal according to claim 1, wherein high-frequency induction heating is used for heating the graphite container.
JP2000352184A 2000-11-20 2000-11-20 METHOD FOR MANUFACTURING InP POLYCRYSTAL Pending JP2002160911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000352184A JP2002160911A (en) 2000-11-20 2000-11-20 METHOD FOR MANUFACTURING InP POLYCRYSTAL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000352184A JP2002160911A (en) 2000-11-20 2000-11-20 METHOD FOR MANUFACTURING InP POLYCRYSTAL

Publications (1)

Publication Number Publication Date
JP2002160911A true JP2002160911A (en) 2002-06-04

Family

ID=18825119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000352184A Pending JP2002160911A (en) 2000-11-20 2000-11-20 METHOD FOR MANUFACTURING InP POLYCRYSTAL

Country Status (1)

Country Link
JP (1) JP2002160911A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113735082A (en) * 2021-10-14 2021-12-03 广东先导微电子科技有限公司 Low-halogen electronic grade red phosphorus purification device and preparation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113735082A (en) * 2021-10-14 2021-12-03 广东先导微电子科技有限公司 Low-halogen electronic grade red phosphorus purification device and preparation method

Similar Documents

Publication Publication Date Title
KR100552130B1 (en) Calcium fluoride crystal production method and raw material processing method
US20020170490A1 (en) Method and apparatus for growing aluminum nitride monocrystals
JP4135239B2 (en) Semiconductor crystal, manufacturing method thereof and manufacturing apparatus
CN114635180B (en) Semi-insulating gallium arsenide monocrystal, preparation method and growth device thereof
JPH09315893A (en) Production of calcium fluoride crystal
JP2010030891A (en) Compound semiconductor crystal
JP3596337B2 (en) Method for manufacturing compound semiconductor crystal
JP2002160911A (en) METHOD FOR MANUFACTURING InP POLYCRYSTAL
US4764350A (en) Method and apparatus for synthesizing a single crystal of indium phosphide
JP2020001998A (en) Reaction device for horizontal boat method
JP5637778B2 (en) Method for producing polycrystalline gallium arsenide compound semiconductor
JP2001180918A (en) Method of directly synthesizing indium phosphide
JPS61222911A (en) Synthesis of phosphorated compound
RU2812421C1 (en) METHOD FOR SYNTHESIS OF POLYCRYSTALLINE ZnGeP2
US4559217A (en) Method for vacuum baking indium in-situ
JP3513046B2 (en) Single crystal manufacturing equipment
JPH0375291A (en) Production of znse single crystal
JP2733898B2 (en) Method for manufacturing compound semiconductor single crystal
JPH03275516A (en) Production of polycrystal of phosphorus-containing iii-v group compound
JPS63215592A (en) Production of compound semiconductor
JP2004002075A (en) Semiconductor heat-treating apparatus
CN113957523A (en) Multi-element crystal purification device and method
JPH027919B2 (en)
JPS6065794A (en) Production of high-quality gallium arsenide single crystal
JPH089517B2 (en) Single crystal manufacturing method